1
|
Xiao X, Sallach JB, Hodson ME. Microplastics and metals: Microplastics generated from biodegradable polylactic acid mulch reduce bioaccumulation of cadmium in earthworms compared to those generated from polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116746. [PMID: 39053046 DOI: 10.1016/j.ecoenv.2024.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture as a response to growing concerns about recalcitrant plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium is a significant soil pollutant in China. MPs have been shown to adsorb metals. In this study the earthworm Lumbricus terrestris was exposed to either Cd (1.0-100 mg / kg) or MPs (PE and PLA, 0.1-3 % w / w), or a combination of the two, for 28 days. Cd bioavailability significantly decreased in the presence of MPs. In particular, at the end of the experiment, PLA treatments had lower measured Cd concentrations in both earthworms (2.127-29.24 mg / kg) and pore water (below detection limits - 0.1384 mg /L) relative to PE treatments (2.720-33.77 mg / kg and below detection limits - 0.2489 mg / L). In our adsorption experiment PLA MPs adsorbed significantly more Cd than PE MPs with maximum adsorption capacities of 126.0 and 23.2 mg / kg respectively. These results suggest that the PLA MPs reduce earthworm exposure to Cd relative to PE by removing it from solution and reducing its bioavailability.
Collapse
Affiliation(s)
- X Xiao
- Department of Environment and Geography, University of York, York YO10 5NG, United Kingdom.
| | - J B Sallach
- Department of Environment and Geography, University of York, York YO10 5NG, United Kingdom
| | - M E Hodson
- Department of Environment and Geography, University of York, York YO10 5NG, United Kingdom
| |
Collapse
|
2
|
Ning Y, Wang S, Sun Y, Zhang S, Wen Y, Zou D, Zhou D. Deciphering survival strategies: Oxidative stress and microbial interplay in Eisenia fetida under tetracycline contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168647. [PMID: 37977382 DOI: 10.1016/j.scitotenv.2023.168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Soil contamination resulting from residual antibiotics presents a pressing need to understand the survival mechanisms of soil organisms in polluted environments. This study focused on Eisenia fetida, and tetracycline stress experiments were conducted in a controlled environment using sterile artificial soil. The stress concentration ranged from 0 to 600 mg/kg, and stress cycles lasted either 10 or 30 days. The objective of this study was to assess the effects of oxidative stress and the changes in microbial communities both within and outside the earthworms. A comprehensive mathematical model was developed to elucidate the responses of organisms following exposure to stress utilizing factor analysis, grey relational analysis, and hierarchical entropy weight analysis. Under tetracycline stress, the initial stage (1-3 days) exhibited a coordinated regulation of oxidative stress and microbial communities in the soil with the assistance of CAT and GPX enzymes. The subsequent stage (4-5 days) further emphasized the influence of soil microbial communities. A notable "feedback regulation" of soil microbial communities on oxidative stress was observed during the third stage (6-8 days). Earthworms maintained a metabolic balance in the fourth stage (9-10 days). In the long term, the stress-induced a self-detoxification mechanism within soil microbial communities, which collaborated with GPX to respond to oxidative stress.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Siqi Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuting Sun
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Shengwei Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wen
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Li T, Xu B, Chen H, Shi Y, Li J, Yu M, Xia S, Wu S. Gut toxicity of polystyrene microplastics and polychlorinated biphenyls to Eisenia fetida: Single and co-exposure effects with a focus on links between gut bacteria and bacterial translocation stemming from gut barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168254. [PMID: 37923278 DOI: 10.1016/j.scitotenv.2023.168254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Microplastics' (MPs) ability to sorb and transport polychlorinated biphenyls (PCBs) in soil ecosystems warrants significant attention. Although organisms mainly encounter pollutants through the gut, the combined pollution impact of MPs and PCBs on soil fauna gut toxicity remains incompletely understood. Consequently, this study examined the gut toxicity of polystyrene MPs (PS-MPs) and PCB126 on Eisenia fetida, emphasizing the links between gut bacteria and bacterial translocation instigated by gut barrier impairment. Our findings underscored that E. fetida could ingest PS-MPs, which mitigated the PCB126 accumulation in E. fetida by 9.43 %. Exposure to PCB126 inhibited the expression of gut tight junction (TJ) protein genes. Although the presence of PS-MPs attenuated this suppression, it didn't alleviate gut barrier damage and bacterial translocation in the co-exposure group. This group demonstrated a significantly increased level of gut bacterial load (BLT, ANOVA, p = 0.005 vs control group) and lipopolysaccharide-binding protein (LBP, ANOVA, all p < 0.001 vs control, PCB, and PS groups), both of which displayed significant positive correlations with antibacterial defense. Furthermore, exposure to PS-MPs and PCB126, particularly within the co-exposure group, results in a marked decline in the dispersal ability of gut bacteria. This leads to dysbiosis (Adonis, R2 = 0.294, p = 0.001), with remarkable signature taxa such as Janthinobacterium, Microbacterium and Pseudomonas, being implicated in gut barrier dysfunction. This research illuminates the mechanism of gut toxicity induced by PS-MPs and PCB126 combined pollution in earthworms, providing novel insights for the ecological risk assessment of soil.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Shi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaohui Xia
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Pan S, Wang G, Fan Y, Wang X, Liu J, Guo M, Chen H, Zhang S, Chen G. Enhancing the compost maturation of deer manure and corn straw by supplementation via black liquor. Heliyon 2023; 9:e13246. [PMID: 36755604 PMCID: PMC9900273 DOI: 10.1016/j.heliyon.2023.e13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In this paper, the relationship between black liquor and microbial growth, enzymatic secretion and humus formation in composting was studied. The results showed that black liquor inoculation is an effective way to promote fermentation process. After black liquor inoculation, the abundance of Corynebacterium, Aequorivita, and Pedobacter, which have the catalase and oxidase activity, has been significantly increased. The enzymatic activity of alkaline phosphatase, catalase, peroxidase and invertase was 40 mg/(g·24h), 6.5 mg/(g·20 min), 13 100 mg/(g·24h), and 6100 mg/(g·24h) respectively at day 18. Humic acid and fulvic acid concentration was 12 g/kg and 11 g/kg which is higher than that of the treatments of no black liquor inoculation. The results suggested that black liquor inoculation was beneficial to indigenous microorganisms reproduce efficiently, then the secretion of enzymes related to cellulose, hemicellulose, and lipid hydrolysis, and the formation of humic substances.
Collapse
Affiliation(s)
- Shijun Pan
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin, 130118, China
| | - Yide Fan
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Hubei, 430000, China
| | - Juan Liu
- Sericultural Research Institute of Jilin Province, Jilin, China
| | | | - Huan Chen
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin, 130118, China
| |
Collapse
|
5
|
Ning Y, Wang X, Lu J, Li Y, Yang Y, Zou D, Zhou D. Study on the life maintenance mechanism of Eisenia fetida under low-density polyethylene stress: Based on path analysis and canonical correlation analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114500. [PMID: 36603488 DOI: 10.1016/j.ecoenv.2023.114500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The widespread use but low recovery rate of agricultural films has led to microplastic accumulation in farmlands, which poses a serious threat to the health of the soil ecosystem. There is an urgent need for early warning and monitoring of soil microplastics pollution, as well as the performance of bioremediation research. In this study, earthworms were used as test organisms to carry out toxicological tests under low-density polyethylene (LDPE) stress. A canonical correlation analysis model (CCA) was established to analyze the relationship between oxidative stress and microbial community. A path analysis model (PA) was also constructed to examine the detoxification mechanism of earthworms under LDPE stress. The results showed that low concentrations (100 and 500 mg/kg) of LDPE did not cause oxidative damage to earthworms but stimulated their physiological metabolism. Meanwhile, 1000 mg/kg LDPE concentrations caused oxidative damage to earthworms and altered their internal microbial community structure. Furthermore, at 1500 mg/kg LDPE concentrations, the oxidative stress to the earthworms is aggravated, and their physiological responses work in conjunction with the microbial community to cope with the adverse condition. Lastly, treatment with 2000 mg/kg LDPE induced the appearance of LDPE tolerant populations in the microbial community in vivo. Taken together, our results provide a theoretical basis for revealing the physiological response of earthworms when challenged in a polluted environment and provide a model for pollution remediation and ecological security monitoring of soil ecosystems.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiyang Lu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanna Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zhang J, Zhang L, He M, Wang Y, Zhang C, Lin D. Bioresponses of earthworm-microbiota symbionts to polychlorinated biphenyls in the presence of nano zero valent iron in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159226. [PMID: 36202358 DOI: 10.1016/j.scitotenv.2022.159226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Both earthworms and nano zero-valent iron (nZVI) have been recently regarded as important approaches for in-situ remediation of polychlorinated biphenyls (PCBs) in soil. However, the combined action of earthworms and nZVI toward PCBs, and the biological responses of earthworm-microbiota symbionts to nZVI-PCBs co-exposure in soil remediation systems remain unclear. In this study, a 28-d exposure with different levels of polychlorinated biphenyls (PCBs) and nZVI was applied to earthworm Eisenia fetida in an agricultural soil. Both physiological responses of earthworms and their surrounding microbiota in gut and soil were examined. Kinetic modelling parameters showed a doubled PCB accumulation in earthworms with the presence of nZVI. Meanwhile, nZVI-PCBs coexposure synergistically stimulated the activities of superoxide dismutase (SOD) and catalase (CAT), along with the elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) in earthworms. Based on integrated metabolomic and 16S rRNA analysis, it was found that earthworms provided certain metabolites, e.g., S-(2-hydroxyethyl)glutathione, 16-hydroxypalmitic acid, and formamide, beneficial to PCB-degrading microbiota (Novosphingobium and Achromobacter) in the intestine. Our findings of nZVI-enhanced PCB bioaccumulation and the defense mechanism afforded by the earthworm-microbiota symbionts toward PCB-nZVI exposure show the promise of combining earthworms with nZVI for the remediation of PCBs-contaminated soil.
Collapse
Affiliation(s)
- Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Lei Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyang He
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yifan Wang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, TX 77058, United States
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
7
|
Yang SW, Gu SX, Tang B, Dang Y, Xu RF, Luo WK, Zheng J, Ren MZ, Yu YJ. Tissue-specific and stereoselective accumulation of Dechlorane Plus isomers in two predator fish in a laboratory feeding study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114469. [PMID: 38321685 DOI: 10.1016/j.ecoenv.2022.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
The tissue-specific bioaccumulation of Dechlorane Plus (DP) isomers was investigated in two predator fish species (redtail catfish, RF; and oscar fish, OF) that were feeding on tiger barb (TB), which was exposed to syn-DP and anti-DP isomers. The biotransformation potential of DP isomers was examined by in vitro metabolism using fish liver microsomes. No difference in accumulation behaviors of DP isomers was observed between RF and OF, and the accumulation of both syn- and anti-DP isomers exhibiting a linear increase trend with the exposure time in all fish tissues. The assimilation efficiencies and depuration rates for syn-DP and anti-DP were determined to be the highest in the liver. Biomagnification factors (BMFs) for both syn-DP and anti-DP were higher than one in the serum and gastrointestinal tract of fish, whereas were less than one in the other tissues. The wet-weight concentrations of DP isomers in tissues were significantly correlated with the lipid contents in both fish species, indicating that the tissue distribution of DP isomers occurred through passive diffusion to the lipid compartments in vivo. Tissue-specific compositions of DP isomers were observed, with anti-DP selectively accumulating in the liver, gonad, serum, and gills, whilst syn-DP in the carcass and GI tract. However, after being normalized of all tissues, the fish showed no selective accumulation of DP isomers during the exposure period, and selective accumulation of syn-DP was observed during the depuration period. No potential DP metabolites were detected in the fish tissues and in vitro metabolism systems. The main cause of this stereoselective DP isomer accumulation could have been the selective excretion of anti-DP isomer through the fish feces.
Collapse
Affiliation(s)
- Shui-Wen Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Chongqing Solid Wastes Management Center, Chongqing 401147, PR China
| | - Shun-Xi Gu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China.
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Rong-Fa Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China.
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| |
Collapse
|
8
|
Zhang Y, Gao Q, Liu SS, Tang L, Li XG, Sun H. Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154581. [PMID: 35304143 DOI: 10.1016/j.scitotenv.2022.154581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Quinolones (QNs), dechloranes (DECs), and chlorinated paraffins (CPs) are three kinds of new halogenated organic pollutants (HOPs), which originate from the use of flame retardants, lubricants and pesticides. Since QNs, DECs, and CPs are frequently detected in waters and sediments, it is necessary to investigate the toxic effects of these HOPs with dwelling phytoplankton, especially for cyanobacteria, to explore their potential hormetic effects and contributions to algal blooms. In the present study, we investigate single and joint toxicity of QNs, DECs and CPs on Microcystis aeruginosa (M. aeruginosa), a cyanobacterium that is frequently implicated with algal blooms. The results indicate single QNs and DECs induce marked hormetic effects on the proliferation of M. aeruginosa but CPs do not. The stimulatory effect of hormesis is linked with accelerated replication of DNA, which is considered to stem from the moderate rise in intracellular reactive oxygen species (ROS). Joint toxicity tests reveal that both QNs & CPs mixtures and DECs & CPs mixtures show hormetic effects on M. aeruginosa, but QNs & DECs mixtures show no hormetic effect. QNs & DECs mixtures exhibit synergistic toxic actions, which may be caused by a sharp rise in intracellular ROS simultaneously produced by the agents. Joint toxic actions of both QNs & CPs, and DECs & CPs shift from addition to antagonism as concentration increases, and this shift may mainly depend on the influence of CPs on cell membrane hydrophobicity of M. aeruginosa. This study provides data and toxic mechanisms for the hormetic phenomenon of single and joint HOPs on M. aeruginosa. The hormetic effects of HOPs may benefit the proliferation of M. aeruginosa in the aquatic environment, aggravating the formation of algal blooms. This study also reflects the important role of hormesis in environmental risk assessment of pollutants.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Jiang W, Zhai W, Liu X, Wang F, Liu D, Yu X, Wang P. Co-exposure of Monensin Increased the Risks of Atrazine to Earthworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7883-7894. [PMID: 35593893 DOI: 10.1021/acs.est.2c00226] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotics could enter farmlands through sewage irrigation or manure application, causing combined pollution with pesticides. Antibiotics may affect the environmental fate of pesticides and even increase their bioavailability. In this study, the influence of monensin on the degradation, toxicity, and availability of atrazine in soil-earthworm microcosms was investigated. Monensin inhibited the degradation of atrazine, changed the metabolite patterns in soil, and increased the bioavailability of atrazine in earthworms. Atrazine and monensin had a significant synergistic effect on earthworms in the acute toxic test. In long-term toxicity tests, co-exposure of atrazine and monensin also led to worse effects on earthworms including oxidative stress, energy metabolism disruption, and cocoon production compared to single exposure. The expression of tight junction proteins was down-regulated significantly by monensin, indicating that the intestinal barrier of earthworms was weakened, possibly causing the increased bioavailability of atrazine. The expressions of heat shock protein 70 (Hsp70) and reproductive and ontogenetic factors (ANN, TCTP) were all downregulated in binary exposure, indicating that the resilience and cocoon production of earthworms were further weakened under combined pollution. Monensin disturbed the energy metabolism and weakened the intestinal barrier of earthworms. These results showed that monensin increased the risks of atrazine in agricultural areas.
Collapse
Affiliation(s)
- Wenqi Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
- Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wangjing Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Xiangyang Yu
- Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
10
|
Mortensen ÅK, Verreault J, François A, Houde M, Giraudo M, Dam M, Jenssen BM. Flame retardants and their associations with thyroid hormone-related variables in northern fulmars from the Faroe Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150506. [PMID: 34601176 DOI: 10.1016/j.scitotenv.2021.150506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely reported in tissues of seabirds including birds sampled from remote areas. There is evidence that FRs can disrupt the hypothalamic-pituitary-thyroid (HPT) axis in seabirds, although information is limited on thyroid-related mechanisms and effects. This study investigated the associations between concentrations of polybrominated diphenyl ethers (PBDEs) and other FRs, and changes in the HPT axis in northern fulmars (Fulmarus glacialis) from the Faroe Islands (North Atlantic). Plasma concentrations of thyroid hormones (THs), hepatic deiodinase type 1 (D1) activity, and transcription of selected TH-related genes in liver were used as markers of HPT axis changes. Liver concentrations of a certain PBDE congeners and other FRs including pentabromoethylbenzene (PBEB), dechlorane 602 (Dec-602), and dechlorane plus (DP) were associated with changes in thyroid status. Specifically, liver PBDE, PBEB and Dec-602 concentrations were associated with plasma TH levels (free thyroxine [FT4] and total triiodothyronine [TT3]). Liver DP concentrations were positively correlated with the TT4:FT4 ratios and mRNA levels of UDP-glucuronyltransferase-1, while those of PBEB were negatively associated with TT4:TT3 ratios and D1 activity. D1 activity was also positively associated with the tri-, tetra- and hexa-BDE congeners. Moreover, transcription of ABCC2, a hepatic TH transporter, was associated with certain liver PBDE concentrations. Although PBDEs and other FRs may be potential inhibitors of D1 activity, only a few of the targeted FRs had modest associations with hepatic D1 activity. Regardless, the relationships reported herein indicated that exposure to moderate levels of FRs can be associated with thyroid axis perturbation at the molecular/biochemical levels in this North Atlantic seabird species.
Collapse
Affiliation(s)
- Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Anthony François
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maria Dam
- IVF Evnaskyn, Fjosagoeta 2, FO-100 Torshavn, Faroe Islands
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
11
|
Li B, Song W, Cheng Y, Zhang K, Tian H, Du Z, Wang J, Wang J, Zhang W, Zhu L. Ecotoxicological effects of different size ranges of industrial-grade polyethylene and polypropylene microplastics on earthworms Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147007. [PMID: 33872900 DOI: 10.1016/j.scitotenv.2021.147007] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 05/23/2023]
Abstract
The effects of microplastics (MPs) on terrestrial organisms remain poorly understood, even though soil is an important MPs sink. In this study, the earthworms Eisenia fetida were exposed to 0.25% (w/w) of industrial-grade high-density polyethylene (HDPE, 28-145, 133-415 and 400-1464 μm) and polypropylene (PP, 8-125, 71-383 and 761-1660 μm) MPs in an agricultural soil for 28 d. The results showed that HDPE and PP MPs with different size ranges can be ingested by E. fetida. Exposure to different size ranges of HDPE and PP MPs altered the activities of superoxide dismutase, catalase and glutathione S-transferase and induced an increase in the 8-hydroxy-2'-deoxyguanosine level in E. fetida, suggesting that MPs-induced oxidative stress occurred in E. fetida. A size and type-dependent toxicity of MPs to E. fetida was demonstrated by the integrated biological response index. In addition, to obtain detailed molecular information on the responses of E. fetida to MPs exposure, transcriptomic analysis was conducted for E. fetida from HDPE (28-145 μm) and PP (8-125 μm) treatment groups. Transcriptomic analysis identified 34,937 and 28,494 differentially expressed genes in the HDPE and PP MPs treatments compared with the control, respectively. And, exposure to HDPE and PP MPs significantly disturbed several pathways closely related to neurodegeneration, oxidative stress and inflammatory responses in E. fetida. This study provides important information for the ecological risk assessment of different size ranges and types of industrial-grade MPs.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Wenhui Song
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Yali Cheng
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Kaihua Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Huimei Tian
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| | - Wen Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
12
|
Zhang F, He M, Zhang C, Lin D, Zhang J. Combined toxic effects of dioxin-like PCB77 with Fe-based nanoparticles in earthworm Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144347. [PMID: 33418254 DOI: 10.1016/j.scitotenv.2020.144347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Iron-based nanomaterials hold promise for in situ remediation of persistent halogenated contaminants such as dioxin-like polychlorinated biphenyls, however, their complex interactions and joint toxicity toward beneficial soil biological functions remain unknown. This study examined the effects of nano-zero valent iron (nZVI) on the physiological and morphological changes, on the bioaccumulation of co-existed dioxin-like 3,3',4,4'-tetrachloro-biphenyls (PCB77), and the joint toxicity of nZVI and PCB77 in earthworms Eisenia fetida. An orthogonally designed experiment was conducted through the exposure of E. fetida to the combined and separate nZVI and PCB77 at various concentrations in soil for 28 days (nZVI at the levels of g-Fe/kg-soil and PCB77 at the levels of mg-PCB/kg-soil). Results indicated that both nZVI and PCB77 inhibited the growth and reproduction of earthworms, and the combined exposure resulted in a synergistic effect. The addition of 10 g/kg nZVI decreased the contents of PCB77 and significantly increased the accumulation of PCB77 to a level ranging 14-97 mg/kg in earthworms in a nZVI dose dependent manner. The observed synergism might relate to the aggravated damage of earthworm epidermis in the presence of nZVI. PCB77 and nZVI at their corresponding high levels (10 mg/kg and 10 g/kg) induced oxidative stress and lipid peroxidation in the earthworms through the increased levels of reactive oxygen species and the subsequent inhibition of antioxidant enzymes including superoxide dismutase and catalase. Further metabolomics analyses revealed that the normal glutamic acid metabolism and tricarboxylic acid cycle were disturbed in earthworms exposed to the combined treatment of 10 mg/kg PCB77 and 10 g/kg nZVI. Our findings suggested that earthworms as a sentinel species could be readily employed in toxicity and tolerance studies to succeed the safe applications of nZVI and interestingly earthworms themselves also hold promise for vermiremediation owing to the high bioaccumulation potential of PCBs from contaminated soils.
Collapse
Affiliation(s)
- Fan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengyang He
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, TX 77058, United States
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianying Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Institute of Environmental Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Zhou D, Wang S, Liang X, Wang J, Zhu X, Ning Y. The relationship between the oxidative stress reaction and the microbial community by a combinative method of PA and CCA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143042. [PMID: 33127145 DOI: 10.1016/j.scitotenv.2020.143042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Earthworms, as the first choice for soil monitoring and bio-remediation of cadmium (Cd)-contaminated soil, need to identify its mechanism under Cd stress. In this study, an artificial soil test method was used to determine the oxidative stress reaction indices, amino acid composition, and microbial community changes in earthworms under different stress durations and concentrations. For the first time, the canonical correlation analysis model and path analysis model were innovatively introduced into the data analysis to determine the mechanism that drives earthworm physiological functions after Cd stress. The results showed that in the low-stress concentration treatments (50-125 mg.kg-1 DW), there was a driving relationship between oxidative stress reaction and microbial community in earthworm, and the driving factor was glycyl-L-glutamic acid at 50 mg.kg-1 DW. With the increase of Cd stress intensity, the enzymes of oxidative stress promoted the survival microbes to begin to proliferate, and SOD became the main driving factor under 125 mg.kg-1 DW Cd stress. In the high-stress concentration treatments (250-500 mg.kg-1 DW), the driving effects were weakened or disappeared; while Cd-resistant microbial population appeared. This study provides a theoretical basis for the driving mechanism between oxidative stress effect and microbial community after Cd stress.
Collapse
Affiliation(s)
- Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Shiben Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyan Liang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiahao Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Zhu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Kim JT, Choi YJ, Barghi M, Kim JH, Jung JW, Kim K, Kang JH, Lammel G, Chang YS. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124141. [PMID: 33087285 DOI: 10.1016/j.jhazmat.2020.124141] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and bioaccumulation of new and legacy persistent organic pollutants (POPs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DPs) and their related compounds (Dechloranes) in an ecosystem on King George Island, Antarctica are investigated. The new and legacy POPs were widely detected in the animal samples collected from Antarctica, which included Limpet, Antarctic cod, Amphipods, Antarctic icefish, Gentoo and Chinstrap penguins, Kelp gull, and South polar skua. The trophic magnification factors indicated that the levels of PCNs and HBCDs, as well as the legacy POPs, were magnified through the food web, whereas DPs might be diluted through the trophic levels contradicting the classification of Dechloranes as POPs. This is one of the first extensive surveys on PCNs, HBCDs, and Dechloranes, which provides unique information on the distribution and trophic biomagnification potential of the new and legacy POPs in the Antarctic region.
Collapse
Affiliation(s)
- Jun-Tae Kim
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 37673, South Korea; Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Yun-Jeong Choi
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 37673, South Korea
| | - Mandana Barghi
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 37673, South Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Jin-Woo Jung
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Jung-Ho Kang
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany; Research Center for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Yoon-Seok Chang
- Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang 37673, South Korea.
| |
Collapse
|
15
|
Zafar MI, Kali S, Ali M, Riaz MA, Naz T, Iqbal MM, Masood N, Munawar K, Jan B, Ahmed S, Waseem A, Niazi MBK. Dechlorane Plus as an emerging environmental pollutant in Asia: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42369-42389. [PMID: 32864714 DOI: 10.1007/s11356-020-10609-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Dechlorane Plus (DP) is an unregulated, highly chlorinated flame retardant. It has been manufactured from past 40 years but its presence in the environment was initially reported in 2006. Later, it has been found in various biotic and abiotic environmental matrices. However, little attention has been paid to monitor its presence in Asia. Many studies have reported the occurrence of DP in the environment of Asia, yet the data are scarce, and studies are limited to few regions. The objective of present review is to summarize the occurrence, distribution, and toxicity of this ubiquitous pollutant in various environmental matrices (biotic and abiotic). DP has also been reported in the areas with no emission sources, which proves its long-range transport. Moreover, urbanization and industrialization also affect the distribution of DP, i.e., high levels of DP have been found in urban areas relative to the rural. Tidal movement also incorporates in transport of DP across the aquatic system. Further, bioaccumulation trend of DP in various tissues is kidney > liver > muscle tissues, whereas, blood brain barrier resists its accumulation in brain tissues. Additionally, gender-based accumulation trends revealed high DP levels in females in comparison to males due to strong metabolism of males. Furthermore, methodological aspects and instrumental analysis used in previous studies have also been summarized here. However, data on biomagnification in aquatic ecosystem and bioaccumulation of DP in terrestrial food web are still scarce. Toxicity behavior of syn-DP and anti-DP is still unknown which might gain the interest for future studies.
Collapse
Affiliation(s)
- Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mehtabidah Ali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Asam Riaz
- Department of Entomology, University of Georgia, Athens, GA, 30602-2603, USA
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Tayyaba Naz
- Environmental Science Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- Environmental Stress Physiology Laboratory, Institute of Soil and Environmental, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium
- Soil and Water Testing Laboratory, Department of Agriculture, Government of Punjab, Chiniot, Pakistan
| | - Noshin Masood
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bilal Jan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sohail Ahmed
- Department of Agricultural Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Amir Waseem
- Department of Chemistry, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
16
|
Li B, Chen J, Wang S, Qi P, Chang X, Chang Z. Effects of dechlorane plus on intestinal barrier function and intestinal microbiota of Cyprinus carpio L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111124. [PMID: 32805504 DOI: 10.1016/j.ecoenv.2020.111124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Dechlorane Plus (DP) is a typical polychlorinated flame retardant that has been emerged in chemical products. Due to its accumulation and amplification effect, the toxicity of DP has become a widespread environmental safety issue. However, whether DP can affect the intestinal tract of teleost fish remains largely unclear. To understand its effects on the intestinal barrier, morphological characteristics and intestinal microbiome of common carp, different concentrations (30, 60 and 120 μg/L) of DP were exposed to common carps for 4 weeks. The results indicated that DP evidently shortened the intestinal folds and damaged the intestinal epithelium layer. In addition, the mRNA expression levels of occludin, claudin-2 and zonula occludens-1 (ZO-1) were significantly decreased with increasing DP concentrations. Furthermore, the relative abundance of some microbiota species were also changed significantly. Our study first demonstrated that DP could cause damage to the intestinal epithelium and destroy the intestinal barrier and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria, which in turn lead to an increased susceptibility to various diseases and poor health. In summary, our findings reveal that chronic DP exposure can have a harmful effect on the intestinal flora balance and is potentially linked to human disease.
Collapse
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Songyun Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Pengju Qi
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
17
|
Zhou H, Zhang T, Zhuang J, Xu M, Liu X, Shi Q, Zhou D. Study on the regulation of earthworm physiological function under cadmium stress based on a compound mathematical model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103499. [PMID: 32956818 DOI: 10.1016/j.etap.2020.103499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
A cadmium (Cd) stress test was carried out on Eisenia fetida in artificial soil. Six Cd concentration gradient solutions (0, 50, 100, 125, 250 and 500 mg/kg) were prepared. Two treatment groups, short-term stress and long-term stress, were established. The former lasted for 10 days, and the latter lasted for 30 days. The Biolog ECO-microplate culture method was used to determine the utilization of the 31 carbon sources by the microbes in earthworm homogenate. The total protein content (TP), peroxidase activity (POD), catalase activity (CAT), superoxide dismutase activity (SOD), glutathione peroxidase activity (GPX), glutathione-S-transferase activity (GST), malondialdehyde content (MDA) and acetylcholinesterase activity (AChE) in earthworm were determined in order to investigate the regulation of oxidative stress and the functional diversity of microbial communities in earthworms under Cd stress. By combining the entropy weight method (EW) and the technique for order preference by similarity to an ideal solution model (TOPSIS), the physiological functional indices of earthworms were assessed objectively and scientifically, and the physiological changes under the different stress periods were evaluated. The results showed that a Cd-tolerant dominant population appeared in the microbial community under Cd stress. In the short-term test, oxidative stress were more effective in coping with Cd stress than the microbial community, and oxidative stress regulated the microbial community functional diversity. Under long-term Cd stress, the regulatory effect was weak or non-existent. In this study, a new evaluation model was established to explore the regulation process of earthworm on its oxidation stress and the functional diversity of microbial communities under Cd stress, and provide a theoretical basis for revealing the detoxification mechanism of earthworms.
Collapse
Affiliation(s)
- Haoran Zhou
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingxiu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jiayun Zhuang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingyuan Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
18
|
Pan HY, Li JFT, Li XH, Yang YL, Qin ZF, Li JB, Li YY. Transfer of dechlorane plus between human breast milk and adipose tissue and comparison with legacy lipophilic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115096. [PMID: 32806402 DOI: 10.1016/j.envpol.2020.115096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, levels of dechlorane plus (DP) in breast milk and matched adipose tissue samples were measured from 54 women living in Wenling, China. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured simultaneously for comparison. The levels of ∑DPs/∑PBDEs varied from less than one to several dozens of ng g-1 lipid weight (lw) in matrices and the levels of ∑PCBs varied between several to hundreds of ng g-1 lw. In the same matrix, ∑DPs and ∑PCBs/∑PBDEs showed a significant relationship (p < 0.05), indicating that they shared common sources. Accordingly, there was a strong association of lipid-adjusted concentrations of individual compounds (BDE-209 excluded) between matrices (p < 0.001), suggesting that breast milk could be a proxy for adipose tissue in human bioburden monitoring of these compounds. The predicted lipid-adjusted milk/adipose ratios varied from 0.62 to 1.5 but showed significant differences (p<0.001) between compounds, suggesting a compound-specific transfer between milk lipids and adipose tissue lipids. Specifically, the milk/adipose ratios for syn-DP and anti-DP (-1.40 and 1.3, respectively) were significantly higher than those of CB congeners and hexa/hepta-BDE congeners (p < 0.05). In addition, unlike PCBs/PBDEs (excluding BDE-209), DP's hydrophobicity might not be responsible for its preferable distribution in milk lipids. Instead, the interaction with nonlipid factors played a key role. The fraction of anti-DP between the two kinds of matrices was not significantly different, suggesting that the biochemical transfer processes may not be efficient enough to distinguish DP isomers. Nevertheless, the congener patterns of PCBs/PBDEs gave a clue about the compound-specific transfer between milk and adipose tissue. To our knowledge, this is the first to report the relationships of DP between adipose tissue and breast milk. These results could provide useful and in-depth information on biomonitoring of DP and facilitate the understanding of the accumulation and excretion potentials of DP and its distribution-related mechanism in humans.
Collapse
Affiliation(s)
- Hai-Yan Pan
- Taizhou Vocational & Technical College, Taizhou, 318000, China
| | - Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - You-Lin Yang
- The First People's Hospital of Wenling, 333 Chuang'annan Road, Chengxi Street, Taizhou, 317500, Zhejiang Province, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| |
Collapse
|
19
|
Zhou D. Effects of tetracycline on the relationship between the microbial community and oxidative stress in earthworms based on canonical correlation analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103342. [PMID: 32035326 DOI: 10.1016/j.etap.2020.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In this study, Eisenia fetida was taken as the test organism and tetracycline was taken as the stress compound. The artificial soil test was conducted to study the utilization intensity of different carbon sources (the Biolog-microplate supplied) by microorganisms under different stress times and stress concentrations. The changes in the in vivo key enzymes activities of earthworms and oxidative stress indicators, such as malondialdehyde (MDA), were explored. The canonical correlation analysis method was the first used to establish a analysis-model to explore the relationship between the functional diversity of microbial community and the oxidative stress in earthworms in vivo under different stress times and concentrations. Research shows: 1) after tetracycline stress, in the earthworm, the CAT, POD, SOD, GPX were related to the microbes that use carbohydrate carbon sources; the GST and AChE were related to the microbes that use polymer carbon sources; the MDA was related to the microbes that use carbon sources: amino acid, carboxylic acid and phenolic acid. 2) Under low concentrations of tetracycline stress, there was no significant relationship between the functional diversity of the microbial communities and the effects of oxidative stress at this concentration. The high concentration of tetracycline can be utilized to screen probiotics that alleviate the effects of oxidative stress. 3) The utilization of carbon sources by microbial community in the earthworm after stress can be used as biomarker of ecotoxicology. It provides a basic theoretical for adding beneficial carbon sources to combat oxidative damage in vivo.
Collapse
Affiliation(s)
- Dongxing Zhou
- Northeast Agricultural University, Wood Street No.59, 150030, Harbin, PR China.
| |
Collapse
|
20
|
Wang K, Qiao Y, Li H, Huang C. Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd-contaminated field soils in Hunan Province, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114056. [PMID: 32041026 DOI: 10.1016/j.envpol.2020.114056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Research was conducted to study the response and detoxification mechanisms of earthworms collected from Cd-contaminated areas in Hunan Province, South China. Metaphire californica, the dominant earthworm species in fields, referred as earthworm-A and -B that collected from low- (0.81 mg kg-1) and high-Cd soil (13.3 mg kg-1), respectively, for exchanging incubation in laboratory. The results showed that earthworm-A gradually accumulated higher Cd when exposed in the high-Cd soil, whereas Cd concentration of earthworm-B decreased after being transferred to low-Cd soil (albeit BAFCd >20). The integrated biomarker response index was calculated with the biomarkers of antioxidant systems (e.g., superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH), glutathione peroxidase (GPx), glutathione-S transferase (GST), and malondialdehyde (MDA)) and energy index (e.g., protein and glycogen) in M. californica. GSH, GPx, and GST contributed the most to the integrated biomarker response (IBR) in earthworm-A when exposed in high-Cd soil for 14 d. Earthworm-B responded with higher GST and GPx activities and decreased protein content in low-Cd soil. For 28 d, the response of earthworm-A was not evident in either low- or high-Cd soil, and the inductive effect of metal stress on earthworm-B tended to be stable, except for the higher MDA content (p < 0.05) when exposed in low-Cd soil. The IBR index of earthworm-B (2.93 and 3.40) in low- and high-Cd soil, respectively, was higher than that of earthworm-A (0.89 and 1.0). Overall, earthworm-A exhibited a detoxification process to resist high-Cd toxicity from low-to high-Cd soil. Earthworm-B exhibited a physiological resilience once its habitat had changed to a normal or low-Cd soil environment, possibly owing to the cost of its resistance adaptation to the historical highly contaminated soil in fields.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Jiang X, Chang Y, Zhang T, Qiao Y, Klobučar G, Li M. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113896. [PMID: 31918148 DOI: 10.1016/j.envpol.2019.113896] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 05/23/2023]
Abstract
Microplastics are plastic fragments of particle sizes less than 5 mm, which are widely distributed in marine and terrestrial environments. In this study, earthworms Eisenia fetida were exposed to 100 and 1000 μg of 100 nm and 1300 nm fluorescent polystyrene microplastics (PS-MPs) per kg of artificial soil for 14 days. Uptake or accumulation of PS-MPs in earthworm intestines, histopathological changes, oxidative stress, and DNA damage were assessed to determine the toxicological effects of PS-MPs on E. fetida. The results showed that the average accumulated concentrations in the earthworm intestines were higher for 1300 nm PS-MPs (0.084 ± 0.005 and 0.094 ± 0.003 μg/mg for 100 and 1000 μg/kg, respectively) than for 100 nm PS-MPs (0.015 ± 0.001 and 0.033 ± 0.002 μg/mg for 100 and 1000 μg/kg, respectively). In addition, histopathological analysis indicated that the intestinal cells were damaged after exposure to PS-MPs. Furthermore, PS-MPs significantly changed glutathione (GSH) level and superoxide dismutase (SOD) activity. The GSH levels were 86.991 ± 7.723, 165.436 ± 4.256-167.767 ± 18.642, and 93.590 ± 4.279-173.980 ± 15.523 μmol/L in the control, 100 nm, and 1300 nm PS-MPs treatment groups. In addition, the SOD activities were 10.566 ± 0.621, 9.039 ± 0.787-9.408 ± 0.493, and 7.959 ± 0.422-9.195 ± 0.327 U/mg protein for the control, 100 nm, and 1300 nm PS-MPs treatment groups, respectively, indicating that oxidative stress was induced after PS-MPs exposure. Furthermore, the comet assay suggested that exposure to PS-MPs induced DNA damage in earthworms. Overall, 1300 nm PS-MPs showed more toxic effect than 100 nm PS-MPs on earthworms. These findings provide new insights regarding the toxicological effects of low concentrations of microplastics on earthworms, and on the ecological risks of microplastics to soil animals.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Ortega-Olvera JM, Mejía-García A, Islas-Flores H, Hernández-Navarro MD, Gómez-Oliván LM. Ecotoxicity of emerging halogenated flame retardants. EMERGING HALOGENATED FLAME RETARDANTS IN THE ENVIRONMENT 2020. [DOI: 10.1016/bs.coac.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Li B, Qi P, Qu Y, Wang B, Chen J, Chang Z. Effects of dechlorane plus on oxidative stress, inflammatory response, and cell apoptosis in Cyprinus carpio. Drug Chem Toxicol 2019; 45:378-386. [PMID: 31826665 DOI: 10.1080/01480545.2019.1701001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The levels of the chlorinated organic compound Dechlorane Plus (DP) are increasing in aquatic ecosystems. To investigate the adverse effects of DP on aquatic animals, common carp (Cyprinus carpio) were subjected to three different DP concentrations (30 μg L-1, 60 μg L-1, and 120 μg L-1) for 1 d, 15 d, and 30 d. Histology and the hepatic and cerebral expression levels of several key antioxidant, detoxification, and apoptotic factors were then examined. Histopathological inspections showed that the liver and brain were severely damaged in carp exposed to 60 μg L-1 and 120 μg L-1 DP. Relative to the controls, the superoxide dismutase and glutathione activity levels and the malondialdehyde content were also changed in livers and brains exposed to DP. Besides, significant alterations in the expression levels of the inflammatory cytokines IL-1β, IL-6, and IL-10 were observed in the livers of carp subjected to DP. Relative to the control, the brains of DP-exposed carp presented with significantly upregulated IL-1β and IL-6 in carp treated with 120 μg L-1 DP for 30 d. The transcription levels of hepatic cyp2b4, cyp1b1, and cyp3a138 were all increased compared with the untreated at all DP exposure concentrations. The aforementioned results suggest that DP exposure perturbs fish metabolism and causes liver injury by inhibiting antioxidant enzyme activity, increasing lipid peroxidation, promoting inflammation, and inducing cell apoptosis. This information and the analytical methodology used to acquire it may form the basis for future ecological risk assessments on DP and related xenobiotics in aquatic animals.
Collapse
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, PR China.,College of Fisheries, Henan Normal University, Xinxiang, PR China
| | - Pengju Qi
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Ying Qu
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Beibei Wang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| |
Collapse
|
24
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
25
|
Ning Y, Jin C, Zhou H, Wang E, Huang X, Zhou D. Screening indices for cadmium-contaminated soil using earthworm as bioindicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32358-32372. [PMID: 30229493 DOI: 10.1007/s11356-018-3207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Artificial soil simulation tests were conducted to study the response of oxidative stress in different parts of Eisenia fetida under cadmium Cd) stress. Factor analysis and analytic hierarchy process were used to establish a comprehensive mathematical model to screen key monitoring indices of the Cd-contaminated soil early warning system. This paper sets the short-term group and the long-term group. The former lasted 10 days, and the latter was 30 days. Gradient solution of 0, 50, 100, 125, 250, and 500 mg kg-1 Cd2+ was used in each test group. The earthworm was cut into two parts from its clitellum to determine oxidative stress indices. Results showed that during the short-term stress, TP (total protein) in the head tissues of the earthworm was the key monitoring index for 3-4 and 8-9 days of Cd stress. In addition, the TP in tail tissues was the key index for 2, 4, 6, and 8-10 days of stress. On the first and second days, the key monitoring indices in the tail tissues were both the CAT (catalase), while in the head, they were CAT and TP, respectively. On the 5th, the 7th, and the 9th days, the focus should be on monitoring POD (peroxidase) in the tail tissues, while in the head tissues, they were POD, CAT, and TP, respectively. In the long-term test after 10 days of Cd stress, the key monitoring index in head tissues was GPX (glutathione peroxidase), and in the tail, it was TP. At 20-30 days, the key monitoring indices were TP in the head and MDA (malondialdehyde) in the tail.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Congmin Jin
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Zhou
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Enze Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinning Huang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
26
|
Yang Y, Xiao Y, Chang Y, Cui Y, Klobučar G, Li M. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:78-86. [PMID: 29660616 DOI: 10.1016/j.ecoenv.2018.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate esters (OPEs) draw growing concern about characterizing the potential risk on environmental health due to its wide usage and distribution. Two typical types of organophosphate esters (OPEs): tris (2-chloroethyl) phosphate (TCEP) and tricresyl phosphate (TCP) were selected to evaluate toxicity of OPEs to the soil organism like earthworm (Eisenia fetida). Histopathological examination (H&E), oxidative stress, DNA damage and RT-qPCR was used to identify the effects and potential mechanism of their toxicity. Hameatoxylin and eosin (H&E) demonstrated that intestinal cells suffered serious damage, and the observed up-regulation of chitinase and cathepsin L in mRNA levels confirmed it. Both TCEP and TCP significantly increased the DNA damage when the concentrations exceeded 1 mg/kg (p < 0.01), and a dose-response relationship was observed. In addition, TCEP and TCP also changed the acetylcholinesterase (AChE) activity and expression of genes associated with neurotoxic effects in earthworms even under exposure to low OPEs concentration (0.1 mg/kg). Moreover, genes associated with nicotinic acetylcholine receptors (nAChR) and carrier protein further demonstrated that highest concentration of TCEP (10 mg/kg) may have an overloading impact on the cholinergic system of E. fetida. Integrated Biological Response index (IBRv2) showed that TCEP exerted stronger toxicity than TCP under the same concentrations. We deduced that the observed intestinal damage, oxidative stress and neurotoxic effect might be the primary mechanisms of TCEP and TCP toxicity. This study provides insight into the toxicological effects of OPEs on earthworm model, and may be useful for risk assessment of OPEs on soil ecosystems.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yao Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, PR China
| | - Göran Klobučar
- Faculty of Science, University of Zagreb, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
27
|
Gong N, Shao K, Han X, Zhang Y, Sun Y. Enrichment and physiological responses of dechlorane plus on juvenile marine macroalgae (Ulva pertusa). CHEMOSPHERE 2018; 205:594-600. [PMID: 29709809 DOI: 10.1016/j.chemosphere.2018.04.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Dechlorane Plus (DP), a chlorinated flame retardant, is increasingly reported in aquatic ecosystems worldwide. But little information is available regarding the toxicity of DP in marine organisms, especially in macroalgae. The objective of this study was to investigate effects of DP exposure on photosynthesis, oxidative stress and its enrichment in juvenile marine macroalgae (Ulva pertusa). Following 21- day uptake and 21- day depuration (10-8 mol/L), algae accumulated 1.18 times of DP compared to the initial concentration. Anti-DP was prone to accumulate in juvenile macroalgae. The enrichment of DP affected the physiological responses in algae. After 1, 7 and 14 days DP exposure (10-8, 10-7 and 10-6 mol/L), antioxidant enzymes (SOD and CAT) activities and MDA content changed in a dose and time depended manner. Chlorophyll fluorescence parameters, including Fv/Fm, ΦPSII and ETR decreased with the increasing DP concentration. It indicated that DP leads to a low rate of light energy utilization in algae which may ascribe to the oxidative damage induced by DP enrichment. Present study provides insight into the toxicological effects of DP on marine macroalgae, which is useful for risk assessment of DP in intertidal zone ecosystems.
Collapse
Affiliation(s)
- Ning Gong
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Kuishuang Shao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xu Han
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yukun Zhang
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116026, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
28
|
Li J, He X, Yang Y, Li M, Xu C, Yu R. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:366-374. [PMID: 29448021 DOI: 10.1016/j.scitotenv.2018.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings.
Collapse
Affiliation(s)
- Jianmei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Chenke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Liu T, Wang X, Chen D, Li Y, Wang F. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:18-25. [PMID: 29268110 DOI: 10.1016/j.ecoenv.2017.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Diamide insecticides have become the fourth most commonly used insecticide class in the world. Chlorantraniliprole (CAP) is a first-generation diamide insecticide with broad application potential. In this experiment, the eco-toxicity of CAP in soil at 0.1, 1.0, 5.0 and 10.0mg/kg on earthworms (Eisenia fetida) was evaluated during a 42 d exposure. More specifically, the environmental fate and transport of CAP between soil and earthworms was monitored during the exposure period. The present results indicated that the CAP contents of 0.1, 1.0, 5.0 and 10.0mg/kg treatments decreased to no more than 20% in the soil after 42 d of exposure. The accumulation of CAP in earthworms was 0.03, 0.58, 4.28 and 7.21mg/kg earthworm (FW) at 0.1, 1.0, 5.0 and 10.0mg/kg after 42 d of exposure. At 0.1mg/kg and 1.0mg/kg, CAP had no effect on earthworms during the exposure period. The weight of earthworms was significantly reduced at 5.0 and 10.0mg/kg at 28 and 42 days after CAP application. After the 14th day, CAP induced excess production of reactive oxygen species (ROS) at 5.0 and 10.0mg/kg, resulting in oxidative damage to biomacromolecules. We believe that CAP has a high risk potential for earthworms when used at 5.0 and 10.0mg/kg.
Collapse
Affiliation(s)
- Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Dan Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Yiqiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
30
|
Tang B, Luo XJ, Huang CC, Sun RX, Wang T, Zeng YH, Mai BX. Stereoselective bioaccumulation of syn- and anti-Dechlorane plus isomers in different tissues of common carp (Cyprinus carpio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1339-1346. [PMID: 29102191 DOI: 10.1016/j.scitotenv.2017.10.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Common carps (Cyprinus carpio) were exposed to syn- and anti-Dechlorane Plus (DP) isomers to investigate absorption, tissue distribution, and stereoselective bioaccumulation of DP isomers. The absorption efficiencies of anti-DP in the gastrointestinal system were higher than those of syn-DP. A linear accumulation was found for both isomers in all fish tissues except for serum; and the liver and gill exhibited the highest and lowest DP assimilation efficiency, respectively. The elimination of DP isomers in all tissues followed first-order kinetics, with the fastest depuration rate occurring in the liver and serum. The biomagnification factors (BMFs) of both isomers were less than one in all tissues, except for serum. Anti-DP was preferably accumulated in the liver, gill, and serum, whereas syn-DP was selectively accumulated in the carcass and gastrointestinal tract. As a whole, fish did not show selective accumulation of the syn- or anti-DP isomer in the uptake stage, whereas a selective accumulation of syn-DP in fish was observed during the depuration period, which could be due to a selective excretion of anti-DP. Metabolism cannot be ruled out as a possible reason considering the high fanti values and the high elimination rate of DPs in the liver.
Collapse
Affiliation(s)
- Bin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.
| | - Chen-Chen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Run-Xia Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
31
|
Ning Y, Liu L, Rong G, Cao X, Li J, Su Y, Zhou D. Study on the influential biochemical indices of Cd(II) on Eisenia fetida in oxidative stress by principal component analysis in the natural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4268-4278. [PMID: 29178017 DOI: 10.1007/s11356-017-0807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
With the aggravation of heavy metal pollution in soil, the individual heavy metal content monitoring cannot predict the true effects of harmful substances on the ecosystems. Thus, the effective biological evaluation system should be established to assess the pollution risk caused by heavy metal. Earthworms are widely distributed in the soil, and at the bottom of the food chain, the changes of biochemical indices play an important role in the early warning for heavy metal pollution. Principal component analysis (PCA) is a statistical method that derives several independent principal components from the original variable based on retaining the information as much as possible. This paper is aimed at finding out and analyzing the key monitoring factors related to Cd2+ on the earthworm Eisenia fetida in oxidative stress. The Cd2+ stress concentrations were set at 0, 1, 10, 20, 100, 200, 400, and 800 mg kg-1, and the post-clitellum segment of earthworm was chosen to determine TP, POD, SOD, GST, GPX, CAT, MDA, VE, and AChE. The results showed that the main bioindicators associated with oxidative stress reaction were GST, POD, and MDA at the exposure time of 10 days; at 20 days GPX, MDA, and AChE; at 30 days CAT, TP, and GPX; CAT, MDA, and SOD at 40th day. These results indicated that PCA can quickly, effectively, directly, and scientifically select biomarkers of oxidative stress induced by Cd and improve the accuracy and scientificity of earthworm as a biomarker in monitoring and early warning for heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liyan Liu
- Publicity and United Front Work Department, Northeast Agricultural University, Harbin, 150030, China
| | - Guohua Rong
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Cao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150030, China
| | - Jing Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ye Su
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
32
|
Gagné PL, Fortier M, Fraser M, Parent L, Vaillancourt C, Verreault J. Dechlorane Plus induces oxidative stress and decreases cyclooxygenase activity in the blue mussel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:26-32. [PMID: 28441609 DOI: 10.1016/j.aquatox.2017.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Dechlorane Plus (DP) is a chlorinated flame retardant used mainly in electrical wire and cable coating, computer connectors, and plastic roofing materials. Concentrations of DP (syn and anti isomers) are increasingly being reported in aquatic ecosystems worldwide. However, there is exceedingly little information on the exposure-related toxicity of DP in aquatic organisms, especially in bivalves. The objective of this study was to investigate the in vivo and in vitro effects of DP exposure on histopathology, lipid peroxidation (LPO) levels, cyclooxygenase (COX) activity, phagocytosis capacity and efficiency, and DNA strand breakage in the blue mussel (Mytilus edulis) following a 29days exposure (0.001, 0.01, 0.1 and 1.0μg DP/L). Blue mussels accumulated DP in muscle and digestive gland in a dose-dependent manner. LPO levels in gills were found to increase by 82% and 67% at the 0.01 and 1.0μg DP/L doses, respectively, while COX activity in gills decreased by 44% at the 1μg/L dose. No histopathological lesion was found in gonads following DP exposure. Moreover, no change in hemocyte DNA strand breakage, phagocytosis rate, and viability was observed following DP exposure. Present study showed that toxicity of DP may occur primarily via oxidative stress in the blue mussel and potentially other bivalves, and that gills represent the most responsive tissue to this exposure.
Collapse
Affiliation(s)
- Pierre-Luc Gagné
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succursale Centre-ville, Montreal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Marlène Fortier
- INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Marc Fraser
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada; INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Lise Parent
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada; Département Science et Technologie, Télé-université (TÉLUQ), 5800 rue Saint-Denis, bureau 1105, Montreal, QC, H2S 3L5, Canada
| | - Cathy Vaillancourt
- Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada; INRS-Institut Armand-Frappier, Université du Québec, 531 boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succursale Centre-ville, Montreal, QC, H3C 3P8, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada.
| |
Collapse
|
33
|
Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS One 2017. [PMID: 28125623 DOI: 10.1371/journal.pone.0170092.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2-4×104 cells/well (1-2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.
Collapse
|
34
|
Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS One 2017; 12:e0170092. [PMID: 28125623 PMCID: PMC5268766 DOI: 10.1371/journal.pone.0170092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022] Open
Abstract
As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2–4×104 cells/well (1–2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.
Collapse
|
35
|
Dongxing Z, Yucui N, Jiabin L, Jie D, Guohua R, Bilige S, Yijun L. Effects of oxidative stress reaction for the Eisenia fetida with exposure in Cd 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21883-21893. [PMID: 27528521 DOI: 10.1007/s11356-016-7422-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Earthworms are widely used in all kinds of pollutants as sensitive bio-indicator organisms because of their immediately oxidative stress response under the stress of heavy metal. However, there are a large number of indexes associated with the oxidative stress response. Finding out the key monitoring indexes in the stress process becomes a practical demand of the pollution monitoring and warning process. We studied two groups, the short-term test and the long-term test. The former one is for 10 days, taking out an earthworm every day. The latter test lasted 30 days, taking out an earthworm every 10 days. The Cd2+ concentration was set at 50, 100, 125, 250, and 500 mg kg-1. Post-clitellum segments of earthworms were chosen to determine superoxide enzyme (SOD), peroxidase (POD), glutathione peroxidase (GSH-Px), glutathione-S transferase (GST), catalase (CAT), vitamin E (VE), malondialdehyde (MDA), and acetylcholinesterase (AChE). The results showed that the main bio-indicators associating with oxidative stress reaction in short-term group were CAT, SOD, and POD. MDA could be used as a bio-indicator in the early and mid-term. VE was only the bio-indicator in the mid-term stress. While with the long-term test, the main bio-indicators associated with oxidative stress reaction were GSH-Px and MDA. The AChE activity was only suitable for oxidative stress response caused by heavy metal stress more than 30 days.
Collapse
Affiliation(s)
- Zhou Dongxing
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ning Yucui
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Jiabin
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Deng Jie
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Guohua
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Siqin Bilige
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liu Yijun
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
36
|
Zhou D, Ning Y, Wang B, Wang G, Su Y, Li L, Wang Y. Study on the influential factors of Cd(2+) on the earthworm Eisenia fetida in oxidative stress based on factor analysis approach. CHEMOSPHERE 2016; 157:181-189. [PMID: 27219294 DOI: 10.1016/j.chemosphere.2016.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 06/05/2023]
Abstract
When earthworms are exposed to pollutants, their antioxidant system will have responses immediately. Consequently earthworms are widely used to monitor various pollutants as a sensitive bio-indicator. However, there are a large number of indices associated with the oxidative stress response. Finding out the key monitoring indices in the stress process becomes a practical demand of the pollution monitoring and warning process. Factor analysis approach is a statistical method that uses a few factors to replace many original factors. This paper is aimed at analyzing and sorting factors related to Cd(2+) on the earthworm Eisenia fetida in oxidative stress. We studied two groups, the short-term test and the long-term test. The former test lasted for ten days, removing an earthworm every day for analysis; The latter test lasted for 30 days, taking out an earthworm every ten days. The Cd(2+) concentration was set at 0, 50, 100, 125, 250 and 500 mg kg(-1), post-clitellum segments of earthworms were chosen to determine SOD, POD, GPX, GST, CAT, VE, MDA and AChE. The results showed that in the short-term group, the main bioindicator associated with oxidative stress reaction was CAT at the exposure time of 1-3 days, at 4-5 days MDA, 6-7 days POD, and GST and GPX at 8th day, CAT at 9-10 days. While with the long-term test, the main bioindicator associated with oxidative stress reaction was GPX.
Collapse
Affiliation(s)
- Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Bing Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Guangdong Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Ye Su
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Ye Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
37
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|