1
|
Schopf MF, Pierezan MD, Rocha R, Pimentel TC, Esmerino EA, Marsico ET, De Dea Lindner J, Cruz AGD, Verruck S. Pesticide residues in milk and dairy products: An overview of processing degradation and trends in mitigating approaches. Crit Rev Food Sci Nutr 2023; 63:12610-12624. [PMID: 35876099 DOI: 10.1080/10408398.2022.2103642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Milk and dairy products present considerable socioeconomic importance but are also a regular pesticide residue contamination source, which is considered a worldwide public health concern and a major international trade issue. Thus, a literature review was conducted to assess pesticide residue levels in milk and dairy products, as well as the residue degradation capacity during its processing. Organochlorine, organophosphate, synthetic pyrethroid and/or triazine were found in fluid milk, powder products, yogurts, cheese, butter, and sour cream. Thermal processing reduced most residue levels, although some treatments increased total hexachlorocyclohexane and its isomers (α-, γ-, δ-, and β-). Emerging non-thermal treatments presented promising results, but some by-products had higher toxicity than their precursors. Biodegradation by lactic acid bacteria were effective during yogurt and cheese fermentation. However, β-hexachlorocyclohexane level seems to increase in yogurts containing Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis, while increase or maintenance of pesticide residue concentration was observed during coagulation and cheese maturation. Deep research is needed to understand the isomerization and degradation mechanisms after thermal, non-thermal, and fermentation processing. Emerging heat technology can be an excellent topic to be investigated for pesticide residues degradation in the future. These mitigation approaches can be a feasible future alternative to milk and dairy production.
Collapse
Affiliation(s)
- Miguel Fiorin Schopf
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Milena Dutra Pierezan
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ramon Rocha
- Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Erick Almeida Esmerino
- Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adriano Gomes da Cruz
- Food Department, Federal Institute of Education, Science and Technology from Rio de Janeiro (IFRJ), Niterói, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Keswani C, Dilnashin H, Birla H, Roy P, Tyagi RK, Singh D, Rajput VD, Minkina T, Singh SP. Global footprints of organochlorine pesticides: a pan-global survey. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:149-177. [PMID: 34027568 DOI: 10.1007/s10653-021-00946-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2021] [Indexed: 05/16/2023]
Abstract
Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants widely used all over the world. These chlorinated hydrocarbons are toxic and often cause detrimental health effects because of their long shelf life and bioaccumulation in the adipose tissues of primates. OCP exposure to humans occurs through skin, inhalation and contaminated foods including milk and dairy products, whereas developing fetus and neonates are exposed through placental transfer and lactation, respectively. In 1960s, OCPs were banned in most developed countries, but because they are cheap and easily available, they are still widely used in most third world countries. The overuse or misuse of OCPs has been rising continuously which pose threats to environmental and human health. This review reports the comparative occurrence of OCPs in human and bovine milk samples around the globe and portrays the negative impacts encountered through the long history of OCP use.
Collapse
Affiliation(s)
- Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, 247667, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dheer Singh
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Surya P Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Covaciu FD, Floare-Avram V, Magdas DA, David AP, Marincas O. Distribution and Fate of Persistent Organochlorine Pesticides on the Soil-Forage-Milk Chain in Three Transylvanian Farms. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1749650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Florina D. Covaciu
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Veronica Floare-Avram
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Dana A. Magdas
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Cluster Agro-Food-Ind Napoca, Cluj-Napoca, Romania
| | - Adriana P. David
- Department of Technical and Soil Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- SC AgroCosm Fan SA, Sannicoara, Cluj-Napoca, Romania
| | - Olivian Marincas
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Monnolo A, Clausi MT, Mercogliano R, Fusco G, Fiorentino ML, Buono F, Lama A, Ferrante MC. Levels of polychlorinated biphenyls and organochlorine pesticides in donkey milk: Correlation with the infection level by intestinal strongyles. CHEMOSPHERE 2020; 258:127287. [PMID: 32535446 DOI: 10.1016/j.chemosphere.2020.127287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
AIM The study aimed at evaluating the concentration levels of organochlorine pollutants in donkey milk and their modulation on the intestinal strongyle infection. Risk evaluation for consumer health was also investigated. METHODS We analyzed milk of grazing donkeys living in areas of Southern of Italy affected by organochlorine compounds environmental pollution and parasite infection. The presence of pollutants was assessed through summary statistics; regression analysis of intestinal strongyle on pollutant concentration was performed to investigate the relationship between the two variables. RESULTS PCB concentrations (mainly non-dioxin-like (ndl)-PCBs) were higher than OCP ones. Mean values of ndl-PCBs across areas ranged from 93.13 to 263.64 ng g-1. In all sample units we detected the six indicator PCBs with the prevalence of the PCB 153, followed by the PCB 28 and the PCB 101. Among the dioxin-like (dl)-PCBs, non-ortho PCB 169, 77 and 126 were assessed in some milk samples; in all areas we detected the mono-ortho PCB 118 and PCB 105. Positive correlation between infection level and six indicator PCBs as well as between the former and HCB, on WW and LW, were observed (at least statistically significant at 5 percent). In some cases, Dl-PCB concentrations emerged as dangerous given the EU maximum residue limit for PCDD/Fs and dl-PCBs. CONCLUSION Evidence supports the hypothesis of an immunosuppressive role of organochlorine pollutants; risk evaluation reveals the potential health impact of dl-PCB intake, particularly for major donkey milk consumers such as infants, children with cow milk and multiple food intolerance, and elders.
Collapse
Affiliation(s)
- A Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - M T Clausi
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - R Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - G Fusco
- Experimental Zooprophylactic Institute of Southern Italy, Portici, Naples, Italy
| | - M L Fiorentino
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - F Buono
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - A Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
5
|
Wanniatie V, Sudarwanto MB, Purnawarman T, Jayanegara A. Chemical compositions, contaminants, and residues of organic and conventional goat milk in Bogor District, Indonesia. Vet World 2019; 12:1218-1224. [PMID: 31641300 PMCID: PMC6755392 DOI: 10.14202/vetworld.2019.1218-1224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: This study aimed to compare chemical composition and contaminants (pesticide residues, antibiotic residues, and heavy metal residues) between organic and conventional goat milk in Bogor District, West Java Province, Indonesia. Materials and Methods: Milk sampling was carried out from March to August 2018 at six goat farms. The chemical quality of milk was checked using the Lactoscan Ultrasonic Milk Analyzer device. Fatty acids were analyzed using gas chromatography (GC). Pesticide residues in goat’s milk were analyzed using a GC-electron capture detector (GC-ECD). Antibiotic residues were analyzed using bioassay screening test method. The lead (Pb) and arsenic (As) residues were analyzed using the Atomic Absorption Spectrophotometer (AAS). Results: The content of fat, protein, and lactose showed that there was no difference in the composition of goat’s milk between organic and conventional farms. Caprylic acid (C8:0) and capric acid (C10:0) of organic goat milk are higher than conventional goat milk. Stearic acid (C18:0) and linoleic acid (C18:2) of conventional goat milk are higher than organic goat milk. The total fatty acid of organic goat milk is higher than conventional goat milk. Organochlorine pesticide residues were not detected in organic goat milk and conventional goat milk. Tetracycline antibiotic residues were found in one sample (5.56%) of organic goat milk, and macrolides residues were found in two samples (11.11%) of conventional goat milk. Pb residue in organic goat milk is 50 ppb while conventional goat milk is 80 ppb. Residue As in organic goat milk is 70 ppb while conventional goat milk is 110 ppb. Conclusion: There was no chemical composition (fat, protein, and lactose) difference between organic and conventional goat milk. Saturated fatty acid (SFA) in organic goat milk is higher than conventional goat milk. Pesticide residues are not found in both organic and conventional goat milk. Tetracycline antibiotics were found in organic goat milk and macrolide antibiotic groups found in conventional goat milk. Pb and As residues were found in both organic goat milk and conventional goat milk.
Collapse
Affiliation(s)
- Veronica Wanniatie
- Department of Animal Infectious Diseases and Veterinary Public Health, Graduate School of Veterinary Public Health, IPB University, Bogor, Indonesia.,Department of Animal Husbandry, Faculty of Agriculture, University of Lampung, Indonesia
| | - Mirnawati B Sudarwanto
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Trioso Purnawarman
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| |
Collapse
|
6
|
Ferrante MC, Fusco G, Monnolo A, Saggiomo F, Guccione J, Mercogliano R, Clausi MT. Food contamination by PCBs and waste disposal crisis: Evidence from goat milk in Campania (Italy). CHEMOSPHERE 2017; 186:396-404. [PMID: 28802131 DOI: 10.1016/j.chemosphere.2017.07.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/23/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
AIM The study aims at investigating whether, and if so, to what extent the strong presence of urban and industrial waste in a territory may cause PCB contamination in goat milk produced therein. METHODS We compared PCB concentrations in goat milk from three different locations in the Campania region (Italy). One of the three locations, together with its surrounding area, has long suffered from illegal waste disposal and burning mainly by the so-called Ecomafia. The other locations, not involved in these illegal activities, allowed us to create a control group of goats with characteristics very similar to those of main interest. RESULTS In milk from the waste contaminated area we identified high PCB concentrations (six indicator PCBs amounted to 170 ng g-1 on lipid weight, on average), whereas there was an almost total absence of such pollutants in milk from the control group. Concentrations of the six indicator PCBs were above the current European maximum residue limit fixed by the EU. At the same time, we found a lower average value of lipid content and a negative relationship between lipid content and PCB concentrations. CONCLUSION Evidence indicates the potential health risk for consumers living in areas involved in illegal dumping of waste.
Collapse
Affiliation(s)
- M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy.
| | - G Fusco
- Experimental Zooprophylactic Institute of Southern Italy, Portici (Naples), Italy
| | - A Monnolo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - F Saggiomo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - J Guccione
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - R Mercogliano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| | - M T Clausi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Italy
| |
Collapse
|