1
|
Ji J, Hu F, Qin J, Zhao Y, Dong Y, Yang H, Bai Z, Wu G, Wang Q, Jin B. Comparation on the responses and resilience of single-Anammox system and synergistic partial-denitrification/anammox system to long-term nutrient starvation: Performance and metagenomic insights. BIORESOURCE TECHNOLOGY 2025; 415:131694. [PMID: 39447919 DOI: 10.1016/j.biortech.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Starvation disturbance was a common problem in biological sewage treatment processes. However, understanding about the responses and resilience of different active anammox biomass in autotrophic and heterotrophic systems to long-term nutrient starvation remains limited. This study compared responses and potential recovery mechanisms of autotrophic single-Anammox and heterotrophic synergistic partial-denitrification/anammox (PD/anammox) systems to prolonged starvation (31-40 days). After starvation, total inorganic nitrogen (TIN) removal efficiency of single-Anammox and synergistic PD/anammox systems decreased to 62.16 % and 78.52 %, respectively, of their original level. After the nutrient resupply, the performance of both systems gradually recovered to a similar-to-pre-starvation level at the rate of 1.26 %/day and 1.89 %/day, respectively. Compared with single-Anammox system, complex synergistic relationship of microorganisms and effective quorum sensing (QS) regulation strategies might mitigate the negative influences were caused by starvation and ensure the performance quickly return of synergistic PD/anammox system. This study would contribute to promote the application of Anammox technology.
Collapse
Affiliation(s)
- Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Feiyue Hu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jing Qin
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongen Dong
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haosen Yang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhixuan Bai
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanqi Wu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiyue Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baodan Jin
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Hou Z, Dong W, Li Y, Chen S, Liu H, Han Q, Zhao Z, Liu J, Zhang L, Wang H, Peng Y. Achieving efficient anammox contribution and the enrichment of functional bacteria in partial denitrification/anammox system: Performance, microbial evolution and correlation analysis. BIORESOURCE TECHNOLOGY 2024; 416:131792. [PMID: 39522616 DOI: 10.1016/j.biortech.2024.131792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The primary challenge of applying partial denitrification/anammox (PD/A) to municipal wastewater treatment lied in the enrichment of functional bacteria with a considerable autotrophic nitrogen removal performance. The results showed influent NO3--N: NH4+-N, reaction time and temperature would influence anammox nitrogen removal contribution. 15N isotopic tracing technology further revealed the average anammox contribution rate was up to 94.8 %. Extending reaction time was an effective measure to improve simultaneously PD and anammox activity. Microbial community indicated partial denitrifying bacteria (Bacillus) and anammox bacteria (Candidatus Brocadia) were enriched with abundance of 27.27 % and 7.09 % at NO3--N: NH4+-N of 1:1. The correlation analysis showed that NO3--N: NH4+-N ratio played the positive role for Bacillus enrichment, and low temperature was favorable to the enrichment of Thauera and Candidatus Jettenia. Overall, this study demonstrated the reasonable operational strategy would strengthen anammox contribution and facilitate enrichment of functional bacteria.
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuo Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zilong Zhao
- Low-Carbon and Ecological Environmental Protection Research Center, Chongqing Academy of Science and Technology, Chongqing 401120, China
| | - Jie Liu
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Liang Zhang
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Zhu W, Zeng Z, Xia J, Li L. Achieving rapid start-up and efficient nitrogen removal of partial-denitrification/anammox process using organic matter in brewery wastewater as carbon source. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39258944 DOI: 10.1080/09593330.2024.2401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
To find a cost-efficient carbon source for the partial denitrification/anaerobic ammonium oxidation (anammox) (PD/A) process, the practicability of using the organic matter contained in brewery wastewater as carbon source was investigated. Quick self-enrichment of denitrifying bacteria was achieved by supplying brewery wastewater as organic carbon source and using the mature anammox sludge as the seeding sludge. The PD/A process was successfully established after 33-day operation and then the average total nitrogen removal efficiency reached 92.29% when the influent CODCr: NO3--N: NH4+-N ratio was around 2.5: 1.0: 0.67. The relative abundance of Thauera increased from 0.03% in the seeding sludge to 54.29% on day 110, whereas Candidatus brocadia decreased from 30.66% to 2.08%. The metagenomic analysis indicated that the sludge on day 110 contained more nar and napA (total of 41.24%) than nirK and nirS (total of 11.93%). Thus NO2--N was accumulated efficiently in the process of denitrification and sufficient NO2--N was supplied for anammox bacteria in the PD/A process. Using brewery wastewater as carbon source not only saved the cost of nitrogen removal but also converted waste into resource and reduced the treatment expense of brewery wastewater.
Collapse
Affiliation(s)
- Wenxuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Zhijie Zeng
- Shandong Dongyue Future Hydrogen Material Co., Ltd, Zibo, People's Republic of China
| | - Jiawei Xia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Du R, Tang M, Liu Q, Cao S, Peng Y. Stable continuous flow CANDAN process transitioning from anammox UASB reactor by facilitating indigenous nitrite-producing denitrification community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171929. [PMID: 38522528 DOI: 10.1016/j.scitotenv.2024.171929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The emerging nitrogen removal process known as CANDAN (Complete Ammonium and Nitrate removal via Denitratation-Anammox over Nitrite) has been developed in Sequencing Batch Reactors (SBRs). Yet, starting up and maintaining stability in continuous-flow reactors remain challenging. This study explores the feasibility of transitioning the CANDAN process from an anammox-dominated process by introducing appropriate external organics to facilitate indigenous nitrite-producing denitrification community in an Upflow Anaerobic Sludge Blanket (UASB) reactor. 150-day operation results indicate that under feeding rates of domestic wastewater at 0.54 L/h and nitrate-containing wastewater at 1.08 L/h, excellent N removal was achieved, with effluent TN below 10.0 mg N/L. Adding external sodium acetate at a COD/NO3--N = 2.0 triggered denitratation, ex-situ denitrification activity tests showed increased nitrite production rates, maintaining the nitrate-to-nitrite transformation ratio (NTR) above 90 %. Consequently, anammox activity was consistently maintained, dominating Total Nitrogen (TN) removal with a contribution as high as 78.3 ± 8.0 %. Anammox functional bacteria, Brocadia and Kuenenia were identified and showed no decrease throughout the operation, indicating the robustness of the anammox process. Notably, the troublesome of sludge flotation, did not occur, also contributing to sustained outstanding performance. In conclusion, this study advances our understanding of the synergistic interplay between anammox and denitrifying bacteria in the Anammox-UASB system, offering technical insights for establishing a stable continuous-flow CANDAN process for simultaneous ammonium and nitrate removal.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Meihui Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
6
|
Xu D, Cao S, Berry M, Du R, Peng Y. Granulation of partial denitrification sludge: Advances in mechanism understanding, technologies development and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166760. [PMID: 37659567 DOI: 10.1016/j.scitotenv.2023.166760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The high-rate and stably efficient nitrite generation is vital and still challenges the wide application of partial denitrification (PD) and anammox technology. Increasing attention has been drawn to the granulation of PD biomass. However, the knowledge of PD granular sludge is still limited in terms of granules characterization and mechanisms of biomass aggregation for high nitrite accumulation. This work reviewed the performance and granulation of PD biomass for high nitrite accumulation via nitrate reduction, including the system start-up, influential factors, granular characteristics, hypothetical mechanism, challenges and perspectives in future application. The physiochemical characterization and key influential factors were summarized in view of nitrite production, morphology analysis, extracellular polymer substance structure, as well as microbial mechanisms. The PD granules exhibit potential advantages of a high biomass density, good settleability, high hydraulic loading rates, and strong shock resistance. A novel granular sludge-based PD combined with anammox process was proposed to enhance the capability of nitrogen removal. In the future, PD granules utilizing different electron donors is a promising way to broaden the application of anammox technology in both municipal and industrial wastewater treatment.
Collapse
Affiliation(s)
- Duanyuan Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Maxence Berry
- Department of Process Engineering and Bioprocesses, Polytech Nantes, Campus of Gavy, Saint-Nazaire 44603, France
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Chair of Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Hou Z, Dong W, Wang H, Zhao Z, Li Z, Liu H, Li Y, Zeng Z, Xie J, Zhang L, Liu J. Response of nitrite accumulation to elevated C/NO- 3-N ratio during partial denitrification process: Insights of extracellular polymeric substance, microbial community and metabolic function. BIORESOURCE TECHNOLOGY 2023:129269. [PMID: 37290706 DOI: 10.1016/j.biortech.2023.129269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigated the response of nitrite accumulation to elevated COD/NO3--N ratio (C/N) during partial denitrification (PD). Results indicated nitrite was gradually accumulated and remained stable (C/N = 1.5 ∼ 3.0), while that rapidly declined after reaching the peak (C/N = 4.0 ∼ 5.0). The polysaccharide (PS) and protein (PN) content of tightly-bound extracellular polymeric substances (TB-EPS) reached the maximum at C/N of 2.5 ∼ 3.0, which might be stimulated by high level of nitrite. Illumina MiSeq sequencing showed Thauera and OLB8 were dominated denitrifying genera at C/N of 1.5 ∼ 3.0, while Thauera was further enriched with fading OLB8 at C/N of 4.0 ∼ 5.0. Meanwhile, the highly-enriched Thauera might enhance the activity of nitrite reductase (nirK) promoting further nitrite reduction. Redundancy analysis (RDA) showed positive correlations between nitrite production and PN content of TB-EPS, denitrifying bacteria (Thauera and OLB8) and nitrate reductases (narG/H/I) in low C/N. Finally, their synergistic effects for driving nitrite accumulation were comprehensively elucidated.
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Zhuoyang Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Liang Zhang
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Jie Liu
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| |
Collapse
|
8
|
Du R, Liu Q, Peng Y, Cao S. Potential causes of partial-denitrification (PD) granular sludge breakdown under high nitrate loading rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160749. [PMID: 36496026 DOI: 10.1016/j.scitotenv.2022.160749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The granule instability has been frequently reported during the operation of high loading rates. While, there no research was performed on the recently developed anoxic partial-denitrification (PD) granules, a novel pathway in producing nitrite from nitrate for anammox process. Herein, this work, for the first time, investigated the influence of nitrate loading rates on the instability of PD granules and identified the key causes. Two lab-scale sequencing batch reactors (SBRs) were operated with nitrate loading rates (NLR) increased from 0.48 to 3.84 kg N/m3/d (R1, 8 cycles/d), and 0.96 to 7.68 kg N/m3/d (R2, 16 cycles/d) by gradually elevating the influent nitrate concentration. Results showed that nitrite production rates increased with the NLRs, with a maximal value of 5.26 kg N/m3/d obtained. However, the compact regular PD granules were not stable and broke down when NLR was above 3.84 kg N/m3/d, which resulted in serious sludge washing out from SBR. The high NLRs led to the extracellular polymeric substances (EPS) transformation in terms of its composition and structure, which the protein content in the EPS and the tightly bound EPS (T-EPS) fraction was significantly decreased, this was supposed to be the major reason causing the breakdown of PD granules. Besides, it was found the PD granule in R2 was more deteriorated than that in R1 under the same high NLR, suggesting the short starvation (idle) times in SBR cycle was likely another reason impairing the stability of PD granules. Overall, this research provides useful information in development of granule-based PD systems and sheds light on achieving high-rate nitrite production in SBR with great stability.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| |
Collapse
|
9
|
Zeng Z, Wang Y, Zhu W, Xie T, Li L. Effect of COD/ NO3−-N ratio on nitrite accumulation and microbial behavior in glucose-driven partial denitrification system. Heliyon 2023; 9:e14920. [PMID: 37123922 PMCID: PMC10130780 DOI: 10.1016/j.heliyon.2023.e14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
COD/NO3 --N ratio was considered to be one of the key factors achieving effective nitrite accumulation during partial denitrification. In two parallel reactors incubated with glucose as carbon source at COD/NO3 --N of 3 and 5, respectively, the microbial community structure shift and the nitrite accumulation performance during long-term operation were investigated. The maximum nitrite accumulation ratios at COD/NO3 --N of 3 and 5 were 17.9% and 47.04%, respectively. Thauera was the dominant genus in both reactors on day 220 with the relative abundance of 18.67% and 64.01%, respectively. Batch experiments with different electron acceptors suggested that the distinction in nitrite accumulation at COD/NO3 --N of 3 and 5 might be caused by the differences in the abundance of Thauera.
Collapse
|
10
|
Chen J, Zeng J, He Y, Sun S, Wu H, Zhou Y, Chen Z, Wang J, Chen H. Insights into a novel nitrogen removal process based on simultaneous anammox and denitrification (SAD) following nitritation with in-situ NOB elimination. J Environ Sci (China) 2023; 125:160-170. [PMID: 36375902 DOI: 10.1016/j.jes.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1-50), and reached a TN removal efficiency of 96% in the following 90 days (days 51-140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.
Collapse
Affiliation(s)
- Jing Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Jia Zeng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Yiran He
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Haipeng Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhui Wang
- School of Food science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China.
| |
Collapse
|
11
|
Al-Hazmi HE, Hassan GK, Maktabifard M, Grubba D, Majtacz J, Mąkinia J. Integrating conventional nitrogen removal with anammox in wastewater treatment systems: Microbial metabolism, sustainability and challenges. ENVIRONMENTAL RESEARCH 2022; 215:114432. [PMID: 36167115 DOI: 10.1016/j.envres.2022.114432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
12
|
Zhang Q, Xu X, Zhang R, Shao B, Fan K, Zhao L, Ji X, Ren N, Lee DJ, Chen C. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism. WATER RESEARCH 2022; 226:119269. [PMID: 36279615 DOI: 10.1016/j.watres.2022.119269] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
13
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Xue Z, Zhang T, Sun Y, Yin T, Cao J, Fang F, Feng Q, Luo J. Integrated moving bed biofilm reactor with partial denitrification-anammox for promoted nitrogen removal: Layered biofilm structure formation and symbiotic functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156339. [PMID: 35636549 DOI: 10.1016/j.scitotenv.2022.156339] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Partial denitrification/anaerobic ammonia oxidation (anammox) (PD/A) is currently an advanced nitrogen removal process. This study developed a PD/A system in a moving bed biofilm reactor. Results showed that the nitrogen removal efficiency reached 76.60% with a COD/NO3-N of 2.0, and the contribution of anammox was 88.01%. Further analysis showed that the biocarriers could form layered pH and dissolved oxygen structures to promote the aggregation of different functional bacteria at various depths, thus stabilizing the coupled process. Microbial structure analysis showed that the abundance of Saccharimonadales, responsible for denitrification, increased from 0% to 36.27% between day 0 and day 120, while the abundance of Candidatus Jettenia, responsible for anammox, decreased from 10.41% to 2.20%. The synergistic effect of Saccharimonadales and Candidatus Jettenia enabled stable and efficient removal of nitrogen. This study proposed a novel configuration of the PD/A process and provided a theoretical basis for its promotion and application.
Collapse
Affiliation(s)
- Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yiwen Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tongxin Yin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co, Ltd, Nanjing 211599, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
15
|
Du R, Cao S, Jin R, Li X, Fan J, Peng Y. Beyond an Applicable Rate in Low-Strength Wastewater Treatment by Anammox: Motivated Labor at an Extremely Short Hydraulic Retention Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8650-8662. [PMID: 35537060 DOI: 10.1021/acs.est.1c05123] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The application of anammox technology in low-strength wastewater treatment is still challenging due to unstable nitrite (NO2--N) generation. Partial denitrification (PD) of nitrate (NO3--N) reduction ending with NO2--N provides a promising solution. However, little is known about the feasibility of accelerating nitrogen removal toward the practical application of anammox combined with heterotrophic denitrification. In this work, an ultrafast, highly stable, and impressive nitrogen removal performance was demonstrated in the PD coupling with an anammox (PD/A) system. With a low-strength influent [50 mg/L each of ammonia (NH4+-N) and NO3--N] at a low chemical oxygen demand/NO3--N ratio of 2.2, the hydraulic retention time could be shortened from 16.0 to 1.0 h. Remarkable nitrogen removal rates of 1.28 kg N/(m3 d) and excellent total nitrogen removal efficiency of 94.1% were achieved, far exceeding the applicable capacity for mainstream treatment. Stimulated enzymatic reaction activity of anammox was obtained due to the fast NO2--N jump followed by a famine condition with limited organic carbon utilization. This high-rate PD/A system exhibited efficient renewal of bacteria with a short sludge retention time. The 16S rRNA sequencing unraveled the rapid growth of the genus Thauera, possibly responsible for the incomplete reduction of NO3--N to NO2--N and a decreasing abundance of anammox bacteria. This provides new insights into the practical application of the PD/A process in the energy-efficient treatment of low-strength wastewater with less land occupancy and desirable effluent quality.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rencun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
16
|
Ladipo-Obasa M, Forney N, Riffat R, Bott C, deBarbadillo C, De Clippeleir H. Partial denitrification-anammox (PdNA) application in mainstream IFAS configuration using raw fermentate as carbon source. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10711. [PMID: 35388559 DOI: 10.1002/wer.10711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This research examined the feasibility of raw fermentate for mainstream partial denitrification-anammox (PdNA) in a pre-anoxic integrated fixed-film activated sludge (IFAS) process. Fermentate quality sampled from a full-scale facility was highly dynamic, with 360-940 mg VFA-COD/L and VFA/soluble COD ratios ranging from 24% to 48%. This study showed that PdNA selection could be achieved even when using low quality fermentate. Nitrate residual was identified as the main factor driving the PdN efficiency, while management of nitrate conversion rates was required to maximize overall PdNA rates. AnAOB limitation was never observed in the IFAS system. Overall, this study showed PdN efficiencies up to 38% and PdNA rates up to 1.2 ± 0.7 g TIN/m2 /d with further potential for improvements. As a result of both PdNA and full denitrification, this concept showed the potential to save 48-89% methanol and decrease the carbon footprint of water resource recovery facilities (WRRF) by 9-15%. PRACTITIONER POINTS: Application of PdNA with variable quality fermentate is feasible when the nitrate residual concentration is increased to enhance PdN selection. To maximize nitrogen removed through PdNA, nitrate conversion rates need enhancement through optimization of upstream aeration and PdN control setpoints. The IFAS PdNA process was never anammox limited; success depended on the degree of PdN achieved to make nitrite available. Application of PdNA with fermentate can yield 48-89% savings in methanol or other carbon compared with conventional nitrification and denitrification. Integrating PdNA upstream from polishing aeration and anoxic zones guarantees that stringent limits can be met (<5 mg N/L).
Collapse
Affiliation(s)
- Mojolaoluwa Ladipo-Obasa
- DC Water and Sewer Authority, Washington, DC, USA
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Nicole Forney
- DC Water and Sewer Authority, Washington, DC, USA
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Rumana Riffat
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia, USA
| | - Christine deBarbadillo
- DC Water and Sewer Authority, Washington, DC, USA
- Black and Veatch, Gaithersburg, Maryland, USA
| | | |
Collapse
|
17
|
Zhang X, Zhang X, Wu P, Ma L, Chen J, Wang C, Li X, Liu W, Xu L. Hydroxylamine metabolism in mainstream denitrifying ammonium oxidation (DEAMOX) process: Achieving fast start-up and robust operation with bio-augmentation assistance under ambient temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126736. [PMID: 34333411 DOI: 10.1016/j.jhazmat.2021.126736] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal from mainstream wastewater via DEnitrifying AMmonium OXidation (DEAMOX) is often challenged by undulated actual temperature and high loading rate. Here, we discovered NH2OH addition (HA) and bio-augmentation (BA) tactics on start-up and operation performance of DEAMOXs (R1 and R2) under ambient temperature (11.3-31.7 °C). Over 340-day operation suggested that R2 received 10 mg/L HA and 1:25 BA ratio (v/v, anammox/partial denitrification sludge) achieved desirable nitrogen removal efficiency (NRE) of 97.22% after 145-day, while R1 under higher BA ratio of 1:12.5 without HA obtained lower NRE (90.86%) after 184-day. Batch tests revealed that nitrate-nitrite transformation ratio reached 98.64% at low COD/NO3--N of 2.6 with HA. Significantly, compared with R2, R1 recovered quickly with satisfactory effluent total nitrogen of 4.21 mg/L despite nitrogen loading rate greater than 0.15 kg N/m3/d and temperature decreased to 14.6 °C. The abundant narG represented high nitrate reduction potential, hzsA and hdh were extensively detected as the symbolisation of anammox metabolism. Thauera, Denitratisoma and unclassified f Comamonadaceae dominated nitrite accumulation. Ca. Brocadia as the dominant anammox bacteria, and its population maintained stable against low temperature and load shocks by NH2OH intensification. Overall, this study offers an opportunity for the wide-applications of DEAMOX treating mainstream wastewater.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| |
Collapse
|
18
|
Chen Y, Zhang Y, Zhang L, Zhang S, Peng Y. Applicability of two-stage anoxic/oxic shortcut nitrogen removal via partial nitrification and partial denitrification for municipal wastewater by adding sludge fermentation products continuously. CHEMOSPHERE 2022; 287:132053. [PMID: 34826887 DOI: 10.1016/j.chemosphere.2021.132053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Partial nitrification and partial denitrification combined with anammox is a promising process for sewage treatment. In this study, real municipal wastewater was treated in a continuous two-stage anoxic/oxic (A/O) reactor. External mixed sludge fermentation products were added in the anoxic zone, simultaneously achieving partial nitrification and partial denitrification and achieving a high and relatively stable accumulation of nitrite. The maximum accumulation rates of NO2--N in A1.2 and A2.1-A2.4 zones of the reactor reached 70% and 61%-37%, respectively, which improved denitrification efficiency and created conditions that supported the coupling of subsequent anammox. The influent nitrogen load of the system was 0.078 kg/(m3•d), and the mean influent and effluent total nitrogen were 51 and 12 mg/L, respectively. The mean total nitrogen removal rate reached 76%. Further analysis revealed that Hyphomicrobium (incomplete denitrifiers) and Nitrosomonas (ammonia oxidizing bacteria) were enriched, which may have facilitated the high nitrite accumulation. Moreover, the batch test showed that adding sludge fermentation during denitrification significantly suppressed nitrite reduction, resulting in the nitrite accumulation.
Collapse
Affiliation(s)
- Yao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Ying Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Shujun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
19
|
Shao Q, Wan F, Du W, He J. Enhancing biological nitrogen removal for a retrofit project using wastewater with a low C/N ratio-a model-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53074-53086. [PMID: 34023998 PMCID: PMC8140755 DOI: 10.1007/s11356-021-14396-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy for nitrogen (N) removal, but it is normally a challenge to achieve mainstream anammox. In this study, the potential to enhance the N-removal capability of an existing University of Cape Town membrane bioreactor system (UCT-MBR) system is evaluated through process modeling. In addition to external carbon addition, the UCT-MBR system is proposed to be converted into an anoxic-oxic (AO) configuration with two operation plans: one is single-sludge (suspended sludge) and the other is double-sludge (suspended sludge and biofilm). The choice between pushing anammox and enhancing conventional heterotrophic denitrification is assessed. The simulation result indicates it is feasible to strategically adjust the spatial-temporal balance between electron donors and electron acceptors to achieve enhanced N-removal by utilizing the influent organic carbon other than adding external carbon. Although anammox can be promoted in the double-sludge-based AO under low-DO conditions, pushing anammox will weaken the system's resilience to influent fluctuations and carries no economic advantage over the single-sludge-based AO. Overall, this study concurs with the United Nations Sustainable Development Goal that the wastewater industry should seek more energy-efficient measures for wastewater treatment.
Collapse
Affiliation(s)
- Qian Shao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Wan
- Wuhan Planning and Design Co., Ltd., Wuhan, 430014, China
| | - Weiwei Du
- Sichuan Wentao Engineering and Technologies Co., Ltd., Chengdu, 610000, China
| | - Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Chen H, Tu Z, Wu S, Yu G, Du C, Wang H, Yang E, Zhou L, Deng B, Wang D, Li H. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. CHEMOSPHERE 2021; 278:130436. [PMID: 33839386 DOI: 10.1016/j.chemosphere.2021.130436] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
To solve the bottleneck of the unstable accumulation of nitrite in the partial nitrification (PN)-anammox (AMX) in municipal wastewater treatment, a novel process called partial denitrification (PD)-AMX has been developed. PD-AMX, which is known for cost-efficiency and environmental friendliness, has currently exhibited a promising potential for the removal of biological nitrogen from municipal wastewater and has attracted much research interest regarding its process mechanisms, as well as its practical applications. Here, we review the recent advances in the PD process and its coupling to the anammox process, including the development, basic principles, main characteristics, and critical process parameters of the stable operation of the PD-AMX process. We also explore the microbial community and its characteristics in the system and summarize the knowledge of the dominant bacteria to clarify the key factors affecting PD-AMX. Then, we introduce the engineering feasibility and economic feasibility as well as the potential challenges of the process. The induction and implementation of partial denitrification and maintenance of mainstream anammox are critical issues to be urgently solved. Meanwhile, the implementation of a full mainstream anammox application remains burdensome, while the mechanism of partial denitrification coupled to anammox needs to be further studied. Additionally, stable operation performance and process control1 methods need to be optimized or developed for the PD-AMX system for better engineering practice. This review can help to accelerate the research and application of the PD-AMX process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Zhi Tu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Guanlong Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Chunyan Du
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China; School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| | - Lu Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Bin Deng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
21
|
Ali P, Zalivina N, Le T, Riffat R, Ergas S, Wett B, Murthy S, Al-Omari A, deBarbadillo C, Bott C, De Clippeleir H. Primary sludge fermentate as carbon source for mainstream partial denitrification-anammox (PdNA). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1044-1059. [PMID: 33277759 DOI: 10.1002/wer.1492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Primary sludge fermentate, a concentrated hydrolyzed wastewater carbon, was evaluated for use as an alternative carbon source for mainstream partial denitrification-anammox (PdNA) in a suspended growth activated sludge process in terms of partial denitrification (PdN) efficiency, PdNA nitrogen removal contributions, and final effluent quality. Fermenter operation at a 2-day sludge retention time (SRT) resulted in the maximum achievable yield of 0.14 ± 0.05 g sCOD/g VSS without release of excessive ammonia and phosphorus to the system. Based on the results of batch experiments, fermentate addition led to PdN efficiency of 93 ± 14%, which was similar to acetate at a nitrate residual of 2-3 mg N/L. In the pilot-scale mainstream deammonification reactor, PdN efficiency using fermentate was 49 ± 24%, which was lower than acetate (66 ± 24% during acetate period I and 70 ± 21% during acetate period II), most probably due to lower nitrate and ammonium kinetics in the PdN zone. Methanol cost-saving potential for the application of PdNA as the main short-cut nitrogen pathway was estimated to be 30% to 55% depending on the PdN efficiency achieved. PRACTITIONER POINTS: Primary sludge fermentate was evaluated as an alternative carbon source for mainstream partial denitrification-anammox (PdNA). Fermenter operated at a 1 to 2 day SRT resulted in the maximum achievable yield without the release of excessive ammonia and phosphorus to the system. Although 93% partial denitrification efficiency was achieved with fermentate in batch experiments, around 49% PdN efficiency was achieved in pilot studies. Application of PdNA with fermentate can result in significant methanol cost savings.
Collapse
Affiliation(s)
- Priyanka Ali
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
- DC Water and Sewer Authority, Washington, DC, USA
| | - Nadezhda Zalivina
- DC Water and Sewer Authority, Washington, DC, USA
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, USA
| | - Tri Le
- DC Water and Sewer Authority, Washington, DC, USA
- Environmental Engineering, The Catholic University of America, Washington, DC, USA
| | - Rumana Riffat
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Sarina Ergas
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, USA
| | | | | | | | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | | |
Collapse
|
22
|
Wu P, Zhang X, Wang Y, Wang C, Ma L, Wani Victor Jenario F, Liu W, Xu L. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR + PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters. BIORESOURCE TECHNOLOGY 2021; 327:124795. [PMID: 33579566 DOI: 10.1016/j.biortech.2021.124795] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A novel energy-efficient DPR + PDA (denitrifying phosphorus removal and partial denitrification anammox) process for enhanced nitrogen and phosphorus removal was developed in the combined ABR-CSTR reactor. After 220 days operation, excellent total inorganic nitrogen (TIN) and phosphorus removal (97.57% and 95.66%, respectively) were obtained under external C/NO3--N of 0.7, with the effluent TIN and PO43--P concentrations of 3.51 mg/L and 0.28 mg/L, respectively. At the steady period, DPR contributed major TN removal (58.65%), while PDA mediated an increasingly considerable impact and finally achieved 37.07%, in which anammox accounted for a significant percentage. Batch tests demonstrated that efficient PD with nitrate-to-nitrite transformation ratio of 97.67% supplying stable nitrite for anammox, and phosphorus was mainly removed using nitrate as electron acceptor via DPR with the ideal phosphorus release/uptake rate (7.73/22.17 mgP/gVSS/h). Accumulibacter (6.24%) dominated high phosphorus removal performance, while Thauera (8.26%) and Candidatus Brocadia (2.57%) represented the superior nitrogen removal performance.
Collapse
Affiliation(s)
- Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China.
| | - Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yuguang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Francis Wani Victor Jenario
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| |
Collapse
|
23
|
Application of natural biodegradable fiber as biofilm medium and carbon source in DEnitrifying AMmonium OXidation (DEAMOX) process for nitrogen removal from wastewater. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Han Y, Qian J, Guo J, Song Y, Lu C, Li H, Hou Y, Chen Z. Feasibility of partial denitrification and anammox for removing nitrate and ammonia simultaneously in situ through synergetic interactions. BIORESOURCE TECHNOLOGY 2021; 320:124390. [PMID: 33197738 DOI: 10.1016/j.biortech.2020.124390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, the single-stage partial denitrification-anammox (PD-A) process was started-up in 22 days in a lab-scale up-flow sludge blanket (UASB) reactor to treat wastewater containing NH4+-N and NO3--N simultaneously. The TN removal rate reached 97.08% with a low effluent TN of 10 mg/L. High-throughput sequencing results revealed the dominant bacterial strains were related to the genus of Thauera and Candidatus Kuenenia. The PD-A system was started-up based on the optimized PD process via inoculated exogenous anammox sludge attributing to the improvement of bacterial adaptation and co-existence by EPS. The PD process was realized in 18 days with the abundance of PD functional bacterium Thauera through fluctuated C/NO-3-N conditions. Moreover, the detrimental effects of starvation on anammox was weaker than that on PD bacteria. The PD-A process was expected to open a new possible perspective in designing NO3--N and NH4+-N wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jiuzhou Qian
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; State Environmental Protection Key Laboratory of Source Water Protection, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jianbo Guo
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zhi Chen
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
25
|
Zhang X, Xia Y, Wang C, Li J, Wu P, Ma L, Wang Y, Wang Y, Da F, Liu W, Xu L. Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities. BIORESOURCE TECHNOLOGY 2020; 318:124274. [PMID: 33096441 DOI: 10.1016/j.biortech.2020.124274] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the activity of partial denitrification (PD) biomass/key enzymes, functional gene expressions in response to 0 ~ 50 mg/L hydroxylamine (NH2OH) addition. Results indicated that NH2OH contributed to nitrite (NO2--N) production, facilitating the maximum increase of nitrate (NO3--N) to NO2--N transformation ratio to 80.47 ± 2.82%, leading to 2.56-fold NO2--N higher than those of control. The observed transient inhibitory effect on NO3--N reduction process was attributed by high-level NH2OH (35 ~ 50 mg/L). Enzymatic assays revealed the enhanced activity of both NO3--N and NO2--N reductase while the former showed obvious superiority which led to high NO2--N accumulation. These results were further confirmed by the corresponding functional genes (narG, napA, nirS and nirK). Besides, negative influence of NH2OH addition was limited to PD aggregates, due to the increasing secretion of extracellular polymeric substances (EPS) as well as proteins/polysaccharides ratios in tightly-bound structure of EPS.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yunkang Xia
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Jiajia Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuguang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Fanghua Da
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| |
Collapse
|
26
|
Ma B, Xu X, Wei Y, Ge C, Peng Y. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants. BIORESOURCE TECHNOLOGY 2020; 299:122697. [PMID: 31902637 DOI: 10.1016/j.biortech.2019.122697] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Denitratation (NO3-→NO2-)/anammox is a promising method for anammox application in mainstream wastewater treatment plants (WWTPs) to reduce oxygen and organic matter consumption. Achieving nitrite production via denitratation and controlling denitritation (NO2-→N2) is the basis of the denitratation/anammox process. To control denitritation, the denitrifying biocommunity and growth rate are critically reviewed for biocommunity optimization. Then, the short-term and long-term effects of pH on denitritation were summarized and the possible mechanism was discussed, along with the effect of C/N ratio and organic matter type on denitritation. Meanwhile, the strategies for producing nitrite via controlling denitritation are discussed, as well as the processes for achieving nitrogen removal via denitratation/anammox in WWTPs. Finally, the practical application of denitratation/anammox in a full-scale mainstream WWTP is documented.
Collapse
Affiliation(s)
- Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Xinxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yan Wei
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
27
|
Du R, Cao S, Zhang H, Peng Y. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: The influence of loading rates. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121273. [PMID: 31585283 DOI: 10.1016/j.jhazmat.2019.121273] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Granular sludge has been believed to be a promising technology in wastewater biological treatment. However, the formation of granules at low substrate concentration is a difficult task that has seldom been achieved. This study aimed at forming the granules in the recently developed partial-denitrification (PD, NO3--N→NO2--N) for nitrite production. Two sequencing batch reactors (SBRs) were operated at a low nitrate of 30 mg N/L with nitrate loading rate (NLR) of 0.12 (R1) and 0.24 kg N/m3/d (R2). Results showed that the granulation of PD sludge experienced a developing and matured process with the progressive increase in size followed by maintaining a stable value. Higher NLR resulted in a more rapid granulation with the larger and looser structure. While the granules under lower NLR appeared to be denser and more compact with better settling ability. Microbial communities of two SBRs were revealed to show little difference, with the PD functional bacteria of Thauera (50.7% in R1 and 55.4% in R2) dominated during the granulation process. The Flavobacterium, likely to be closely related with sludge granulation, accounted for a higher proportion in R2 (10.16%) than R1 (5.91%), which might result in a larger granule formed in R2. This study clearly confirmed the feasibility of granulation of PD sludge under low nitrogen loads, shedding new light on the low-strength nitrate wastewater treatment with an efficient and economical way.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Hanyu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
28
|
Zhang Z, Zhang Y, Chen Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. BIORESOURCE TECHNOLOGY 2020; 298:122444. [PMID: 31784254 DOI: 10.1016/j.biortech.2019.122444] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
To maximize energy recovery, carbon capture followed by shortcut nitrogen removal is becoming the most promising route in biological wastewater treatment. As the intermediate of microbial denitrification, nitrite could serve as a substrate for anammox bacteria, while N2O is a combustion promoter that can increase 37% energy release from CH4 than O2. Therefore, the important advances in partial denitrification (PD) that produces nitrite or N2O as the main product using inorganic or organic electron donors were critically reviewed. Specifically, the enrichment strategies of PD microorganisms were obtained by analyzing the selection pressures, metabolism, physiology, and microbiology of these microorganisms. Furthermore, some prospective and promising processes integrating PD microorganisms and the bottlenecks of current applications were discussed. The obtained knowledge would provide new insights into the upgrading of current WWTPs involving commitment to achieve nitrogen removal from wastewaters more economically and environmentally friendly.
Collapse
Affiliation(s)
- Zhengzhe Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
29
|
Qin Y, Wu C, Chen B, Ren J, Chen L. Short term performance and microbial community of a sulfide-based denitrification and Anammox coupling system at different N/S ratios. BIORESOURCE TECHNOLOGY 2019; 294:122130. [PMID: 31526933 DOI: 10.1016/j.biortech.2019.122130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
A novel sulfide-based denitrification and Anammox process was established for simultaneous removal of nitrogen and sulfide in a UBF reactor. The effects of the N/S ratio on reactor performance were investigated under five N/S molar ratios (4.56, 2.38, 0.96, 0.73, and 0.51). The best total nitrogen removal efficiency was 82.8% at a N/S ratio of 2.38. When the N/S ratio exceeded 0.96, Anammox contributed to more than 90% of the N loss. Sulfide was completely removed during the full operational period and S0 accumulation occurred when N/S ratio was less than 1. Thiobacillus (6.1%) and Candidatus Kuenenia (18.8%) were the main functional microorganisms when nitrate was in excess on day 12. As nitrate became limited on day 50, Thiobacillus (21.0%), Sulfurimonas (3.9%), and Candidatus Kuenenia (19.7%) became dominated. In this study, Candidatus Kuenenia was not inhibited by the sulfide.
Collapse
Affiliation(s)
- Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Chenglong Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Buqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junyi Ren
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Linyi Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
30
|
Le T, Peng B, Su C, Massoudieh A, Torrents A, Al-Omari A, Murthy S, Wett B, Chandran K, deBarbadillo C, Bott C, De Clippeleir H. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1455-1465. [PMID: 31074914 DOI: 10.1002/wer.1140] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 05/26/2023]
Abstract
Despite the increased research efforts, full-scale implementation of shortcut nitrogen removal strategies has been challenged by the lack of consistent nitrite-oxidizing bacteria out-selection. This paper proposes an alternative path using partial denitrification (PdN) selection coupled with anaerobic ammonium-oxidizing bacteria (AnAOB). A nitrate residual concentration (>2 mg N/L) was identified as the crucial factor for metabolic PdN selection using acetate as a carbon source, unlike the COD/N ratio which was often suggested. Therefore, a novel and simple acetate dosing control strategy based on maintaining a nitrate concentration was tested in the absence and presence of AnAOB, achieving PdN efficiencies above 80%. The metabolic-based PdN selection allowed for flexibility to move between PdN and full denitrification when required to meet effluent nitrate levels. Due to the independence of this strategy on species selection and management of nitrite competition, this novel approach will guarantee nitrite availability for AnAOB under mainstream conditions unlike shortcut nitrogen removal approaches based on NOB out-selection. Overall, a COD addition of only 2.2 g COD/g TIN removed was needed for the PdN-AnAOB concept showing its potential for significant savings in external carbon source needs to meet low TIN effluent concentrations making this concept a competitive alternative. PRACTITIONER POINTS: Nitrate residual is the key control parameter for partial denitrification selection. Metabolic selection allowed for flexibility of moving from partial to full denitrification. 2.2 g COD/g TIN removed was needed for partial denitrification-anammox process.
Collapse
Affiliation(s)
- Tri Le
- Environmental Engineering, The Catholic University of America, Washington, District of Columbia
- DC Water and Sewer Authority, Washington, District of Columbia
| | - Bo Peng
- DC Water and Sewer Authority, Washington, District of Columbia
- Department of Civil & Environmental Engineering, University of Maryland, College Park, Maryland
| | - Chunyang Su
- DC Water and Sewer Authority, Washington, District of Columbia
| | - Arash Massoudieh
- Environmental Engineering, The Catholic University of America, Washington, District of Columbia
| | - Alba Torrents
- Department of Civil & Environmental Engineering, University of Maryland, College Park, Maryland
| | - Ahmed Al-Omari
- DC Water and Sewer Authority, Washington, District of Columbia
| | - Sudhir Murthy
- DC Water and Sewer Authority, Washington, District of Columbia
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, New York
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia
| | | |
Collapse
|
31
|
Deng YF, Ekama GA, Cui YX, Tang CJ, van Loosdrecht MCM, Chen GH, Wu D. Coupling of sulfur(thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater. WATER RESEARCH 2019; 163:114854. [PMID: 31323502 DOI: 10.1016/j.watres.2019.114854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the feasibility of a new biological nitrogen removal process that integrates sulfur-driven autotrophic denitratation (NO3-→NO2-) and anaerobic ammonium oxidation (Anammox) for simultaneous removal of nitrate and ammonium from industrial wastewater. The proposed sulfur(thiosulfate)-driven denitratation and Anammox process was developed in two phases: First, the thiosulfate-driven denitratation was established in the UASB inoculated with activated sludge and fed with ammonium, nitrate and thiosulfate for 52 days until the nitrite level in the effluent reached 32.1 mg N/L. Second, enriched Anammox biomass was introduced to the UASB to develop the integrated thiosulfate-driven denitratation and Anammox (TDDA) bioprocess (53-212 d). Results showed that nitrate and ammonium could be efficiently removed from synthetic wastewater by the integrated TDDA system at a total nitrogen (TN) removal efficiency of 82.5 ± 1.8% with an influent NH4+-N of 101.2 ± 2.2 mgN/L, NO3--N of 101.1 ± 1.5 mgN/L and thiosulfate of 202.5 ± 3.2 mg S/L. It was estimated that Anammox and autotrophic denitritation (NO2-→N2) contributed to about 90% and 10% of the TN removal respectively at stable operation. The established TDDA system was further supported by high-throughput sequencing analysis that sulfur-oxidizing bacteria (e.g., Thiobacillus and Sulfurimonas) coexisted with Anammox bacteria (e.g., Ca. Kuenenia and Ca. Anammoxoglobus) in this syntrophic biocenosis. Additionally, batch experiments were conducted to reveal the kinetic rates and to reconcile the stoichiometry of the electron donor/acceptor couples of the TDDA process. The results unraveled the mechanisms in the new bioprocess: i) sulfite and elemental sulfur (S0) were initially generated from branched thiosulfate; ii) oxidation of sulfite and elemental sulfur coupled with fast and slow denitratation; iii) nitrite produced from denitratation together with ammonium were effectively converted to dinitrogen gas via Anammox.
Collapse
Affiliation(s)
- Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Yan-Xiang Cui
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cong-Jian Tang
- Department of Environmental Engineering, National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, China
| | | | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
32
|
Du R, Peng Y, Ji J, Shi L, Gao R, Li X. Partial denitrification providing nitrite: Opportunities of extending application for anammox. ENVIRONMENT INTERNATIONAL 2019; 131:105001. [PMID: 31336256 DOI: 10.1016/j.envint.2019.105001] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 05/26/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has been extensively investigated for cost-efficient nitrogen removal from wastewater. However, the major issues of nitrate (NO3--N) residue and instability in the current combination of nitritation and anammox process necessitates being addressed efficiently. The recently proposed partial-denitrification (PD), terminating NO3--N reduction to nitrite (NO2--N), has been regarded as a promising alternative of NO2--N supplying for anammox bacteria. Given the engineering practices, the steadily high NO2--N production, alleviating organic inhibition, and reducing greenhouse gas of PD process offers a viable and efficient approach for anammox implementation. Moreover, it allows for the extending applications of anammox process due to the NO3--N removal availability. Here we comprehensively review the important new outcomes and discuss the emerging applications of PD-based anammox including the process development, mechanism understanding, and future trends. Significant greater stability and enhanced nitrogen removal efficiency have been demonstrated in the novel integrations of PD and anammox process, indicating a broad perspective in dealing with the mainstream municipal sewage, ammonia-rich streams, and industrial NO3--N contained wastewater. Furthermore, researches are still needed for the predictable and controllable strategies, along with the detailed microbiological information in future study. Overall, the achievement of PD process provides unique opportunity catalyzing the engineering applications of energy-efficient and environmental-friendly wastewater treatment via anammox technology.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Jiantao Ji
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
33
|
New direction in biological nitrogen removal from industrial nitrate wastewater via anammox. Appl Microbiol Biotechnol 2019; 103:7459-7466. [PMID: 31388729 DOI: 10.1007/s00253-019-10070-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Anaerobic ammonium oxidation (anammox) is an important scientific discovery in the field of wastewater treatment. This process is a sustainable option in nitrogen removal due to its energy-efficient and cost-effective advantage. Great effort has been made recently to remove ammonium from industrial and municipal wastewater via the anammox process with a preceding partial nitrification (PN) converting part of NH4+ to NO2-. Anammox process is seldom involved in the nitrate removal. Nitrate (NO3-), one of the main nitrogen compounds produced from various industries, is typically converted to nitrogen gas via denitrification process where a large amount of carbon source is consumed. Within this context, we reviewed the current technologies for high-strength nitrate wastewater treatment. It is found that nitrite accumulation often occurs during nitrate reduction, and its accumulating level would be increased at certain conditions (i.e., low C/N ratio and high pH). Hence, this provides a great opportunity to employ the anammox process to further convert nitrite in a more sustainable way. In this review, we highlight a new approach for industrial nitrate wastewater treatment via partial denitrification coupled with anammox process (PD-A). We also discuss the conditions to achieve successful PD-A process, economic and environmental benefits, and potential challenges as well as the future perspectives in practical application.
Collapse
|
34
|
Du R, Cao S, Li B, Zhang H, Wang S, Peng Y. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature. BIORESOURCE TECHNOLOGY 2019; 274:386-394. [PMID: 30551041 DOI: 10.1016/j.biortech.2018.11.101] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
In this study, the synergy of high nitrite (NO2--N) accumulated partial-denitrification (PD) and anammox in a continuously fed upflow anaerobic sludge blanket (UASB) reactor was verified for simultaneous nitrate (NO3--N) and ammonia (NH4+-N) removal. A 225-days operation demonstrated that the relatively low total nitrogen (TN) concentration of 6.56 mg/L in effluent could be achieved with influent NH4+-N and NO3--N both of 30 mg/L, resulting in a high TN removal of 89.1% at 17.5 °C. Batch tests revealed that the NO3--N-to-NO2--N transformation ratio (NTR) of PD stabilized at 90% during the whole operation, which played a crucial role in the desirable performance. However, the PD and anammox activity was negatively impacted by the limited mass transfer with serious sludge flotation. Significantly, hydrodynamic mixing optimization by adjusting liquid recirculation ratio effectively enhanced the nitrogen removal. Moreover, protein composition and tightly-bound structure of EPS played an important role in the sludge stability.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Hanyu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
35
|
A comprehensive insight into the functional bacteria and genes and their roles in simultaneous denitrification and anammox system at varying substrate loadings. Appl Microbiol Biotechnol 2018; 103:1523-1533. [DOI: 10.1007/s00253-018-9536-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
36
|
Qin Y, Cao Y, Ren J, Wang T, Han B. Effect of glucose on nitrogen removal and microbial community in anammox-denitrification system. BIORESOURCE TECHNOLOGY 2017; 244:33-39. [PMID: 28777988 DOI: 10.1016/j.biortech.2017.07.124] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 05/14/2023]
Abstract
The effect of glucose on nitrogen removal and microbial communities in the anammox-denitrification systems was investigated. The optimal nitrogen removal could be achieved when the influent glucose concentration was 56.4mgL-1. The influent nitrite to ammonium ratio of 0.95-1.40 would not obviously affect the nitrogen removal due to the coexistence of anammox, denitrification and partial denitrification. The anammox activity was deteriorated with increasing glucose concentration. When the influent glucose concentration was increased to 374.9mgL-1, the average ammonium removal efficiency decreased from 97% to around 10% and anammox activity was seriously inhibited. The anammox activity quickly recovered with decreasing influent glucose and increasing influent nitrite. High-throughput sequencing analysis suggested that the predominant genus changed from Candidatus Kuenenia to Diaphorobacter with the addition of glucose and then changed to Hydrogenophaga with the decrease of glucose. It indicated that organics concentration had an effect on the microbial communities.
Collapse
Affiliation(s)
- Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junyi Ren
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tongyu Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Bin Han
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
37
|
Li W, Cai ZY, Duo ZJ, Lu YF, Gao KX, Abbas G, Zhang M, Zheng P. Heterotrophic Ammonia and Nitrate Bio-removal Over Nitrite (Hanbon): Performance and microflora. CHEMOSPHERE 2017; 182:532-538. [PMID: 28521169 DOI: 10.1016/j.chemosphere.2017.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
A novel Heterotrophic Ammonia and Nitrate Bio-removal Over Nitrite (Hanbon) process, combining Short Nitrate Reduction (SNR) with Anaerobic Ammonia Oxidation (Anammox), was developed in a lab-scale continuous up-flow reactor. The substrate effects were investigated to characterize the performance of Hanbon process, and the corresponding microflora information was also revealed. Our results showed that the optimal substrate ratio of NH4+-N:NO3--N:COD for the Hanbon process was 0.65:1:2.2. The volumetric nitrogen removal rate was up to 9.0 ± 0.1 kgN·m-3·d-1 at high influent substrate concentrations of NH4+-N 375 mg L-1, NO3--N 750 mg L-1 and COD 1875 mg L-1, which was superior to the reported values of analogous processes. Moreover, the effluent total nitrogen concentration was able to meet the strict discharge standard (less than 10 mg L-1) at low influent substrate concentration of NH4+-N 26 mg L-1, NO3--N 40 mg·L-1and COD 88 mg L-1. Illumina-based 16S rRNA gene sequencing results showed that Halomonas campisalis and Candidatus Kuenenia stuttgartiensis were the dominant bacteria in the SNR section and Anammox section at high substrate concentration condition. However, Halomonas campaniensis and Candidatus Brocadia brasiliensis were raised significantly at low substrate concentration condition. Hanbon process provided in the present work was flexible of treating wastewater with various nitrogen concentrations, deserving further development.
Collapse
Affiliation(s)
- Wei Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhao-Yang Cai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zi-Jun Duo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yao-Feng Lu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ke-Xin Gao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ghulam Abbas
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Department of Chemical Engineering, University of Gujrat, Gujrat, Pakistan
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollution Control & Environmental, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Du R, Cao S, Li B, Wang S, Peng Y. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor. CHEMOSPHERE 2017; 174:399-407. [PMID: 28187386 DOI: 10.1016/j.chemosphere.2017.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
A novel DEAMOX system was developed for nitrogen removal from domestic wastewater and nitrate (NO3--N) sewage in sequencing batch reactor (SBR). High nitrite (NO2--N) was produced from NO3--N reduction in partial-denitrification process, which served as electron acceptor for anammox and was removed with ammonia (NH4+-N) in domestic wastewater simultaneously. A 500-days operation demonstrated that the efficient and stable nitrogen removal performance could be achieved by DEAMOX. The total nitrogen (TN) removal efficiency was as high as 95.8% with influent NH4+-N of 63.58 mg L-1 and NO3--N of 69.24 mg L-1. The maximum NH4+-N removal efficiency reached up to 94.7%, corresponding to the NO3--N removal efficiency of 97.8%. The biomass of partial-denitrification and anammox bacteria was observed to be wall-growth. The deteriorated nitrogen removal performance occurred due to excess denitrifying microbial growth in the outer layer of sludge consortium, which prevented the substrate transfer for anammox inside. However, an excellent nitrogen removal could be guaranteed by scrapping the superficial denitrifying biomass at regular intervals. Furthermore, the high-throughput sequencing analysis revealed that the Thauera genera (26.33%) was possibly responsible for the high NO2--N accumulation in partial-denitrification and Candidatus Brocadia (1.7%) was the major anammox species.
Collapse
Affiliation(s)
- Rui Du
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baikun Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shuying Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
39
|
Sun M, Ye M, Liu K, Schwab AP, Liu M, Jiao J, Feng Y, Wan J, Tian D, Wu J, Li H, Hu F, Jiang X. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:583-591. [PMID: 28082131 DOI: 10.1016/j.envpol.2016.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/22/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Mixed contamination of nitrate and antibiotics/antibiotic-resistant genes (ARGs) is an emerging environmental risk to farmland soil. This is the first study to explore the role of excessive anthropogenic nitrate input in the anoxic dissipation of soil antibiotic/ARGs. During the initial 10 days of incubation, the presence of soil antibiotics significantly inhibited NO3- dissipation, N2O production rate, and denitrifying genes (DNGs) abundance in soil (p < 0.05). Between days 10 and 30, by contrast, enhanced denitrification clearly prompted the decline in antibiotic contents and ARG abundance. Significantly negative correlations were detected between DNGs and ARGs, suggesting that the higher the DNG activity, the more dramatic is the denitrification and the greater are the antibiotic dissipation and ARG abundance. This study provides crucial knowledge for understanding the mutual interaction between soil DNGs and ARGs in the enhanced anoxic denitrification condition.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kuan Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Arthur P Schwab
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 88743, USA
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Da Tian
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
40
|
Du R, Cao S, Li B, Niu M, Wang S, Peng Y. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. WATER RESEARCH 2017; 108:46-56. [PMID: 27817892 DOI: 10.1016/j.watres.2016.10.051] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, a novel DEAMOX (DEnitrifying AMmonium OXidation) process coupling anammox with partial-denitrification generated nitrite (NO2--N) from nitrate (NO3--N) was developed for simultaneously treating ammonia (NH4+-N) and NO3--N containing wastewaters. The performance was evaluated in sequencing batch reactors (SBRs) with different carbon sources for partial-denitrification: acetate (R1) and ethanol (R2). Long-term operation (180 days) suggested that desirable nitrogen removal was achieved in both reactors. The performance maintained stably in R1 despite the seasonal decrease of temperature (29.2 °C-12.7 °C), and high nitrogen removal efficiency (NRE) of 93.6% on average was obtained with influent NO3--N to NH4+-N ratio (NO3--N/NH4+-N) of 1.0. The anammox process contributed above 95% to total nitrogen (TN) removal in R1 with the nitrate-to-nitrite transformation ratio (NTR) of 95.8% in partial-denitrification. A little lower NRE was observed in R2 with temperature dropped from 90.0% at 22.7 °C to 85.2% at 16.6 °C due to the reduced NTR (87.0%-67.0%). High-throughput sequencing analysis revealed that Thauera genera were dominant in both SBRs (accounted for 61.53% in R1 and 45.17% in R2) and possibly played a key role for partial-denitrification with high NO2--N accumulation. The Denitratisoma capable of complete denitrification (NO3--N→N2) was found in R2 that might lead to lower NTR. Furthermore, different anammox species was detected with Candidatus Brocadia and Candidatus Kuenenia in R1, and only Candidatus Kuenenia in R2.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovory Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baikun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovory Engineering, Beijing University of Technology, Beijing 100124, China
| | - Meng Niu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovory Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovory Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovory Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|