1
|
Flach H, Pfeffer S, Dietmann P, Kühl M, Kühl SJ. Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopuslaevis. CHEMOSPHERE 2024; 367:143624. [PMID: 39461437 DOI: 10.1016/j.chemosphere.2024.143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown. Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism Xenopus laevis (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01-100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of Xenopus laevis embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level. Our results confirmed that glyphosate formulations had a stronger effect on Xenopus laevis embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
2
|
Li M, Chen X, Song C, Xu J, Fan L, Qiu L, Li D, Xu H, Meng S, Mu X, Xia B, Ling J. Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility. Antioxidants (Basel) 2024; 13:871. [PMID: 39061939 PMCID: PMC11274337 DOI: 10.3390/antiox13070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This study focused on methomyl, investigating sex-specific differences in liver antioxidant defenses and inflammatory response indices in male and female zebrafish after 56 days of exposure to environmentally relevant concentrations (0, 0.05, 0.10, and 0.20 mg/L). Our findings indicate that methomyl exposure significantly increased ROS content in zebrafish livers, inducing oxidative stress and activating enzymatic antioxidant defenses such as SOD, CAT, and GSH-Px activities. Sub-chronic exposure altered the expression of apoptosis-related genes (Bax/Bcl2a and Caspases3a), resulting in liver cell apoptosis in a concentration-dependent manner, with the 0.20 mg/L concentration causing the most severe damage. Additionally, methomyl exposure at environmentally relevant concentrations triggered persistent inflammatory responses in liver tissues, evidenced by increased transcription levels of inflammatory factor genes and the activation of toll-like receptors, heightening susceptibility to exogenous allergens. It is noteworthy that oxidative damage indicators (AST, ROS, MDA) and inflammatory gene expressions (IL-1β, TNF-α) were significantly higher in female livers compared to male livers at 0.10-0.20 mg/L methomyl exposure. Consequently, our study underscores the potential adverse effects of environmental methomyl exposure on aquatic organisms and highlights the need for heightened consideration of the risks posed by environmental endocrine disruptors to female health and safety.
Collapse
Affiliation(s)
- Mingxiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Jing Xu
- Environmental Testing Centre, Wuxi 214028, China;
| | - Limin Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Shunlong Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Jun Ling
- Fisheries Institute, Anhui Academy of Agriculture Sciences, Hefei 230031, China
| |
Collapse
|
3
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Ecotoxicity risk assessment of copper oxide nanoparticles in Duttaphrynus melanostictus tadpoles. CHEMOSPHERE 2023; 314:137754. [PMID: 36608887 DOI: 10.1016/j.chemosphere.2023.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In recent years, copper oxide nanoparticles (CONPs) have gained considerable importance in ecotoxicology studies. CONP ecotoxicity studies on amphibians are limited, particularly on Duttaphrynus melanostictus (D. melanostictus) tadpoles, and most CONP ecotoxicity studies have shown developmental effects on amphibians. Therefore, the present study aimed to determine the ecotoxicity of CONPs in D. melanostictus tadpoles by assessing multi-biomarkers including bioaccumulation, antioxidants, biochemical, haematological, immunological and oxidative stress biomarkers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and physicochemical properties of CONPs. After 30 d of the experiment, blood and organs were collected to measure the levels of multiple biomarkers. The dissolution rate of copper ions in exposed media was observed in all studied groups. According to the results, significant (p < 0.05) increase in copper ion bioaccumulation (blood, liver and kidney), oxidative stress and biochemical biomarkers in the blood serum of CONPs exposed tadpoles compared to control tadpoles, which was accompanied by significant variations in morphological and haematological parameters. In contrast to the untreated tadpoles, the CONPs-exposed tadpoles showed statistically significant (p < 0.05) decreases in antioxidants and immunological indices of blood serum. Based on our results, we concluded that the ecotoxicity of CONPs is due to the production of reactive oxygen species (ROS), which can cause oxidative stress in tadpoles, resulting in impairments. According to our knowledge, the present study was the first to use a multi-biomarker ecotoxicity approach on D. melanostictus tadpoles that could be used as an ecological bioindicator to assess aquatic toxicity.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
4
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Uçkun M. Assessing the toxic effects of bisphenol A in consumed crayfish Astacus leptodactylus using multi biochemical markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25194-25208. [PMID: 34839436 DOI: 10.1007/s11356-021-17701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), has strong potential for daily exposure to humans and animals due to its persistence and widespread in the environment, so its effects directly concern public health. Although invertebrates represent important components of aquatic ecosystems and are at significant risk of exposure, there is little information about the biological effects of EDCs in these organisms. Astacus leptodactylus used in this study is one of the most consumed and exported freshwater species in Europe. In this study, the 96-h effect of BPA on A. leptodactylus was examined using various biomarkers. The LC50 value of BPA was determined as 96.45 mg L-1. After 96 h of exposure to BPA, there were increases in superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activities and levels of malondialdehyde (MDA), and total oxidant status context (TOSC), and there were decreases in the activity of glutathione reductase (GR), carboxylesterase (CaE), acetylcholinesterase (AChE), Na+/K+ ATPase, Mg2+ ATPase, Ca2+ ATPase, and total ATPase and the total antioxidant context (TAC). From the results of this study, it can be concluded that BPA has significant toxic effects on A. leptodactylus based on the selected biochemical parameters of antioxidant, cholinergic, detoxification, and metabolic systems in crayfish even at low doses. Thus, it can be said that BPA can seriously threaten the aquatic ecosystem and public health.
Collapse
Affiliation(s)
- Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Altınşehir neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Central, Adiyaman, Turkey.
| |
Collapse
|
6
|
Lajmanovich RC, Attademo AM, Lener G, Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Demonte LD, Repetti MR. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150177. [PMID: 34520929 DOI: 10.1016/j.scitotenv.2021.150177] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The effects of glyphosate (GLY)-based and glufosinate ammonium (GA)-based herbicides (GBH and GABH, respectively) and polyethylene microplastic particles (PEMPs) on Scinax squalirostris tadpoles were assessed. Tadpoles were exposed to nominal concentrations of both herbicides (from 1.56 to 100 mg L-1) and PEMPs (60 mg L-1), either alone or in combination, and toxicity evaluated at 48 h. Acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione-S-transferase (GST) activities were analyzed at the three lowest concentrations (1.56, 3.12 and 6.25 mg L-1, survival rates >85%) of both herbicides alone and with PEMPs. Additionally, the thermochemistry of the interactions between the herbicides and polyethylene (PE) was analyzed by Density Functional Theory (DFT). The median-lethal concentration (LC50) was 43.53 mg L-1 for GBH, 38.56 mg L-1 for GBH + PEMPs, 7.69 for GABH, and 6.25 mg L-1 for GABH+PEMPs. The PEMP treatment increased GST but decreased CbE activity, whereas GBH and GABH treatments increased GST but decreased AChE activity. In general, the mixture of herbicides with PEMPs increased the effect observed in the individual treatments: the highest concentration of GBH + PEMPs increased GST activity, whereas GABH+PEMP treatments decreased both AChE and CbE activities. DFT analysis revealed spontaneous interactions between the herbicides and PE, leading to the formation of bonds at the herbicide-PE interface, significantly stronger for GA than for GLY. The experimental and theoretical findings of our study indicate that these interactions may lead to an increase in toxicity when pollutants are together, meaning potential environmental risk of these combinations, especially in the case of GA.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Lener
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba-CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Luisina D Demonte
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
7
|
Araújo MJ, Soares AMVM, Monteiro MS. Effects of exposure to the UV-filter 4-MBC during Solea senegalensis metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51440-51452. [PMID: 33987723 DOI: 10.1007/s11356-021-14235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Many personal care products integrate UV-filters, such as 4-methylbenzylidene camphor (4-MBC), a compound frequently detected in aquatic habitats, including coastal areas. However, the potential effects of 4-MBC to saltwater species have been poorly studied. Therefore, the main objective of this work is to study the effects of 4-MBC exposure on Solea senegalensis during metamorphosis, a sensitive life stage of this flatfish. To achieve this, fish were exposed to 4-MBC (0.2-2.0 mg L-1) for 48 h at the beginning of metamorphosis (13 days after hatching, dah). After this period, the fish were transferred to a clean medium. They were fed and maintained until more than 80% of individuals in the control group completed the metamorphosis (24 dah). Mortality, malformations, and metamorphic progression were studied daily. Growth, behavior, and biochemical markers of neurotransmission (acetylcholinesterase, AChE), oxidative stress (catalase, CAT; lipid peroxidation, LPO), detoxification (glutathione S-transferase, GST), and anaerobic metabolism (lactate dehydrogenase, LDH) were also determined at the end of the experiment. An acceleration of metamorphosis progression was observed during and 2 days after the 4-MBC exposure in all concentrations tested. In addition, reduced length, inhibition of CAT activity, and induction of oxidative damage were observed (lowest observed effect concentration, LOEC = 0.928 mg L-1 4-MBC for length, CAT, and LPO). Short-term exposure to 4-MBC at the onset of metamorphosis affected S. senegalensis at several levels of organization, even after 9 days in a clean medium, including growth and metamorphic progression, suggesting possible long-term adverse effects in this species.
Collapse
Affiliation(s)
- Mário J Araújo
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta S Monteiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
8
|
Pavan FA, Samojeden CG, Rutkoski CF, Folador A, Da Fré SP, Müller C, Hartmann PA, Hartmann MT. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103637. [PMID: 33753236 DOI: 10.1016/j.etap.2021.103637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Pesticide contamination is an important factor in the global decline of amphibians. The herbicides glyphosate and 2,4-D are the most applied worldwide. These herbicides are often found in surface waters close to agricultural areas. This study aims at evaluating the chronic effects caused by glyphosate + 2,4-D mixture in Boana faber and Leptodactylus latrans tadpoles. The combined solution of the glyphosate and 2,4-D, in 5 different concentrations, was applied for 168 h. Herbicide mixtures did not affect the survival of the exposed tadpoles but growth and swimming activity were altered; besides causing several damages in the mouth and intestine. The erythrocytes showed micronuclei and other nuclear abnormalities. There is an ecological risk in the exposure of tadpoles of B. faber and L. latrans from the mixture of glyphosate + 2,4-D. Therefore, the approach used in this study provides important information on how commonly used pesticides can affect non-target organisms.
Collapse
Affiliation(s)
- Felipe André Pavan
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Garcia Samojeden
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Camila Fátima Rutkoski
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Alexandre Folador
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Silvia Pricila Da Fré
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Caroline Müller
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Paulo Afonso Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| | - Marilia Teresinha Hartmann
- Laboratory of Ecology and Conservation, Federal University of Fronteira Sul, Erechim Campus, RS-135 - Km 72, nº 200, Erechim, RS, Brazil.
| |
Collapse
|
9
|
Cuzziol Boccioni AP, Lajmanovich RC, Peltzer PM, Attademo AM, Martinuzzi CS. Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. CHEMOSPHERE 2021; 273:128475. [PMID: 33069438 DOI: 10.1016/j.chemosphere.2020.128475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticides as well as that of several antibiotics provided at a great scale to poultry, cattle, and swine in aquatic environments within agroecosystems is a matter of growing concern. The objective of the present study was to characterize the sublethal effects of four environmental toxic compounds at two experimental pollution scenarios on the morphology, development and thyroid (T4), acetylcholinesterase (AChE) and glutathione S-transferase (GST) levels in Rhinella arenarum tadpoles. The first experimental pollution scenario aimed to evaluate the individual and mixed toxicity (50:50% v/v) of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP) on earlier developmental stages. The second experimental pollution scenario aimed to evaluate the effects of other toxic compounds (the insecticide chlorpyrifos (CP) and the antibiotic amoxicillin (AMX)) added to the ones from the first scenario on previously exposed premetamorphic tadpoles. In all the treatments of the first pollution scenario, the most conspicuous effect observed in early-stage tadpoles was a high prevalence of morphological abnormalities. Exposure to GBH and to its mixture with CIP also led to a significant decrease in T4 levels and lower development. Both pollutant combinations from the second experimental scenario significantly increased T4 levels, inhibited AChE activities, and led to lower development, whereas the quaternary mixture led to a significant decrease in GST levels. The alterations here revealed by our approaches in several morphological and biochemical endpoints allow characterizing the ecotoxicological risk for anurans exposed to complex mixtures of pollutants that frequently occur in aquatic systems.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| |
Collapse
|
10
|
Attademo AM, Lajmanovich RC, Peltzer PM, Boccioni APC, Martinuzzi C, Simonielo F, Repetti MR. Effects of the emulsifiable herbicide Dicamba on amphibian tadpoles: an underestimated toxicity risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31962-31974. [PMID: 33619621 DOI: 10.1007/s11356-021-13000-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The effects of exposure to the herbicide Dicamba (DIC) on tadpoles of two amphibian species, Scinax nasicus and Elachistocleis bicolor, were assessed. Mortality and biochemical sublethal effects were evaluated using acetylcholinesterase (AChE), glutathione S-transferase (GST), glutathione reductase (GR), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities and thyroid hormone (T4) levels. The LC50 value at 48h was 0.859 mg L-1 for S. nasicus and 0.221 mg L-1 for E. bicolor tadpoles. After exposure to sublethal DIC concentrations for 48 h, GST activity increased in S. nasicus but significantly decreased in E. bicolor with respect to controls. GR activity decreased only in S. nasicus at all the tested DIC concentrations. AChE activity was significantly inhibited in both S. nasicus and E. bicolor tadpoles at 48 h. DIC also caused significant changes in transamination, as evidenced by an increase in AST and ALT activities in both amphibian species. T4 levels were higher in DIC-treated tadpoles of both species than in controls. The DIC-induced biochemical alterations in glutathione system enzymes and transaminases indicate lesions in liver tissues and cellular function. Moreover, the observed AChE inhibition could lead to the accumulation of acetylcholine, excessively stimulating postsynaptic receptors, and the increase in T4 levels in both species may indicate an overactive thyroid. The commercial DIC formulation showed a high biotoxicity in the two amphibian native species after short-term exposure, controversially differing from the toxicity level indicated in the official fact sheet data. This fact highlights the need for an urgent re-categorization and reevaluation of DIC toxicity in native species.
Collapse
Affiliation(s)
- Andrés Maximiliano Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Rafael Carlos Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Paola Mariela Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Ana Paula Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Candela Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Fernanda Simonielo
- Laboratorio de Toxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Rosa Repetti
- PRINARC. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
11
|
Turhan DÖ, Güngördü A, Ozmen M. Developmental and lethal effects of glyphosate and a glyphosate-based product on Xenopus laevis embryos and tadpoles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:173-179. [PMID: 31932905 DOI: 10.1007/s00128-019-02774-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Effects of pure glyphosate and a glyphosate-based product were evaluated comparatively using two embryonic development stages of Xenopus laevis as model system. When pure glyphosate was applied in pH adjusted media, lethal or developmental effects were not observed at concentrations up to 500 mg L-1. The 96 h LC50 values for the commercial herbicide, in contrast, were 32.1 and 35.1 mg active ingredient L-1 for embryos and tadpoles, respectively. Since pure glyphosate has no effect on the selected biomarkers, it is thought that developmental toxic effects caused by glyphosate-based products are increased mainly due to formulation additives.
Collapse
Affiliation(s)
- Duygu Özhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Sciences, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Sciences, Inonu University, 44280, Malatya, Turkey.
| | - Murat Ozmen
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Sciences, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
12
|
Carvalho WF, Ruiz de Arcaute C, Pérez-Iglesias JM, Laborde MRR, Soloneski S, Larramendy ML. DNA damage exerted by mixtures of commercial formulations of glyphosate and imazethapyr herbicides in Rhinella arenarum (Anura, Bufonidae) tadpoles. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:367-377. [PMID: 30826955 DOI: 10.1007/s10646-019-02029-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Glyphosate (GLY) and imazethapyr (IMZT) are two herbicides commonly used worldwide, either alone or in mixtures. They represent key pesticides in modern agricultural management. The toxicity that results when employed as mixtures has not been characterized so far. Acute toxicity of the 48% GLY-based herbicide (GBH) Credit® and the 10.59% IMZT-based herbicide (IBH) Pivot® H alone and their binary combinations was analyzed in Rhinella arenarum tadpoles exposed in a semi-static renewal test. Lethal effects were determined using mortality as the end-point, whereas sublethal effects were determined employing the single-cell gel electrophoresis (SCGE) bioassay. Based on mortality experiments, results revealed LC5096 h values of 78.18 mg/L GBH and 0.99 mg/L IBH for Credit® and Pivot® H, respectively. An increase in the genetic damage index (GDI) was found after exposure to Credit® or Pivot® H at 5 and 10% of LC5096 h values. The combinations of 5% Credit®-5% Pivot® H LC5096 h and 10% Credit®-10% Pivot® H LC5096 h concentrations significantly enhanced the GDI in comparison with tadpoles exposed only to Credit® or Pivot® H. Thus, the effect of interaction between GBH and IBH inducing DNA damage in R. arenarum blood cells can be considered to be synergistic.
Collapse
Affiliation(s)
- Wanessa F Carvalho
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, La Plata, 1900, Argentina
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, La Plata, 1900, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Manuel Pérez-Iglesias
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, La Plata, 1900, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Milagros R R Laborde
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, La Plata, 1900, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, La Plata, 1900, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, La Plata, 1900, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM. Endogenous and exogenous biomarker analysis in terrestrial phase amphibians ( Lithobates sphenocephala) following dermal exposure to pesticide mixtures. ENVIRONMENTAL CHEMISTRY (COLLINGWOOD, VIC.) 2018; 16:55-67. [PMID: 34316289 PMCID: PMC8312641 DOI: 10.1071/en18163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pesticide mixtures are frequently co-applied throughout an agricultural growing season to maximize crop yield. Therefore, non-target ecological species (e.g., amphibians) may be exposed to several pesticides at any given time on these agricultural landscapes. The objectives of this study were to quantify body burdens in terrestrial phase amphibians and translate perturbed metabolites to their corresponding biochemical pathways affected by exposure to pesticides as both singlets and in combination. Southern leopard frogs (Lithobates sphenocephala) were exposed either at maximum or 1/10th maximum application rate to single, double, or triple pesticide mixtures of bifenthrin (insecticide), metolachlor (herbicide), and triadimefon (fungicide). Tissue concentrations demonstrate both facilitated and competitive uptake of pesticides when in mixtures. Metabolomic profiling of amphibian livers identified metabolites of interest for both application rates, however; magnitude of changes varied for the two exposure rates. Exposure to lower concentrations demonstrated down regulation in amino acids, potentially due to their being utilized for glutathione metabolism and/or increased energy demands. Amphibians exposed to the maximum application rate resulted in up regulation of amino acids and other key metabolites likely due to depleted energy resources. Coupling endogenous and exogenous biomarkers of pesticide exposure can be utilized to form vital links in an ecological risk assessment by relating internal dose to pathophysiological outcomes in non-target species.
Collapse
Affiliation(s)
- Donna A. Glinski
- Grantee to U.S. Environmental Protection Agency via Oak Ridge Institute of Science and Education, Athens, GA, USA 30605
- Department of Environmental Health Science, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA 30602
- Corresponding Author: Donna A. Glinski,
| | - S. Thomas Purucker
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA 30605
| | - Robin J. Van Meter
- Departments of Biology and Environmental Science/Studies, Washington College, Chestertown, MD, USA 21620
| | - Marsha C. Black
- Department of Environmental Health Science, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA 30602
| | - W. Matthew Henderson
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA 30605
| |
Collapse
|
14
|
Iummato MM, Sabatini SE, Cacciatore LC, Cochón AC, Cataldo D, de Molina MDCR, Juárez ÁB. Biochemical responses of the golden mussel Limnoperna fortunei under dietary glyphosate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:69-75. [PMID: 30041128 DOI: 10.1016/j.ecoenv.2018.07.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to analyze the biochemical alterations in the golden mussel Limnoperna fortunei under dietary glyphosate exposure. Mussels were fed during 4 weeks with the green algae Scenedesmus vacuolatus previously exposed to a commercial formulation of glyphosate (6 mg L-1 active principle) with the addition of alkyl aryl polyglycol ether surfactant. After 1, 7, 14, 21 and 28 days of dietary exposure, glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE), carboxylesterases (CES) and alkaline phosphatase (ALP) activities, glutathione (GSH) content and damage to lipids and proteins levels were analyzed. A significant increase (72%) in the GST activity and a significant decrease (26%) in the CES activity in the mussels fed on glyphosate exposed algae for 28 days were observed. The ALP activity was significantly increased at 21 and 28 days of dietary exposure (48% and 72%, respectively). GSH content and CAT, SOD and AchE activities did not show any differences between the exposed and non exposed bivalves. No oxidative damage to lipids and proteins, measured as TBARS and carbonyl content respectively, was observed in response to glyphosate dietary exposure. The decrease in the CES activity and the increases in GST and ALP activities observed in L. fortunei indicate that dietary exposure to glyphosate provokes metabolic alterations, related with detoxification mechanisms.
Collapse
Affiliation(s)
- María Mercedes Iummato
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Sebastián Eduardo Sabatini
- CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Luis Claudio Cacciatore
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Adriana Cristina Cochón
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Daniel Cataldo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. CONICET-UBA-Instituto de Ecología, Genética y Evolución (IEGE), Buenos Aires, Argentina
| | - María Del Carmen Ríos de Molina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires - Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ángela Beatriz Juárez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Fu H, Xia Y, Chen Y, Xu T, Xu L, Guo Z, Xu H, Xie HQ, Zhao B. Acetylcholinesterase Is a Potential Biomarker for a Broad Spectrum of Organic Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8065-8074. [PMID: 29995397 DOI: 10.1021/acs.est.7b04004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.
Collapse
Affiliation(s)
- Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Haiming Xu
- School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia Hui Autonomous Region 750004 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| |
Collapse
|
16
|
Zhu J, Wang J, Ding Y, Liu B, Xiao W. A systems-level approach for investigating organophosphorus pesticide toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:26-35. [PMID: 29149660 DOI: 10.1016/j.ecoenv.2017.10.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
The full understanding of the single and joint toxicity of a variety of organophosphorus (OP) pesticides is still unavailable, because of the extreme complex mechanism of action. This study established a systems-level approach based on systems toxicology to investigate OP pesticide toxicity by incorporating ADME/T properties, protein prediction, and network and pathway analysis. The results showed that most OP pesticides are highly toxic according to the ADME/T parameters, and can interact with significant receptor proteins to cooperatively lead to various diseases by the established OP pesticide -protein and protein-disease networks. Furthermore, the studies that multiple OP pesticides potentially act on the same receptor proteins and/or the functionally diverse proteins explained that multiple OP pesticides could mutually enhance toxicological synergy or additive on a molecular/systematic level. To the end, the integrated pathways revealed the mechanism of toxicity of the interaction of OP pesticides and elucidated the pathogenesis induced by OP pesticides. This study demonstrates a systems-level approach for investigating OP pesticide toxicity that can be further applied to risk assessments of various toxins, which is of significant interest to food security and environmental protection.
Collapse
Affiliation(s)
- Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 16034, PR China.
| | - Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 16034, PR China; Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, PR China; State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, Jiangsu 222000, PR China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 16034, PR China
| | - Baoyue Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning 16034, PR China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, Jiangsu 222000, PR China; State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, Jiangsu 222000, PR China
| |
Collapse
|
17
|
Demirci Ö, Güven K, Asma D, Öğüt S, Uğurlu P. Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:749-758. [PMID: 28942278 DOI: 10.1016/j.ecoenv.2017.09.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Studies addressing the toxicity of pesticides towards non-target organisms focus on the median lethal concentration and biochemical response of individual pesticides. However, when determining environmental risks, it is important to test the combined effects of pesticides, such as insecticides and herbicides, which are frequently used together in agricultural areas. Here we aimed to investigate the toxic effects of the combined use of the herbicide atrazine and the insecticides, endosulfan, indoxacarb, and thiamethoxam on Gammarus kischineffensis. To do this, we tested the activities of oxidative stress, detoxification, and neurotoxicity biomarkers. Compared to atrazine alone, we detected higher glutathione-S-transferase, catalase and superoxide dismutase activities (oxidative stress biomarkers) when atrazine was combined with either endosulfan or indoxacarb. However, higher IBR values were determined in organisms where pesticide mixtures were used according to individual use. Based on these results, mixtures of atrazine and other pesticides may cause synergistic effects and may be evidence of increased toxicity and oxidative stress.
Collapse
Affiliation(s)
- Özlem Demirci
- Science Faculty, Department of Biology, Dicle University, 21280, Turkey.
| | - Kemal Güven
- Science Faculty, Department of Molecular Biology and Genetics, Dicle University, 21280, Turkey.
| | - Dilek Asma
- Science Faculty, Department of Biology, Inonu University, 21280, Turkey.
| | - Serdal Öğüt
- School of Health, Department of Nutrition and Dietetics, Adnan Menderes University, 09100, Turkey.
| | - Pelin Uğurlu
- Science and Technology Application and Research Center, Dicle University, 21280, Turkey.
| |
Collapse
|
18
|
Xu Y, Li AJ, Li K, Qin J, Li H. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:136-143. [PMID: 29078071 DOI: 10.1016/j.aquatox.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study.
Collapse
Affiliation(s)
- Yanggui Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fish Breeding & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Attademo AM, Sanchez-Hernandez JC, Lajmanovich RC, Peltzer PM, Junges C. Effect of diet on carboxylesterase activity of tadpoles (Rhinella arenarum) exposed to chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:10-16. [PMID: 27664371 DOI: 10.1016/j.ecoenv.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
An outdoor microcosm was performed with tadpoles (Rhinella arenarum) exposed to 125μgL-1 chlorpyrifos and fed two types of food, i.e., lettuce (Lactuca sativa) and a formulated commercial pellet. Acetylcholinesterase (AChE) and carboxylesterase (CbE) activities were measured in liver and intestine after 10 days of pesticide exposure. Non-exposed tadpoles fed lettuce had an intestinal AChE activity almost two-fold higher than that of pellet-fed tadpoles. No significant differences were observed, however, in liver AChE activity between diets. Likewise, intestinal CbE activity - measured using two substrates, i.e. 1-naphthyl acetate (1-NA) and 4-nitrophenyl valerate (4-NPV) - was higher in tadpoles fed lettuce than in those fed pellets. However, the diet-dependent response of liver CbE activity was opposite to that in the intestine. Chlorpyrifos caused a significant inhibition of both esterase activities, which was tissue- and diet-specific. The highest inhibition degree was found in the intestinal AChE and CbE activities of lettuce-fed tadpoles (42-78% of controls) compared with pellet-fed tadpoles (<60%). Although chlorpyrifos significantly inhibited liver CbE activity of the group fed lettuce, this effect was not observed in the group fed pellets. In general, intestinal CbE activity was more sensitive to chlorpyrifos inhibition than AChE activity. This finding, together with the high levels of basal CbE activity found in the intestine, may be understood as a detoxification system able to reduce intestinal OP uptake. Moreover, the results of this study suggest that diet is a determinant factor in toxicity testing with tadpoles to assess OP toxicity, because it modulates levels of this potential detoxifying enzyme activity.
Collapse
Affiliation(s)
- A M Attademo
- CONICET-FBCB-UNL, Pje. El Pozo s/n, 3000 Santa Fe, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, 3000 Santa Fe, Argentina.
| | - J C Sanchez-Hernandez
- Laboratorio de Ecotoxicología, Facultad de Ciencias Ambientales y Bioquímica, Universidad Castilla-La Mancha, Toledo, Spain
| | - R C Lajmanovich
- CONICET-FBCB-UNL, Pje. El Pozo s/n, 3000 Santa Fe, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, 3000 Santa Fe, Argentina
| | - P M Peltzer
- CONICET-FBCB-UNL, Pje. El Pozo s/n, 3000 Santa Fe, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, 3000 Santa Fe, Argentina
| | - C Junges
- CONICET-FBCB-UNL, Pje. El Pozo s/n, 3000 Santa Fe, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL-CONICET), Paraje El Pozo s/n, 3000 Santa Fe, Argentina
| |
Collapse
|
20
|
Delos Santos N, Azmat S, Cuenca Y, Drenth J, Lauper J, Tseng AS. Effects of the biocide methylisothiazolinone on Xenopus laevis wound healing and tail regeneration. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:37-45. [PMID: 27810491 DOI: 10.1016/j.aquatox.2016.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The South African clawed frog, Xenopus laevis, has a strong history as a suitable model for environmental studies. Its embryos and transparent tadpoles are highly sensitive to the environment and their developmental processes are well described. It is also amenable for molecular studies. These characteristics enable its use for rapid identification and understanding of exposure-induced defects. To investigate the consequences of chemical exposure on aquatic animals, Xenopus laevis embryos and tadpoles were exposed to the biocide, methylisothiazolinone (MIT). Frog tadpoles exposed to MIT following tail amputation lost their natural regenerative ability. This inhibition of regeneration led to a failure to regrow tissues including the spinal cord, muscle, and notochord. This MIT-dependent regenerative defect is due to a failure to close the amputation wound. A wound healing assay revealed that while untreated embryos close their wounds within one day after injury, MIT-treated animals maintained open wounds that did not reduce in size and caused lethality. Concomitant exposure of MIT with chemicals containing thiol groups such as glutathione and N-acetyl cysteine restored normal wound healing and regeneration responses in tadpoles. Together these results indicate that exposure to MIT impairs developmental wound repair and tissue regeneration in Xenopus laevis. Thus, this study reveals new aspects of MIT activity and demonstrates that Xenopus laevis is a well-suited model for facilitating future research into chemical exposure effects on injury responses.
Collapse
Affiliation(s)
- Nicole Delos Santos
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Summer Azmat
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Yesenia Cuenca
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Jessica Drenth
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Julia Lauper
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ai-Sun Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
21
|
de Oliveira CR, Fraceto LF, Rizzi GM, Salla RF, Abdalla FC, Costa MJ, Silva-Zacarin ECM. Hepatic effects of the clomazone herbicide in both its free form and associated with chitosan-alginate nanoparticles in bullfrog tadpoles. CHEMOSPHERE 2016; 149:304-313. [PMID: 26874058 DOI: 10.1016/j.chemosphere.2016.01.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
The use of agrochemicals in agriculture is intense and most of them could be carried out to aquatic environment. Nevertheless, there are only few studies that assess the effects of these xenobiotics on amphibians. Clomazone is an herbicide widely used in rice fields, where amphibian species live. Thus, those species may be threatened by non-target exposure. However, nanoparticles are being developed to be used as a carrier system for the agrochemicals. Such nanoparticles release the herbicide in a modified way, and are considered to be more efficient and less harmful to the environment. The aim of this study was to comparatively evaluate the effect of clomazone in its free form and associated with nanoparticles, in the liver of bullfrog tadpoles (Lithobates catesbeianus) when submitted to acute exposure for 96 h. According to semi-quantitative analysis, there was an increase in the frequency of melanomacrophage centres, in the accumulation of eosinophils and in lipidosis in the liver of experimental groups exposed to clomazone - in its free form and associated with nanoparticles - in comparison with the control group, and the nanotoxicity of chitosan-alginate nanoparticles. The increase of melanomacrophage centres in all exposed groups was significant (P < 0.0001) in comparison to control group. Therefore, the results of this research have shown that exposure to sublethal doses of the herbicide and nanoparticles triggered hepatic responses. Moreover, these results provided important data about the effect of the clomazone herbicide and organic nanoparticles, which act as carriers of agrochemicals, on the bullfrog tadpole liver.
Collapse
Affiliation(s)
- Cristiane Ronchi de Oliveira
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil; Departament of Environmental Engineering, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Sorocaba. Avenida três de março, n. 511, 18087-180 Sorocaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Departament of Environmental Engineering, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Sorocaba. Avenida três de março, n. 511, 18087-180 Sorocaba, SP, Brazil
| | - Gisele Miglioranza Rizzi
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Raquel Fernanda Salla
- Laboratory of Conservation Physiology (LAFISC), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Monica Jones Costa
- Laboratory of Conservation Physiology (LAFISC), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil
| | - Elaine Cristina Mathias Silva-Zacarin
- Laboratory of Structural and Functional Biology (LABEF), Universidade Federal de São Carlos (UFSCar), Campus Sorocaba. Rodovia João Leme dos Santos, Km 110 - SP-264, 18052-780 Sorocaba, SP, Brazil.
| |
Collapse
|