1
|
Wang Z, Zhang W, Huang D, Kang H, Wang J, Liu Z, Jiang G, Gao A. Cuproptosis is involved in decabromodiphenyl ether-induced ovarian dysfunction and the protective effect of melatonin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124100. [PMID: 38714232 DOI: 10.1016/j.envpol.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Decabromodiphenyl ether (BDE-209) has been universally detected in environmental media and animals, but its damage to ovarian function and mechanism is still unclear, and melatonin has been shown to improve mammalian ovarian function. This study aimed to investigate the toxic effects of BDE-209 on the ovary and tried to improve ovarian function with melatonin. Herein, BDE-209 was administered orally to female SD rats for 60 days. Enzyme-linked immunosorbent assay, HE staining, transcriptome analysis, qPCR and immunohistochemical staining were used to explore and verify the potential mechanism. We found that BDE-209 exposure had effects on the ovary, as shown by abnormal changes in the estrous cycle, hormone levels and ovarian reserve function in rats, while increasing the proportion of collagen fibres in ovarian tissue. In terms of mechanism, cuproptosis, a form of cell death, was identified to play a crucial role in BDE-209-induced ovarian dysfunction, with the phenotype manifested as copper salt accumulation in ovary, downregulation of glutathione pathway metabolism and copper transfer molecule (ATP7A/B), and upregulation of FDX1, lipoic acid pathway (LIAS, LIPT1), pyruvate dehydrogenase complex components (DLAT, PDHB, PDHA1), and copper transfer molecule (SLC31A1). Furthermore, possible interventions were explored. Notably, a supplement with melatonin has a repair effect on the damage to ovarian function by reversing the gene expression of cuproptosis-involved molecules. Overall, this study revealed that cuproptosis is involved in BDE-209-induced ovarian damage and the beneficial effect of melatonin on ovarian copper damage, providing evidence for the prevention and control of female reproductive damage induced by BDE-209.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Mao H, Lin T, Huang S, Xie Z, Jin S, Shen X, Jin Y, Ding Y. The impact of brominated flame retardants (BFRs) on pulmonary function in US adults: a cross-sectional study based on NHANES (2007-2012). Sci Rep 2024; 14:6486. [PMID: 38499858 PMCID: PMC10948772 DOI: 10.1038/s41598-024-57302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Brominated flame retardants (BFRs) are a group of chemicals widely used in various applications to prevent or slow down the spread of fire. However, they have adverse effects on human health. There is a relative scarcity of population-based studies regarding BFRs, particularly their impact on the respiratory system. This study aimed to investigate the influence of BFRs on pulmonary function using data from the National Health and Nutrition Examination Survey. The study found that elevated serum concentrations of certain BFRs were associated with pulmonary ventilatory dysfunction. Adjusted analyses revealed positive correlations between PBDE47, PBDE183, and PBDE209 concentrations and ventilatory dysfunction. The analysis of mixed BFRs showed a positive relationship with pulmonary ventilation dysfunction, with PBDE47 making the most significant contribution. Our study demonstrates that both individual and combined BFRs exposure can lead to impaired pulmonary ventilation function. These findings provide evidence of the adverse effects of BFRs on lung function, emphasizing the importance of further investigating the potential health consequences of these compounds. Further large-scale longitudinal studies are needed to investigate this relationship in the future.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Tong Lin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Shanshan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Zhenye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Shaofeng Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Xingkai Shen
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Yuhong Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China.
| | - Yi Ding
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Liu H, Bai Y, Yu Y, Qi Z, Zhang G, Li G, Yu Y, An T. Maternal transfer of resorcinol-bis(diphenyl)-phosphate perturbs gut microbiota development and gut metabolism of offspring in rats. ENVIRONMENT INTERNATIONAL 2023; 178:108039. [PMID: 37336026 DOI: 10.1016/j.envint.2023.108039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Resorcinol-bis(diphenyl)-phosphate (RDP), an emerging organophosphate flame retardant, is increasingly used as a primary alternative for decabromodiphenyl ether and is frequently detected in global environmental matrices. However, the long-term effects of its exposure to humans remain largely unknown. To investigate its intergenerational transfer capacity and health risks, female Sprague Dawley rats were orally exposed to RDP from the beginning of pregnancy to the end of the lactation period. The RDP content, gut microbiota homeostasis, and metabolic levels were determined. RDP accumulation occurred in the livers of maternal rats and offspring and increased with exposure time. 16S rRNA gene sequencing showed that exposure to RDP during pregnancy and/or lactation significantly disrupted gut microbiota homeostasis, as evidenced by decreased abundance and diversity. In particular, the abundance of Turicibacter, Adlercreutzia, and YRC22 decreased, correlating significantly with glycollipic metabolism. This finding was consistent with the reduced levels of short-chain fatty acids, the crucial gut microbial metabolites. Meanwhile, RDP exposure resulted in changes in gut microbiome-related metabolism. Nine critical overlapping KEGG metabolic pathways were identified, and the levels of related differential metabolites decreased. Our results suggest that the significant adverse impacts of RDP on gut microbiota homeostasis and metabolic function may increase the long-term risks related to inflammation, obesity, and metabolic diseases.
Collapse
Affiliation(s)
- Hongli Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yixiu Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingying Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Levine L, Hall JE. Does the environment affect menopause? A review of the effects of endocrine disrupting chemicals on menopause. Climacteric 2023; 26:206-215. [PMID: 37011670 DOI: 10.1080/13697137.2023.2173570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Endocrine disrupting chemicals are widely distributed in our environment. Humans are exposed to these compounds not only through their occupations, but also through dietary consumption and exposure to contaminated water, personal care products and textiles. Chemicals that are persistent in the body and in our environment include dioxins and polychlorinated biphenyls. Non-persistent chemicals including bisphenol A, phthalates and parabens are equally as important because they are ubiquitous in our environment. Heavy metals, including lead and cadmium, can also have endocrine disrupting properties. Although difficult to study due to their variety of sources of exposures and mechanisms of action, these chemicals have been associated with early menopause, increased frequency of vasomotor symptoms, altered steroid hormone levels and markers of diminished ovarian reserve. Understanding the impacts of these exposures is important given the potential for epigenetic modification, which can alter gene function and result in multi-generational effects. This review summarizes findings in humans and animals or cell-based models from the past decade of research. Continued research is needed to assess the effects of mixtures of chemicals, chronic exposures and new compounds that are continuously being developed as replacements for toxic chemicals that are being phased out.
Collapse
Affiliation(s)
- L Levine
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Han L, Wang Q. Associations of brominated flame retardants exposure with chronic obstructive pulmonary disease: A US population-based cross-sectional analysis. Front Public Health 2023; 11:1138811. [PMID: 36969665 PMCID: PMC10036799 DOI: 10.3389/fpubh.2023.1138811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundsWhether there existed an association between brominated flame retardants (BFRs) and chronic obstructive pulmonary disease (COPD) prevalence in humans is still a mystery.ObjectiveTo investigate the association between serum single or mixture BFRs and COPD prevalence.MethodsData of 7,591 participants from NHANES 2007–2016 was utilized. Serum BFRs, including PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-154, PBDE-183, PBDE-209, and PBB-153 were enrolled. The survey-weighted generalized logistic regression model, restricted cubic splines (RCS), weighted quantile sum (WQS) regression, and quantile-based g-computation (QGC) analysis were performed.ResultsAfter adjustment for all confounding factors, log-transformed continuous serum PBDE-28 (OR: 1.43; 95% CI: 1.10–1.85; P = 0.01), PBDE-47 (OR: 1.39; 95% CI: 1.11–1.75; P = 0.005), PBDE-85 (OR: 1.31; 95% CI: 1.09–1.57; P = 0.005), PBDE-99 (OR: 1.27; 95% CI: 1.05–1.54; P = 0.02), PBDE-100 (OR: 1.33; 95% CI: 1.08–1.66; P = 0.01), PBDE-154 (OR: 1.29; 95% CI: 1.07–1.55; P = 0.01), PBDE-183 (OR: 1.31; 95% CI: 1.04–1.66; P = 0.02), and PBB-153 (OR: 1.25; 95% CI: 1.03–1.53; P = 0.03) were positively correlated with the prevalence of COPD. Restricted cubic splines curves displayed that PBDE-209 was significantly associated with CPOD in an inverted U-shape (P = 0.03). A significant interaction between being male and a high prevalence of COPD was observed for PBDE-28 (P for interaction <0.05), PBDE-47 (P for interaction <0.05), PBDE-85 (P for interaction <0.05), PBDE-99 (P for interaction <0.05), PBDE-100 (P for interaction <0.05), and PBB-153 (P for interaction < 0.05). Mixture BFRs exposure was positively associated with COPD prevalence in WQS regression (OR: 1.40; 95% CI: 1.14–1.72, P = 0.002) and in QGC analysis (OR: 1.49; 95% CI: 1.27–1.74, P < 0.001).ConclusionsOur study confirms that individual and mixture BFRs had positive associations with COPD, and further studies are required in larger-scale populations.
Collapse
|
7
|
Yang Y, Wang L, Zhao Y, Ma F, Lin Z, Liu Y, Dong Z, Chen G, Liu D. PBDEs disrupt homeostasis maintenance and regeneration of planarians due to DNA damage, proliferation and apoptosis anomaly. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114287. [PMID: 36371889 DOI: 10.1016/j.ecoenv.2022.114287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants in the manufacturing industry, belonging to persistent organic pollutants in the environment. Planarians are the freshwater worms, with strong regenerative ability and extreme sensitivity to environmental toxicants. This study aimed to evaluate the potential acute comprehensive effects of PBDE-47/-209 on freshwater planarians. Methods to detect the effects include: detection of oxidative stress, observation of morphology and histology, detection of DNA fragmentation, and detection of cell proliferation and apoptosis. In the PBDE-47 treatment group, planarians showed increased oxidative stress intensity, severe tissue damage, increased DNA fragmentation level, and increased cell proliferation and apoptosis. In the PBDE-209 treatment group, planarians showed decreased oxidative stress intensity, slight tissue damage, almost unchanged DNA fragmentation level and apoptosis, proliferation increased only on the first day after treatment. In conclusion, both PBDE-47 and PBDE-209 are dangerous environmental hazardous material that can disrupt planarians homeostasis, while the toxicity of PBDE-47 is sever than PBDE-209 that PBDE-47 can lead to the death of planarians.
Collapse
Affiliation(s)
- Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Lei Wang
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Yuhao Zhao
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Fuhao Ma
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Ziyi Lin
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang City, 453007 Henan, China
| |
Collapse
|
8
|
Mao G, Tang J, Liao T, Shi X, Dong F, Feng W, Chen Y, Zhao T, Wu X, Yang L. Metabolism toxicity and susceptibility of decabromodiphenyl ether (BDE-209) exposure on BRL cells with insulin resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91306-91324. [PMID: 35896870 DOI: 10.1007/s11356-022-21980-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance (IR) and has attracted worldwide attention due to its high prevalence. As a typical persistent organic pollutant, decabromodiphenyl ether (BDE-209) has been detected in food and human samples, and the concentration trends increase year by year. In addition, it has been proved to have the potential to increase the risk of IR, but it is rarely reported whether it could aggravate IR in T2DM. Therefore, in this study, the IR-BRL (buffalo rat liver cells with IR) model was applied to study the metabolism toxicity and susceptibility of BDE-209. Results showed that BDE-209 could inhibit glucose absorption and increase the levels of serum total cholesterol (TC) and triglyceride (TG), ultimately leading to the disorder of glucolipid metabolism in IR-BRL cells. Besides, it also could cause cell damage by increasing the levels of aspartate transaminase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) in cells. Moreover, its potential mechanisms were to: (1) affect the transport of glucose, synthesis of glycogen and fatty acid via IRS-1/GLUT4 and IRS-1/PI3K/AKT/GSK-3β pathways; (2) impact the proliferation and differentiation by regulating the expression of Mek1/2, Erk1/2, and mTOR proteins and genes. Furthermore, susceptibility analysis showed that there was a significant synergism interaction between IR and BDE-209, which suggested that IR-BRL cells were more susceptible to the metabolism toxicity induced by BDE-209.
Collapse
Affiliation(s)
- Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Junjie Tang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Taotao Liao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiaoxiang Shi
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - FangYuan Dong
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| |
Collapse
|
9
|
Wang X, Hales BF, Robaire B. Effects of flame retardants on ovarian function. Reprod Toxicol 2021; 102:10-23. [PMID: 33819575 DOI: 10.1016/j.reprotox.2021.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Flame retardants have been added to a variety of consumer products and are now found ubiquitously throughout the environment. Epidemiological, in vivo, and in vitro studies have shown that polybrominated diphenyl ether (PBDE) flame retardants may have a negative impact on human health; this has resulted in their phase-out and replacement by alternative flame retardants, such as hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA), and organophosphate esters (OPEs). Evidence suggests that some of these chemicals induce ovarian dysfunction and thus may be detrimental to female fertility; however, the effects of many of these flame retardants on the ovary remain unclear. In this review, we present an overview of the effects of brominated and organophosphate ester flame retardants on ovarian function and discuss the possible mechanisms which may mediate these effects.
Collapse
Affiliation(s)
- Xiaotong Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Liao T, Li B, Zhang Z, Feng W, Chen Y, Ding Y, Chen H, Zhao T, Mao G, Wu X, Yang L. Short-term exposure of decabromodiphenyl ether in female adult Balb/c mice: Immune toxicity and self-recovery. Toxicol Lett 2021; 342:26-37. [PMID: 33571618 DOI: 10.1016/j.toxlet.2021.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 01/10/2023]
Abstract
As a typical persistent organic pollutant, decabromodiphenyl ether (BDE-209) is associated with various health risks, especially on immune system, which is sensitive to environmental pollutants. In addition, there is a problem of multi-index estimation and lack of comprehensive evaluation in immune toxicity study. In this study, the immunotoxicity of BDE-209 was systematically estimated from the aspects of immunopathology, humoral immunity, cellular immunity and non-specific immunity, etc., and integrated biomarker responses (IBR) combined with principal component analysis was applied to comprehensively evaluate the immunotoxicity of BDE-209 and its self-recovery after discontinuation. Results showed that BDE-209 exposure could cause immunotoxicity. This response seems to depend on (1) atrophying immune organs (thymus and spleen), hepatomegaly accompanied by increasing aspartate aminotransferase and oxidative stress;(2) changing humoral (immunoglobulins) and cellular (lymphocyte proliferation and cytokine secretion) immunity indices; (3) altering related expressions of genes, and further leading to imbalance of Th1/Th2 (Th, helper T cell). Integrated biomarker responses (IBR) companied with principal component analysis selected five biomarkers (mRNA expression of GATA-3, malondialdehyde level in thymus, count of white blood cell, serum IgG and lipopolysaccharide-induced splenic lymphocyte proliferation) to clarify the immunotoxicity induced by BDE-209. Furthermore, IBR combined with factorial analysis revealed that the effect of BDE-209 could be dose-dependently reduced after withdrawal of BDE-209. Overall results suggested that BDE-209 has immunotoxicity on adult Balb/c mice, whereas this immunotoxicity could be reduced by the self-regulation of organisms to some extent.
Collapse
Affiliation(s)
- Taotao Liao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Baorui Li
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Zhehan Zhang
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yangyang Ding
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Hui Chen
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Sun S, Jin Y, Yang J, Zhao Z, Rao Q. Nephrotoxicity and possible mechanisms of decabrominated diphenyl ethers (BDE-209) exposure to kidney in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111638. [PMID: 33396158 DOI: 10.1016/j.ecoenv.2020.111638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The flame retardant decabrominated diphenyl ether (BDE-209) is a widely used chemical in a variety of products and exists extensively in the environment. BDE-209 has been reported to induce kidney injury and dysfunction. However, the causes and mechanisms of its nephrotoxicity are still under investigation. In this study, 150 male broilers were exposed to BDE-209 concentrations of 0, 0.004, 0.04, 0.4, 4.0 g/kg for 42 days. The relative kidney weight, histopathology, markers of renal injury, oxidative stress, inflammation, apoptosis and the expression of MAPK signaling pathways-related proteins were assessed. The results showed that the concentrations of blood urea nitrogen (BUN), creatinine (CRE) and the neutrophil gelatinase-associated lipocalin (NGAL), significantly increased after exposure to BDE-209 with the doses more than 0.04 g/kg. Similarly, severe damage of renal morphology was observed, including atrophy and necrosis of glomeruli, and swelling and granular degeneration of the renal tubular epithelium. In the renal homogenates, the oxidative stress was evidenced by the elevated concentrations of MDA and NO, and decreased levels of GSH-Px, GSH and SOD. Due to the inflammatory response, the level of NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, IL-18 were remarkably upregulated, while the content of the anti-inflammatory cytokine IL-10 decreased. Additionally, the apoptotic analysis showed notable upregulations of Bax/Bcl-2 ratio, the relative expression of p-ERK1/2 and p-JNK1/2, and the expression of Bax, cytochrome c and caspase 3. The present study indicates that BDE-209 exposure can cause nephrotoxicity in broilers through oxidative stress and inflammation, which activate the phosphorylation of key proteins of the MAPK signaling pathways, and subsequently induce mitochondria-mediated kidney apoptosis.
Collapse
Affiliation(s)
- Shiyao Sun
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuhong Jin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhihui Zhao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qinxiong Rao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
12
|
Brito PM, Biscaia SMP, de Souza TL, Ramos AB, Leão-Buchir J, de Almeida Roque A, de Lima Bellan D, da Silva Trindade E, Filipak Neto F, de Oliveira Ribeiro CA. Oral exposure to BDE-209 modulates metastatic spread of melanoma in C57BL/6 mice inoculated with B16-F10 cells. CHEMOSPHERE 2020; 260:127556. [PMID: 32682134 DOI: 10.1016/j.chemosphere.2020.127556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated, persistent and bioaccumulative flame retardants widely used in the manufacture of plastic products. Decabromodiphenyl ether (BDE-209) is the most prevalent PBDE in the atmosphere and found in human blood, breast milk and umbilical cord. In vitro studies showed that BDE-209 interferes with murine melanoma cells (B16F10), modulating cell death rates, proliferation and migration, important events for cancer progression. In order to evaluate if BDE-209 modulates metastasis formation in murine models, C57BL/6 mice were exposed to BDE-209 (0.08, 0.8 and 8 μg⁄kg) via gavage (5-day intervals for 45 days) (9 doses in total). Then, mice were inoculated with melanoma cells (B16-F10) at caudal vein receiving 4 additional doses of BDE-209. At 20th day post-cell inoculation, blood, lung, liver, kidney and brain were sampled for hematological, biochemical and morphological analyses. The slightly higher levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the blood and pro-oxidant state in the liver of BDE-exposed mice indicated liver damage. Although the in vivo approach is for metastasis formation in the lung, they were unexpectedly observed in non-target organs (liver, brain, kidney and gonads). The similarity test showed high proximity among individuals from the control and a dissimilarity index between the control and exposed groups. The present data corroborate the known hepatotoxicity of BDE-209 to mice (C57BL/6) and demonstrate for the first time the increase of metastatic dissemination of B16F10 cells in vivo due to previous and continuous BDE-209 exposure, revealing possible implications of this organic compound with melanoma malignancy related traits.
Collapse
Affiliation(s)
- Patricia Manuitt Brito
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Stellee Marcela Petris Biscaia
- Laboratório de Investigações de Polissacarídeos Sulfatados, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Tugstenio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Amandia Batscheuer Ramos
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Joelma Leão-Buchir
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Aliciane de Almeida Roque
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Daniel de Lima Bellan
- Laboratório de Investigações de Polissacarídeos Sulfatados, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Edvaldo da Silva Trindade
- Laboratório de Investigações de Polissacarídeos Sulfatados, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81.531-980, Curitiba, Brazil.
| |
Collapse
|
13
|
Zhao X, Chen T, Wang D, Du Y, Wang Y, Zhu W, Bekir M, Yu D, Shi Z. Polybrominated diphenyl ethers and decabromodiphenyl ethane in paired hair/serum and nail/serum from corresponding chemical manufacturing workers and their correlations to thyroid hormones, liver and kidney injury markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139049. [PMID: 32375065 DOI: 10.1016/j.scitotenv.2020.139049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
We detected the polybrominated diphenyl ethers (PBDEs) or decabromodiphenyl ethane (DBDPE) in paired hair-serum and nail-serum samples collected from the corresponding chemical manufacturing workers. The levels of decabrominated diphenyl ether (BDE-209) or DBDPE in the serum, hair and nail samples were all significantly higher than those reported in other studies, and the "work place" (pretreatment or posttreatment workshop) was the primary influencing factor that affected the levels of specific BFRs in vivo. For BDE-209 workers, the BDE-209 in both the hair and nail samples were significantly and positively related to the BDE-209 in the serum, indicating that both hair and nails can be used as noninvasive biomatrices to reflect internal exposure to BDE-209. In DBDPE workers, hair rather than nails was more suitable for use as a noninvasive biomatrix to infer the DBDPE exposure level. A series of serum biomarkers reflecting thyroid hormones and liver and kidney injuries were tested to calculate the correlations between hair or nail BFR levels and the levels of the biomatrices. The BDE-209 in the hair samples was significantly and positively correlated with the total protein (TP), and the nail BDE-209 level was significantly and positively related to the total bilirubin (TBIL), indirect bilirubin (IDBIL) and uric acid (UA). The DBDPE in hair was significantly and positively correlated with the thyroid hormones free triiodothyronine (fT3) and total triiodothyronine (tT3) and kidney injury markers, including blood urea nitrogen (BUN), creatinine (CRE) and cystatin C (Cys-C). In addition, the nail DBDPE levels were significantly and positively correlated with the albumin/globulin (A/G), BUN, CRE and Cys-C but negatively correlated with the TP and globulin (GLO). Our findings provide preliminary evidence that hair and nails can be used as noninvasive biomatrices for assessing internal BFR exposure and health damage in occupational workers.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Yinglin Du
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Yan Wang
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
| | - Wenwen Zhu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Melikedilnur Bekir
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dong Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Zhang G, Ren Q, Ma S, Wu J, Yang X, Yu Y. Intergenerational transfer of Dechlorane Plus and the associated long-term effects on the structure and function of gut microbiota in offspring. ENVIRONMENT INTERNATIONAL 2020; 141:105770. [PMID: 32380452 DOI: 10.1016/j.envint.2020.105770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The gut microbiota has been shown to be highly involved in many vital physiological processes that play key roles in human health. The intergenerational transfer of Dechlorane Plus (DP) and the complex interaction between DP and microbiota has been poorly studied. Additionally, the structural and functional effects of DP on the gut microbiota have not been studied. This study aimed to investigate the DP transfer in Sprague-Dawley rats during pregnancy and the effects of DP exposure on gut microbiota, as detected by 16S rRNA gene sequencing. The results showed that excretion in feces is a very important elimination pathway of orally dosed DP. The main intergenerational transfer pathway of DP might be via lactation rather than transplacental transport. The 16S rRNA sequencing revealed that DP exposure could decrease the richness and diversity of gut microbiota, especially at the genus level. Furthermore, in DP exposure groups, the gut microbiota production of metabolites of short-chain fatty acids was dramatically increased. The results demonstrated that DP exposure not only altered the gut microbiota structures, but also immensely influenced metabolic functions, causing long-term impact to offspring. This data indicates that more attention should be paid to the long-term health effects related to DP exposure.
Collapse
Affiliation(s)
- Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Qiaoqiao Ren
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515041, PR China
| | - Jiguo Wu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Xingfen Yang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Yu Y, Lou S, Wang X, Lu S, Ma S, Li G, Feng Y, Zhang X, An T. Relationships between the bioavailability of polybrominated diphenyl ethers in soils measured with female C57BL/6 mice and the bioaccessibility determined using five in vitro methods. ENVIRONMENT INTERNATIONAL 2019; 123:337-344. [PMID: 30562705 DOI: 10.1016/j.envint.2018.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Several in vitro methods for simulating human gastrointestinal digestion have been validated for predicting the bioavailability of heavy metals, but the methods for successfully predicting the bioavailability of organic pollutants are still limited. In this study, we used an adapted fasting in vitro digestion method (Fa-VDM) from the Simulator of the Human Intestinal Microbial Ecosystem and four other in vitro methods comprising In Vitro Gastrointestinal, a physiologically-based extraction test, the unified BARGE method, and Deutsches Institut für Normung e.V. in order to measure the bioaccessibility of polybrominated diphenyl ethers (PBDEs) in soils from an e-waste dismantling town, China, with a Standard Reference Material (SRM2585) as the control. Furthermore, the bioaccessibility data were compared with the bioavailability measured using female C57BL/6 mice. The bioavailability of PBDEs in the soils and SRM2585 were 1.7% to 38.1% and 3.9% to 48.8%, respectively, and the bioaccessibility determined using Fa-VDM were 1.6-55.4% and 6.7-32.1%. There were negative and parabolic correlations between octanol/water partition coefficient for PBDEs and the bioavailability and bioaccessibility, respectively, whereas the H/C ratios and organic matter contents of the soils did not correlate with them. The bioaccessibility data determined by Fa-VDM were generally higher than those obtained using the other four methods, mainly due to the higher bile concentration and larger liquid to solid ratio in the digestion solution in Fa-VDM. There was a significant linear relationship between the results according to the in vivo and in vitro method of Fa-VDM where the slopes varied from 0.83 to 1.16 (R2 > 0.73) and intercepts from 0.3%-7.7% for BDE47, 99, 100, and 153 measured using Fa-VDM, thereby indicating that the bioaccessibility assessed by this method can potentially be used to predict the bioavailability of moderately brominated congeners in soils.
Collapse
Affiliation(s)
- Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Sufang Lou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinxin Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Guangzhou 518055, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xinyu Zhang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
16
|
Feng Y, Zeng W, Wang Y, Shen H, Wang Y. Long-term exposure to high levels of decabrominated diphenyl ether inhibits CD4 T-cell functions in C57Bl/6 mice. J Appl Toxicol 2015; 36:1112-9. [PMID: 26682527 DOI: 10.1002/jat.3270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
In recent years, the adverse health effects of decabrominated diphenyl ether (BDE-209) have raised more concerns as a growing number of studies reported its persistence in the environment and abundance in the human population, especially in occupational environmental compartments and exposed personnel. This study applies our previous animal model simulating occupational exposure to BDE-209 to investigate its potential adverse effects on CD4 T cells. Female C57Bl/6 mice were orally gavaged with BDE-209 at a dose of 800 mg kg(-1) every 2 days for 10 months and the blood of each mouse was collected for analysis. Kinetic changes of the peripheral immune system were investigated from 1 to 5 months of exposure. The chronic effects on cytokine production, proliferation and the antigen-specific responses of CD4 T cells were evaluated at 7, 9 and 10 months, respectively. The results have shown that impaired proliferation and cytokine (IFN-γ, IL-2 or TNF-α) production of CD4 T cells were observed in BDE-209-exposed mice, accompanied by increased T regulatory cells in the blood. BDE-209 exposure in vitro also suppressed the reactivity of CD4 T cells at concentrations of 0.01, 0.1, 1 and 10 μM. Furthermore, we observed weaker antigen-specific CD4 T-cell responses to Listeria monocytogenes infection in the mice exposed to BDE-209, suggesting decreased resistance to exogenous pathogens. Taken together, these observations indicate an impaired cellular immunity after long-term and relative high-dose exposure to BDE-209 in adult mice. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weihong Zeng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|