1
|
Souza-Ferreira MLCE, Monteiro JPP, Lima GO, Hamoy M, Guimarães AC, Vieira TB, Oliveira-Bahia VRLD. Different concentrations of MeHg induce anxiety-like behaviors in Physalaemus ephippifer tadpoles (Anura, Leptodactylidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5119-5131. [PMID: 39904927 DOI: 10.1007/s11356-025-36023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Methylmercury (MeHg) is the most harmful organic form of mercury to organisms, especially in the aquatic environment. Therefore, it is crucial to assess the effects of exposure to this contaminant on aquatic biota using multiple biomarkers. In this context, we aimed to analyze the morphophysiological and behavioral effects of sub-lethal exposure to MeHg in tadpoles of Physalaemus ephippifer. To achieve this, larvae of the model species were subjected to a toxicological assay, conducted across five treatments (control; 0.0004 µg/ml; 0.0007 µg/ml; 0.004 µg/ml; and 0.007 µg/ml of MeHg). Following exposure, the tadpoles were subjected to three behavioral assays: escape response, chemical perception, and visual perception. Subsequently, we performed electrocardiographic analysis, cardiac histology, and teratogenic analysis. In the chemical and visual perception assays, tadpoles exposed to MeHg exhibited anti-predator behavior even in the absence of predatory stimuli. Electrocardiographic analyses revealed cardiac hyperexcitability with an increase in heart rate, including tachycardia at the highest concentration, and histological analysis showed physiological cardiac hypertrophy. For teratogenic alterations, sub-lethal concentrations caused an increase in the occurrence of teratogenic effects, such as alterations in the oral apparatus, and body and intestinal morphology. Thus, it can be concluded that the combined data indicate that sub-lethal exposure to MeHg could generate behavioral and physiological changes similar to anxiety in P. ephippifer tadpoles. Therefore, such observed effects are capable of increasing the vulnerability of tadpoles exposed to MeHg, acting as one of the mechanisms leading to the population decline of anurans.
Collapse
Affiliation(s)
- Maria Luiza Cunha E Souza-Ferreira
- Instituto de Ciências Biológicas, Laboratório Multidisciplinar de Morfofisiologia Animal, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, Pará, Brazil.
| | - João Pedro Pantoja Monteiro
- Instituto de Ciências Biológicas, Laboratório de Ecotoxicologia, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, Pará, Brazil
| | - Gabriella Oliveira Lima
- Instituto de Ciências Biológicas, Laboratório Multidisciplinar de Morfofisiologia Animal, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, Pará, Brazil
| | - Moises Hamoy
- Instituto de Ciências Biológicas, Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, Pará, Brazil
| | - Adriana Costa Guimarães
- Instituto de Ciências Biológicas, Citogenética Humana, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, Pará, Brazil
| | - Thiago Bernardi Vieira
- Instituto de Ciências Biológicas, Laboratório de Ecologia, Universidade Federal do Pará, Altamira, Pará, Brazil
| | - Verônica Regina Lobato de Oliveira-Bahia
- Instituto de Ciências Biológicas, Laboratório Multidisciplinar de Morfofisiologia Animal, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Belém, Pará, Brazil
| |
Collapse
|
2
|
Liao Z, He H, Liu F, Cui J, Guo Z, Cui D, Huang B, Sun H, Pan X. Reductive Dissolution Mechanisms of Manganese Oxide Mediated by Algal Extracellular Organic Matter and the Effects on 17α-Ethinylestradiol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1198-1208. [PMID: 39689977 DOI: 10.1021/acs.est.4c08918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Reductive dissolution of manganese oxide (MnOx) is a major process that improves the availability of manganese in natural aquatic environments. The extracellular organic matter (EOM) secreted by algae omnipresent in eutrophic waters may affect MnOx dissolution thus the fate of organic micropollutants. This study investigates the mechanisms of MnOx reductive dissolution mediated by EOM and examines the effects of this process on 17α-ethinylestradiol degradation. The influences of EOM concentration (1.0-20.0 mgC/L) and pH (6.0-9.0) in both dark and irradiated conditions were assessed. In the dark, EOM was found to facilitate MnOx reductive dissolution via the ligand-to-metal charge transfer (LMCT). The dissolution was further enhanced under irradiation, with the participation of superoxide ions (O2•-). Higher EOM concentrations increased the contents of available reducing substances and O2•-, accelerating the reductive dissolution. Higher pH slowed the photoreductive dissolution rates, while O2•--mediated reduction became more important. Polyphenols and highly unsaturated carbon and phenolic formulas in EOM were found to drive the reductive dissolution. Soluble reactive Mn(III) formed through reductive dissolution of MnOx effectively removed 17α-ethinylestradiol in solution. Overall, the findings regarding the mechanisms behind reductive dissolution of MnOx have broad implications for Mn geochemical cycles and organic micropollutant fate.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyuan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Southwest United Graduate School, Kunming 650092, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
3
|
Georgin J, Franco DSP, Manzar MS, Meili L, El Messaoudi N. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24679-24712. [PMID: 38488920 DOI: 10.1007/s11356-024-32876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Even at low concentrations, steroid hormones pose a significant threat to ecosystem health and are classified as micropollutants. Among these, 17β-estradiol (molecular formula: C18H24O2; pKa = 10.46; Log Kow = 4.01; solubility in water = 3.90 mg L-1 at 27 °C; molecular weight: 272.4 g mol-1) is extensively studied as an endocrine disruptor due to its release through natural pathways and widespread use in conventional medicine. 17β-estradiol (E2) is emitted by various sources, such as animal and human excretions, hospital and veterinary clinic effluents, and treatment plants. In aquatic biota, it can cause issues ranging from the feminization of males to inhibiting plant growth. This review aims to identify technologies for remediating E2 in water, revealing that materials like graphene oxides, nanocomposites, and carbonaceous materials are commonly used for adsorption. The pH of the medium, especially in acidic to neutral conditions, affects efficiency, and ambient temperature (298 K) supports the process. The Langmuir and Freundlich models aptly describe isothermal studies, with interactions being of a low-energy, physical nature. Adsorption faces limitations when other ions coexist in the solution. Hybrid treatments exhibit high removal efficiency. To mitigate global E2 pollution, establishing national and international standards with detailed guidelines for advanced treatment systems is crucial. Despite significant advancements in optimizing technologies by the scientific community, there remains a considerable gap in their societal application, primarily due to economic and sustainable factors. Therefore, further studies are necessary, including conducting batch experiments with these adsorbents for large-scale treatment along with economic analyses of the production process.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 31451, Dammam, Saudi Arabia
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas Campus A. C. Simões, Av. Lourival Melo Mota, Tabuleiro Dos Martins, Maceió, AL, 57072-970, Brazil
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
4
|
Salla RF, Oliveira FN, Jacintho JC, Cirqueira F, Tsukada E, Vieira LG, Rocha TL. Microplastics and TiO 2 nanoparticles mixture as an emerging threat to amphibians: A case study on bullfrog embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123624. [PMID: 38387544 DOI: 10.1016/j.envpol.2024.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Emerging contaminants can act as contributing factors to the decline of amphibian populations worldwide. Recently, scientists have drawn attention to the potential ecotoxicity of microplastics and nanomaterials in amphibians, however, their possible effects on embryonic developmental stages are still absent. Thus, the present study analyzed the developmental toxicity of environmentally relevant concentrations of polyethylene microplastics (PE MPs; 60 mg/L) and titanium dioxide nanoparticles (TiO2 NPs; 10 μg/L), isolated or in combination (Mix group) on bullfrog embryos, Aquarana catesbeiana, adapting the Frog Embryo Teratogenesis Assay (FETAX, 96h). Allied to the FETAX protocol, we also analyzed the heart rate and morphometric data. The exposure reduced the survival and hatching rates in groups exposed to TiO2 NPs, and to a lesser extent, also affected the Mix group. TiO2 NPs possibly interacted with the hatching enzymes of the embryos, preventing hatching, and reducing their survival. The reduced effects in the Mix group are due to the agglomeration of both toxicants, making the NPs less available for the embryos. PE MPs got attached to the gelatinous capsule of the chorion (confirmed by fluorescence microscopy), which protected the embryos from eventual direct effects of the microplastics on the hatching and survival rates. Although there were no cardiotoxic effects nor morphometric alterations, there was a significant increase in abdominal edemas in the hatched embryos of the PE MPs group, which indicates that osmoregulation might have been affected by the attachment of the microplastics on the embryos' gelatinous capsule. This study presents the first evidence of developmental toxicity of environmental mixtures of microplastics and nanoparticles on amphibians and reinforces the need for more studies with other amphibian species, especially neotropical specimens that could present bigger sensibility. Our study also highlighted several features of the FETAX protocol as useful tools to evaluate the embryotoxicity of several pollutants on amphibians.
Collapse
Affiliation(s)
- Raquel Fernanda Salla
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil; Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fagner Neves Oliveira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil; Laboratory for Research in Morphology and Ontogeny, Institute for Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratory for Research in Morphology and Ontogeny, Institute for Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
5
|
Salla RF, Costa MJ, Abdalla FC, Oliveira CR, Tsukada E, Boeing GANS, Prado J, Carvalho T, Ribeiro LP, Rebouças R, Toledo LF. Estrogen contamination increases vulnerability of amphibians to the deadly chytrid fungus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170337. [PMID: 38301782 DOI: 10.1016/j.scitotenv.2024.170337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Aquatic contaminants and infectious diseases are among the major drivers of global amphibian declines. However, the interaction of these factors is poorly explored and could better explain the amphibian crisis. We exposed males and females of the Brazilian Cururu Toad, Rhinella icterica, to an environmentally relevant concentration of the estrogen 17-alpha-ethinylestradiol (an emerging contaminant) and to the chytrid infection (Batrachochytrium dendrobatidis), in their combined and isolated forms, and the ecotoxicity was determined by multiple biomarkers: cutaneous, hematological, cardiac, hepatic, and gonadal analysis. Our results showed that Cururu toads had many physiological alterations in response to the chytrid infection, including the appearance of cutaneous Langerhans's cells, increased blood leukocytes, increased heart contraction force and tachycardia, increased hepatic melanomacrophage cells, which in turn led to gonadal atrophy. The estrogen, in turn, increased the susceptibility of the toads to the chytrid infection (higher Bd loads) and maximized the deleterious effects of the pathogen: reducing leukocytes, decreasing the contraction force, and causing greater tachycardia, increasing hepatic melanomacrophage cells, and leading to greater gonadal atrophy, which were more extreme in females. The exposure to estrogen also revealed important toxicodynamic pathways of this toxicant, as shown by the immunosuppression of exposed animals, and the induction of the first stages of feminization in males, which corroborates that the synthetic estrogen acts as an endocrine disruptor. Such an intricate relationship is unprecedented and reinforces the importance of studying the serious consequences that multiple environmental stressors can cause to aquatic populations.
Collapse
Affiliation(s)
- Raquel F Salla
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil; Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil.
| | - Monica Jones Costa
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil; Laboratório de Fisiologia da Conservação (LaFisC), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Fabio Camargo Abdalla
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil; Laboratório de Biologia Estrutural e Funcional (LaBEF), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Cristiane R Oliveira
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Elisabete Tsukada
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Guilherme Andrade Neto Schmitz Boeing
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil; Laboratório de Biologia Estrutural e Funcional (LaBEF), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Joelma Prado
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luisa P Ribeiro
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Raoni Rebouças
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Bayode AA, Olisah C, Emmanuel SS, Adesina MO, Koko DT. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: a systemic scientometric review. RSC Adv 2023; 13:22675-22697. [PMID: 37502828 PMCID: PMC10369132 DOI: 10.1039/d3ra02296j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Steroidal estrogens (SEs) remain one of the notable endocrine disrupting chemicals (EDCs) that pose a significant threat to the aquatic environment in this era owing to their interference with the normal metabolic functions of the human body systems. They are currently identified as emerging contaminants of water sources. The sources of SEs are either natural or synthetic active ingredients in oral contraceptive and hormonal replacement therapy drugs and enter the environment primarily from excretes in the form of active free conjugate radicals, resulting in numerous effects on organisms in aquatic habitats and humans. The removal of SEs from water sources is of great importance because of their potential adverse effects on aquatic ecosystems and human health. Adsorption techniques have gained considerable attention as effective methods for the removal of these contaminants. A systemic review and bibliometric analysis of the application of adsorption for sequestration were carried out. Metadata for publications on SE removal utilizing adsorbents were obtained from the Web of Science (WoS) from January 1, 1990, to November 5, 2022 (107 documents) and Scopus databases from January 1, 1949, to November 5, 2022 (77 documents). In total, 137 documents (134 research and 4 review articles) were used to systematically map bibliometric indicators, such as the number of articles, most prolific countries, most productive scholars, and most cited articles, confirming this to be a growing research area. The use of different adsorbents, include activated carbon graphene-based materials, single and multi-walled carbon nanotubes, biochar, zeolite, and nanocomposites. The adsorption mechanism and factors affecting the removal efficiency, such as pH, temperature, initial concentration, contact time and adsorbent properties, were investigated in this review. This review discusses the advantages and limitations of different adsorbents, including their adsorption capacities, regenerative potential, and cost-effectiveness. Recent advances and innovations in adsorption technology, such as functionalized materials and hybrid systems, have also been highlighted. Overall, the bibliographic analysis provides a comprehensive overview of the adsorption technique for the removal of SEs from other sources, serving as a valuable resource for researchers and policymakers involved in the development of efficient and sustainable strategies to mitigate the effects of these emerging contaminants.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Nelson Mandela University P. O Box 77000 Gqeberha 6031 South Africa
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin P.M.B. 1515 Ilorin Nigeria
| | | | - Daniel Terlanga Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 232101 Ede Nigeria
| |
Collapse
|
7
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
8
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Ecotoxicity risk assessment of copper oxide nanoparticles in Duttaphrynus melanostictus tadpoles. CHEMOSPHERE 2023; 314:137754. [PMID: 36608887 DOI: 10.1016/j.chemosphere.2023.137754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In recent years, copper oxide nanoparticles (CONPs) have gained considerable importance in ecotoxicology studies. CONP ecotoxicity studies on amphibians are limited, particularly on Duttaphrynus melanostictus (D. melanostictus) tadpoles, and most CONP ecotoxicity studies have shown developmental effects on amphibians. Therefore, the present study aimed to determine the ecotoxicity of CONPs in D. melanostictus tadpoles by assessing multi-biomarkers including bioaccumulation, antioxidants, biochemical, haematological, immunological and oxidative stress biomarkers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and physicochemical properties of CONPs. After 30 d of the experiment, blood and organs were collected to measure the levels of multiple biomarkers. The dissolution rate of copper ions in exposed media was observed in all studied groups. According to the results, significant (p < 0.05) increase in copper ion bioaccumulation (blood, liver and kidney), oxidative stress and biochemical biomarkers in the blood serum of CONPs exposed tadpoles compared to control tadpoles, which was accompanied by significant variations in morphological and haematological parameters. In contrast to the untreated tadpoles, the CONPs-exposed tadpoles showed statistically significant (p < 0.05) decreases in antioxidants and immunological indices of blood serum. Based on our results, we concluded that the ecotoxicity of CONPs is due to the production of reactive oxygen species (ROS), which can cause oxidative stress in tadpoles, resulting in impairments. According to our knowledge, the present study was the first to use a multi-biomarker ecotoxicity approach on D. melanostictus tadpoles that could be used as an ecological bioindicator to assess aquatic toxicity.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
9
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Jeon YS, Crump D, Boulanger E, Soufan O, Park B, Basu N, Hecker M, Xia J, Head JA. Hepatic Transcriptomic Responses to Ethinylestradiol in Two Life Stages of Japanese Quail. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2769-2781. [PMID: 35975422 DOI: 10.1002/etc.5464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Chemical risk assessment for avian species typically depends on information from toxicity tests performed in adult birds. Early-life stage (ELS) toxicity tests have been proposed as an alternative, but incorporation of these data into existing frameworks will require knowledge about the similarities/differences between ELS and adult responses. The present study uses transcriptomics to assess hepatic gene expression in ELS and adult Japanese quail following exposure to ethinylestradiol (EE2). Prior to incubation, ELS quail were dosed with measured EE2 concentrations of 0.54, 6.3, and 54.2 µg/g egg weight via air cell injection. Adult quail were fed a single dose of EE2 at nominal concentrations of 0, 0.5, and 5 mg/kg body weight by gavage. Liver tissue was collected from five to six individuals per dose group at mid-incubation for ELS quail and 4 days after dosing for adults. A total of 283 and 111 differentially expressed genes (DEGs) were detected in ELS and adult quail, respectively, 16 of which were shared across life stages. Shared DEGs included estrogenic biomarkers such as vitellogenin genes and apovitellenin-1. For the dose groups that resulted in the highest number of DEGs (ELS, 6.3 µg/g; adult, 5 mg/kg), 21 and 35 Kyoto Encyclopedia of Genes and Genomes pathways were enriched, respectively. Ten of these pathways were shared between life stages, including pathways involved with signaling molecules and interaction and the endocrine system. Taken together, our results suggest conserved mechanisms of action following estrogenic exposure across two life stages, with evidence from differential expression of key biomarker genes and enriched pathways. The present study contributes to the development and evaluation of ELS tests and toxicogenomic approaches and highlights their combined potential for screening estrogenic chemicals. Environ Toxicol Chem 2022;41:2769-2781. © 2022 SETAC.
Collapse
Affiliation(s)
- Yeon-Seon Jeon
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Emily Boulanger
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Othman Soufan
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
- Computer Science Department, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Bradley Park
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Markus Hecker
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Jessica A Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Gomes FBR, Fernandes PAA, Bottrel SEC, Brandt EMF, Pereira RDO. Fate, occurrence, and removal of estrogens in livestock wastewaters. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:814-833. [PMID: 36038979 DOI: 10.2166/wst.2022.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During the last decades, livestock and animal feeding operations have been expanded. In parallel, these activities are among the major sources of estrogens in the environment. Thus, considering the environmental and health risks associated with estrogenic compounds, this work reviews the fate, occurrence, and removal of free and conjugated E1, E2, and E3 in livestock wastewaters. A systematic literature review was carried out, and after applying the eligibility criteria, 66 peer-reviewed papers were selected. Results suggest high estrogen concentrations and, consequently, high estrogenic activity, especially in samples from swine farming. E1 and E2 are frequently found in wastewaters from bovine, swine, and other livestock effluents. Aerobic treatment processes were more efficient for estrogen removal, whereas anaerobic systems seem poorly effective. Removal efficiencies of estrogens and estrogenic activity of up to 90% were reported for constructed wetlands, advanced pond systems, trickling filters, membrane bioreactors, aerated and nitrifying reactors, combined air flotation, and vegetable oil capture processes. High concentrations found in wastewaters from livestock allied to the removal efficiencies reported for anaerobic processes (usually used to treat livestock wastewaters) evidence the importance of monitoring these compounds in environmental matrices.
Collapse
Affiliation(s)
- Fernanda Bento Rosa Gomes
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail:
| | - Pedro Antônio Alves Fernandes
- Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Sue Ellen Costa Bottrel
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail: ; Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Emanuel Manfred Freire Brandt
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail:
| | - Renata de Oliveira Pereira
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail: ; Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
12
|
María Teresa S, Romina G, Lucila Marilén C, Fernanda A, Rafael Carlos L, Paola Mariela P. Anuran heart development and critical developmental periods: a comparative analysis of three Neotropical anuran species. Anat Rec (Hoboken) 2022; 305:3441-3455. [PMID: 35412699 DOI: 10.1002/ar.24933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
The heart begins to form early during vertebrate development and is the first functional organ of the embryo. This study aimed to describe and compare the heart development in three Neotropical anuran species, Physalaemus albonotatus, Elachistocleis bicolor, and Scinax nasicus. Different Gosner Stages (GS) of embryos (GS 18-20) and premetamorphic (GS 21-25), prometamorphic (GS 26-41) and metamorphic (GS 42-46) tadpoles were analyzed using stereoscopic microscopy and Scanning Electronic Microscopy. Heart development was similar in the three analyzed species; however, some heterochronic events were identified between P. albonotatus and S. nasicus compared to E. bicolor. In addition, different patterns of melanophores arrangement were observed. During the embryonic and metamorphic periods, the main morphogenetic events occur: formation of the heart tube, regionalization of the heart compartments, development of spiral valve, onset of heartbeat, looping, and final displacement of the atrium and its complete septation. Both periods are critical for the normal morphogenesis and the correct functioning of the anuran heart. These results are useful to characterize the normal anuran heart morphology and to identify possible abnormalities caused by exposure to environmental contaminants.
Collapse
Affiliation(s)
- Sandoval María Teresa
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura. Embriología Animal, Av. Libertad 5470 (3400)., Corrientes, Argentina
| | - Gaona Romina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura. Embriología Animal, Av. Libertad 5470 (3400)., Corrientes, Argentina
| | - Curi Lucila Marilén
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Ictiología del Nordeste (INICNE), Facultad de Ciencias Veterinarias. Universidad Nacional del Nordeste (FCV, UNNE), Sargento Cabral 2139, (3400) Corrientes, Argentina
| | - Abreliano Fernanda
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura. Embriología Animal, Av. Libertad 5470 (3400)., Corrientes, Argentina
| | - Lajmanovich Rafael Carlos
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| | - Peltzer Paola Mariela
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
13
|
He H, Lin Y, Yang X, Zhu X, Xie W, Lai C, Yang S, Zhang Z, Huang B, Pan X. The photodegradation of 17 alpha-ethinylestradiol in water containing iron and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152516. [PMID: 34968604 DOI: 10.1016/j.scitotenv.2021.152516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
17 alpha-ethinylestradiol (EE2) in natural waters can seriously harm ecosystems and human health. Dissolved organic matter (DOM) and iron minerals are ubiquitous in natural waters, and they can shorten the half-life of EE2 in the natural environment. The interaction between dissolved organics and iron affects pollutants' transformation pathways. The mechanism of EE2's adsorption on hematite, magnetite and pyrite was studied. A photo-Fenton system was constructed in which humic acid (HA) and iron minerals degraded EE2 under simulated natural light conditions. Pyrite showed the best adsorption and degradation in acidic conditions (52%) for 5 h. Hydroxyl radical was found to be the main active substance in the photodegradation. The degradation products of EE2 were identified and possible degradation pathways were inferred. These results can contribute to the understanding of the transformation pathways of persistent organic pollutants in natural waters.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanting Lin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xintong Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenxiao Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shanshan Yang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| |
Collapse
|
14
|
Pinto-Vidal FA, Carvalho CDS, Abdalla FC, Ceschi-Bertoli L, Moraes Utsunomiya HS, Henrique da Silva R, Salla RF, Jones-Costa M. Metabolic, immunologic, and histopathologic responses on premetamorphic American bullfrog (Lithobates catesbeianus) following exposure to lithium and selenium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116086. [PMID: 33248831 DOI: 10.1016/j.envpol.2020.116086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The presence of chemicals and the destruction of freshwater habitats have been addressed as one of the reasons for the decline in the amphibians' populations worldwide. Considering the threat that these animals have been suffering in tropical regions, the present study tested if the Brazilian legislation, concerning the permissive levels of lithium and selenium in water bodies and effluents, warrants the protection of aquatic life. To do so, we assessed the metabolic, immunologic, and histopathologic alterations in liver samples of American bullfrog (Lithobates catesbeianus), at the premetamorphic stage, through biomarkers indicative of general energetic status, i.e., glucose, lipid, and protein metabolism using biochemical and histochemical approaches. The immunologic responses were assessed by the quantification of melanomacrophage centres (MMCs); the histopathologic evaluation of the liver sections was also performed. The assay was carried out over 21 days with two periods of sampling (after 7 and 21 days) to assess the effects of exposure over time. The animals were exposed to the considered safe levels of lithium (2.5 mg L-1) and selenium (10 μg L-1), both, isolated and mixed. The exposed animals showed alterations in glucose and lipid metabolism throughout the experiment. The intense presence of MMCs and histopathological responses are compatible with hepatotoxicity. The toxicity expressed by the employed animal model indicates that the Brazilian environmental legislation for the protection of aquatic life needs to be updated. With this study, we intend to provide data for better environmental policies and bring attention to sublethal effects triggered by the presence of contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Felipe Augusto Pinto-Vidal
- Laboratory of Physiology Conservation (LaFisC) - Federal University of São Carlos, Sorocaba, São Paulo, Brazil; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Pavilion A29, 625 00 Brno, Czech Republic; Postgraduate Program of Biotechnology and Environmental Monitoring (PPGBMA) - Federal University of São Carlos, Sorocaba, São Paulo, Brazil
| | - Cleoni Dos Santos Carvalho
- Laboratory of Biochemistry and Microbiology (LaBioM) - Federal University of São Carlos, Sorocaba, São Paulo, Brazil
| | - Fábio Camargo Abdalla
- Laboratory of Structural and Functional Biology (LaBEF) - Federal University of São Carlos, Sorocaba, São Paulo, Brazil
| | - Letícia Ceschi-Bertoli
- Laboratory of Structural and Functional Biology (LaBEF) - Federal University of São Carlos, Sorocaba, São Paulo, Brazil
| | | | | | - Raquel Fernanda Salla
- Laboratory of Natural History of Brazilian Amphibians (LaHNAB) - State University of Campinas, Campinas, São Paulo, Brazil
| | - Monica Jones-Costa
- Laboratory of Physiology Conservation (LaFisC) - Federal University of São Carlos, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
15
|
Pinto Vidal FA, Abdalla FC, Carvalho CDS, Moraes Utsunomiya HS, Teixeira Oliveira LA, Salla RF, Jones-Costa M. Metamorphic acceleration following the exposure to lithium and selenium on American bullfrog tadpoles (Lithobates catesbeianus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111101. [PMID: 32905937 DOI: 10.1016/j.ecoenv.2020.111101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
To regulate the presence of contaminants in Brazilian water, the Brazilian Environmental Council (CONAMA) promulgates regulations regarding the concentrations of given compounds that are supposed to be safe for aquatic life. Considering these regulations, this study tested the effects of considered safe levels of lithium (2.5 mgL-1) and selenium (0.01 mgL-1), isolated and mixed, on the American bullfrog (Lithobates catesbeianus) tadpoles. The evaluation was done through the use of biomarkers of larval development as total wet weight (TWW), snout-vent-length (SVL), hind-limb-length (HLL), activity level (AL), histologic evaluation of the thyroid gland and the mortality rate. The tadpoles were allocated into four groups (n = 20 each): a control group (CT); a group exposed to lithium (LI), a group exposed to selenium (SE), and a group exposed to both lithium and selenium (SELI). The whole assay was carried out over 21 days, with two rounds of data collection (on 7th and 21st day) to evaluate the responses over time. A statistical reduction in the AL was observed in the tadpoles from the LI and SELI groups after 7 days of exposure, the same pattern was observed after 21 days. Histological analyses of the thyroid gland showed signs of up-regulation (i.e. statistic reduction in number and area of the follicles, as well a significant reduction in the area of the gland) in all exposed groups, which represents an endocrine response as an adaptative strategy to deal with polluted aquatic environment. The stress triggered by the polluted medium is discussed.
Collapse
Affiliation(s)
- Felipe Augusto Pinto Vidal
- Laboratory of Conservation Physiology (LaFisC), Federal University of São Carlos, Brazil; Graduate Program of Biotechnology and Environmental Monitoring, Federal University of SãoCarlos, Brazil
| | - Fábio Camargo Abdalla
- Laboratory of Structural and Functional Biology (LaBEF), Federal University of São Carlos, Brazil
| | | | | | | | - Raquel Fernanda Salla
- Laboratory of Natural History of Brazilian Amphibians (LaHNAB), State University of Campinas, Brazil
| | - Monica Jones-Costa
- Laboratory of Conservation Physiology (LaFisC), Federal University of São Carlos, Brazil.
| |
Collapse
|
16
|
Magnetic solid-phase extraction and pre-concentration of 17β-estradiol and 17α-ethinylestradiol in tap water using maghemite-graphene oxide nanoparticles and determination via HPLC with a fluorescence detector. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Jackson LM, Klerks PL. Impact of Long-Term Exposure to 17α-Ethinylestradiol in the Live-Bearing Fish Heterandria formosa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:51-61. [PMID: 30726505 DOI: 10.1007/s00244-019-00600-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
17α-ethinylestradiol (EE2) is a potent synthetic estrogen that is routinely detected in aquatic ecosystems and exhibits estrogenic activity. Acute and chronic toxicity have been described for oviparous and ovoviviparous fish species; however, no information is available on the impacts of EE2 on viviparous, matrotrophic fish despite their ecological importance. The present study investigated the consequences of long-term EE2 exposure in the least killifish (Heterandria formosa). Effects on growth, time-to-sexual maturity, fecundity, and offspring survival were examined in an 8-month, life-cycle experiment. Starting as 0-6-day-old fish, least killifish were continuously exposed to EE2 at nominal concentrations of 0, 5, or 25 ng/L (measured concentrations averaged 0, 4.3, and 21.5 ng/L respectively). In the F0 generation, EE2-exposure did not affect survival but resulted in increased time-to-sexual maturity and a sex-dependent effect on size; female standard length was reduced while male standard length was increased. This caused the ordinarily larger females and smaller males to become more similar in size. Condition factor was reduced for both sexes. Fecundity was reduced by 50% and 75% at 5 and 25 ng/L EE2-exposure respectively. Continued EE2-exposure in the F1 generation resulted in significantly reduced survival. These results suggest that despite their matrotrophic development, these fish experience delayed development and reduced reproductive success from EE2-exposure and that effects appear to intensify in the second generation.
Collapse
Affiliation(s)
- Latonya M Jackson
- Department of Biology, University of Cincinnati, 155B McMicken Hall, Cincinnati, OH, 45221, USA.
| | - Paul L Klerks
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Billeaud Hall, Room 108, Lafayette, LA, 70503, USA
| |
Collapse
|
18
|
Tan SC, Lee HK. A metal-organic framework of type MIL-101(Cr) for emulsification-assisted micro-solid-phase extraction prior to UHPLC-MS/MS analysis of polar estrogens. Mikrochim Acta 2019; 186:165. [DOI: 10.1007/s00604-019-3289-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/29/2019] [Indexed: 01/20/2023]
|
19
|
Muszyńska B, Żmudzki P, Lazur J, Kała K, Sułkowska-Ziaja K, Opoka W. Analysis of the biodegradation of synthetic testosterone and 17α-ethynylestradiol using the edible mushroom Lentinula edodes. 3 Biotech 2018; 8:424. [PMID: 30298116 PMCID: PMC6162194 DOI: 10.1007/s13205-018-1458-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
The mycelium of Lentinula edodes produces enzymes which may degrade xenobiotics including steroid hormones. The aim of the study was to determine whether the mycelium from in vitro cultures of L. edodes are able to degrade endocrine disruptors such as testosterone and 17α-ethynylestradiol. To prove the possibility of xenobiotics degradation, cultures of L. edodes were cultivated in an Oddoux liquid medium with the addition of synthetic 17α-ethynylestradiol and synthetic testosterone. The endocrine disruptors were extracted from the mycelium and determined qualitatively by RP-HPLC. The degradation products of testosterone and 17α-ethynylestradiol were identified using a UPLC/MS/MS analysis. Undegraded testosterone was determined at the amount of 2.97 mg/g dry weight but only in one of the L. edodes extracts from in vitro cultures supplemented with 50 mg of this compound. In turn, 17α-ethynylestradiol was not determined in any samples. Additionally in all extracts, mushroom sterols (ergosterol peroxide and ergosterol) were determined. Their total amounts were significantly lower in samples containing the abovementioned steroids than in extracts from mycelium L. edodes without the addition of steroid hormones. The results demonstrated that the mycelium of L. edodes can be used in the biodegradation process of a water environment contaminated with endocrine disruptors.
Collapse
|
20
|
Jones-Costa M, Franco-Belussi L, Vidal FAP, Gongora NP, Castanho LM, Dos Santos Carvalho C, Silva-Zacarin ECM, Abdalla FC, Duarte ICS, Oliveira CD, de Oliveira CR, Salla RF. Cardiac biomarkers as sensitive tools to evaluate the impact of xenobiotics on amphibians: the effects of anionic surfactant linear alkylbenzene sulfonate (LAS). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:184-190. [PMID: 29351853 DOI: 10.1016/j.ecoenv.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Amphibian populations have been experiencing a drastic decline worldwide. Aquatic contaminants are among the main factors responsible for this decline, especially in the aquatic environment. The linear alkylbenzene sulfonate (LAS) is of particular concern, since it represents 84% of the anionic surfactants' trade. In Brazil, the maximal LAS concentration allowed in fresh waters is 0.5mgL-1, but its potential harmful effects in amphibians remain unknown. Therefore, this study aimed to analyze the effects of a sublethal concentration of LAS (0.5mgL-1) for 96h on sensitive cardiac biomarkers of bullfrog tadpoles, Lithobates catesbeianus (Shaw, 1802). For this, we measured the activity level (AL - % of animals), in situ heart rate (fH - bpm), relative ventricular mass (RVM - % of body mass), in vitro myocardial contractility and cardiac histology of the ventricles. Tadpoles' AL and fH decreased in LAS group. In contrast, the RVM increased, as a result of a hypertrophy of the myocardium, which was corroborated by the enlargement of the nuclear measures and the increase of myocytes' diameters. These cellular effects resulted in an elevation of the in vitro contractile force of ventricle strips. Acceleration in the contraction (TPT - ms) also occurred, although no alterations in the time to relaxation (THR -ms) were observed. Therefore, it can be concluded that even when exposed to an environmentally safe concentration, this surfactant promotes several alterations in the cardiac function of bullfrog tadpoles that can impair their development, making them more susceptible to predators and less competitive in terms of reproduction success. Thus, LAS concentrations that are considered safe by Brazilian by regulatory agencies must be revised in order to minimize a drastic impact over amphibian populations. This study demonstrates the relevance of employing cardiac biomarkers at different levels (e.g., morphological, physiological and cellular) to evaluate effects of xenobiotics in tadpoles.
Collapse
Affiliation(s)
- Monica Jones-Costa
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Lilian Franco-Belussi
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil; Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil; Departamento de Biologia, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Felipe Augusto Pinto Vidal
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil; Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Nathália Penteado Gongora
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Luciano Mendes Castanho
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Cleoni Dos Santos Carvalho
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Elaine Cristina Mathias Silva-Zacarin
- Núcleo de Pesquisa em Ecotoxicologia de Abelhas, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Fabio Camargo Abdalla
- Laboratório de Biologia Estrutural e Funcional, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Iolanda Cristina Silveira Duarte
- Laboratório de Microbiologia Ambiental (LaMA), Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil
| | - Classius De Oliveira
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil.
| | - Cristiane Ronchi de Oliveira
- Departamento de Biologia, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Raquel Fernanda Salla
- Laboratório de Fisiologia da Conservação, Universidade Federal de São Carlos, Rodovia João Leme dos Santos (SP-264), Km 110, Bairro do Itinga, Sorocaba, São Paulo 18052-780, Brazil.
| |
Collapse
|
21
|
Adeel M, Song X, Wang Y, Francis D, Yang Y. Environmental impact of estrogens on human, animal and plant life: A critical review. ENVIRONMENT INTERNATIONAL 2017; 99:107-119. [PMID: 28040262 DOI: 10.1016/j.envint.2016.12.010] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Since the inception of global industrialization, steroidal estrogens have become an emerging and serious concern. Worldwide, steroid estrogens including estrone, estradiol and estriol, pose serious threats to soil, plants, water resources and humans. Indeed, estrogens have gained notable attention in recent years, due to their rapidly increasing concentrations in soil and water all over the world. Concern has been expressed regarding the entry of estrogens into the human food chain which in turn relates to how plants take up and metabolism estrogens. OBJECTIVES In this review we explore the environmental fate of estrogens highlighting their release through effluent sources, their uptake, partitioning and physiological effects in the ecological system. We draw attention to the potential risk of intensive modern agriculture and waste disposal systems on estrogen release and their effects on human health. We also highlight their uptake and metabolism in plants. METHODS We use MEDLINE and other search data bases for estrogens in the environment from 2005 to the present, with the majority of our sources spanning the past five years. Published acceptable daily intake of estrogens (μg/L) and predicted no effect concentrations (μg/L) are listed from published sources and used as thresholds to discuss reported levels of estrogens in the aquatic and terrestrial environments. Global levels of estrogens from river sources and from Waste Water Treatment Facilities have been mapped, together with transport pathways of estrogens in plants. RESULTS Estrogens at polluting levels have been detected at sites close to waste water treatment facilities and in groundwater at various sites globally. Estrogens at pollutant levels have been linked with breast cancer in women and prostate cancer in men. Estrogens also perturb fish physiology and can affect reproductive development in both domestic and wild animals. Treatment of plants with steroid estrogen hormones or their precursors can affect root and shoot development, flowering and germination. However, estrogens can ameliorate the effects of other environmental stresses on the plant. CONCLUSIONS There is published evidence to establish a causal relationship between estrogens in the environment and breast cancer. However, there are serious gaps in our knowledge about estrogen levels in the environment and a call is required for a world wide effort to provide more data on many more samples sites. Of the data available, the synthetic estrogen, ethinyl estradiol, is more persistent in the environment than natural estrogens and may be a greater cause for environmental concern. Finally, we believe that there is an urgent requirement for inter-disciplinary studies of estrogens in order to better understand their ecological and environmental impact.
Collapse
Affiliation(s)
- Muhammad Adeel
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China
| | - Xiaoming Song
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China
| | - Yuanyuan Wang
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China
| | - Dennis Francis
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China
| | - Yuesuo Yang
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China; Key Lab of Groundwater Resources & Environment (Jilin University), Ministry of Education, Changchun 130021, PR China.
| |
Collapse
|
22
|
de Oliveira CR, Fraceto LF, Rizzi GM, Salla RF, Abdalla FC, Costa MJ, Silva-Zacarin ECM. Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles. CHEMOSPHERE 2016; 149:304-313. [PMID: 26874058 DOI: 10.1016/j.chemosphere.2016.01.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
The use of agrochemicals in agriculture is intense and most of them could be carried out to aquatic environment. Nevertheless, there are only few studies that assess the effects of these xenobiotics on amphibians. Clomazone is an herbicide widely used in rice fields, where amphibian species live. Thus, those species may be threatened by non-target exposure. However, nanoparticles are being developed to be used as a carrier system for the agrochemicals. Such nanoparticles release the herbicide in a modified way, and are considered to be more efficient and less harmful to the environment. The aim of this study was to comparatively evaluate the effect of clomazone in its free form and associated with nanoparticles, in the liver of bullfrog tadpoles (Lithobates catesbeianus) when submitted to acute exposure for 96 h. According to semi-quantitative analysis, there was an increase in the frequency of melanomacrophage centres, in the accumulation of eosinophils and in lipidosis in the liver of experimental groups exposed to clomazone - in its free form and associated with nanoparticles - in comparison with the control group, and the nanotoxicity of chitosan-alginate nanoparticles. The increase of melanomacrophage centres in all exposed groups was significant (P < 0.0001) in comparison to control group. Therefore, the results of this research have shown that exposure to sublethal doses of the herbicide and nanoparticles triggered hepatic responses. Moreover, these results provided important data about the effect of the clomazone herbicide and organic nanoparticles, which act as carriers of agrochemicals, on the bullfrog tadpole liver.
Collapse
Affiliation(s)
- Cristiane Ronchi de Oliveira
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil; Departament of Environmental Engineering, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Sorocaba. Avenida três de março, n. 511, 18087-180 Sorocaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Departament of Environmental Engineering, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Sorocaba. Avenida três de março, n. 511, 18087-180 Sorocaba, SP, Brazil
| | - Gisele Miglioranza Rizzi
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Raquel Fernanda Salla
- Laboratory of Conservation Physiology (LAFISC), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Monica Jones Costa
- Laboratory of Conservation Physiology (LAFISC), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Elaine Cristina Mathias Silva-Zacarin
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil.
| |
Collapse
|