1
|
Liang J, Li C, Dang Y, Feng X, Ji X, Liu X, Zhao X, Zhang Q, Ren Z, Wang Y, Li Y, Qu G, Liu R. Occurrence of bisphenol A analogues in the aquatic environment and their behaviors and toxicity effects in plants. ENVIRONMENT INTERNATIONAL 2024; 193:109105. [PMID: 39489000 DOI: 10.1016/j.envint.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Continuous technological and economic development has led to the extensive use of bisphenol A analogues (BPs) in products, leading to their release to aquatic environments and posing threats to aquatic plants. However, few papers have systemically reviewed the interactions between BPs and aquatic plants. This review comprehensively summarizes the properties, occurrence, fate, and hazardous influences of BPs on aquatic plants. BPs have been widely detected in the global aquatic environment, with concentrations generally ranging from a lower range of ng/L or ng/g to an upper range of μg/L or μg/g in surface water, groundwater, seawater, and sediments. Aquatic plants effectively uptake and translocate BPs, and metabolize them into new compounds. Meanwhile, BPs exposures have diverse toxic effects on the growth, photosynthesis, antioxidant, phytohormones, and structural integrity of aquatic plants. High-throughput omics assays provide significant evidence showing how BPs disturb gene transcription, proteins, and metabolism in plants. This review highlights the need for increased attention on the effects of emerging BPA alternatives, joint treatment, long-term exposure with environmental relevant doses, and potential hazards posed by ingesting polluted plants.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Suzhou Research Institute, Shandong University, Suzhou, 215123, China
| | - Chuanjie Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xingchen Zhao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Gunagbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Wang G, Wang X, Liu Y, Liu S, Xing Z, Guo P, Li C, Wang H. Novel Insights into Uptake, Translocation, and Transformation Mechanisms of 2,2',4,4'-Tetra Brominated Diphenyl Ether (BDE-47) in Wheat ( Triticum aestivum L.): Implication by Compound-Specific Stable Isotope and Transcriptome Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15266-15276. [PMID: 37773091 DOI: 10.1021/acs.est.3c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The uptake, translocation, and transformation of 2,2',4,4'-tetra brominated diphenyl ether (BDE-47) in wheat (Triticum aestivum L.) were comprehensively investigated by hydroponic experiments using compound-specific stable isotope analysis (CSIA) and transcriptome analysis. The results indicated that BDE-47 was quickly adsorbed on epidermis of wheat roots and then absorbed in roots via water and anion channels as well as an active process dependent on energy. A small fraction of BDE-47 in roots was subjected to translocation acropetally, and an increase of δ13C values in shoots than roots implied that BDE-47 in roots had to cross at least one lipid bilayer to enter the vascular bundle via transporters. In addition, accompanied by the decreasing concentrations, δ13C values of BDE-47 showed the increasing trend with time in shoots, indicating occurrence of BDE-47 transformation. OH-PBDEs were detected as transformation products, and the hydroxyl group preferentially substituted at the ortho-positions of BDE-47. Based on transcriptome analysis, genes encoding polybrominated diphenyl ether (PBDE)-metabolizing enzymes, including cytochrome P450 enzymes, nitrate reductases, and glutathione S-transferases, were significantly upregulated after exposure to BDE-47 in shoots, further evidencing BDE-47 transformation. This study first reported the stable carbon isotope fractionation of PBDEs during translocation and transformation in plants, and application of CSIA and transcriptome analysis allowed systematically characterize the environmental behaviors of pollutants in plants.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, P. R. China
| |
Collapse
|
3
|
Li H, Lao Z, Liu Y, Feng Y, Song A, Hu J, Liao Z, Zhang L, Liu M, Liu Y, Ying GG. Uptake, accumulation, and translocation of organophosphate esters and brominated flame retardants in water hyacinth (Eichhornia crassipes): A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162435. [PMID: 36842584 DOI: 10.1016/j.scitotenv.2023.162435] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Mechanisms underlying the plant uptake, accumulation, and translocation of organophosphate esters (OPEs) and brominated flame retardants (BFRs) in field environments remain ambiguous. To better understand these processes, we selected a typically polluted river with steady flow and rampant water hyacinth (Eichhornia crassipes) and investigated 25 OPEs and 23 BFRs in 24 sets of matched water-plant samples. Both OPEs and BFRs showed high or ultra-high levels in field water hyacinths, statistically positive water-plant/root concentration correlations, and dominant distributions in the roots. Passive root uptake was the dominant route for OPEs and BFRs to enter the water hyacinth. Both OPEs and BFRs in water hyacinth exhibited acropetal translocation from the root and possible basipetal translocation from the leaf. The accumulation and translocation of OPEs in water hyacinth were significantly affected by their substituents and structures, including the chlorination degree, alkyl chain length, side chain, and methylation degree of aryl-substituted OPEs. The translocation of BFRs in water hyacinth also showed close association with their bromination degree, but their accumulation in roots showed anomaly, indicating possible transformations. Overall, the enrichment and behavior of OPEs and BFRs in water hyacinth seemed to be mainly controlled by physicochemical parameters. OPE/BFR concentrations in total suspended particulate (TSP), TSP-associated organic carbon content, TSP concentration, and plant biomass all showed significant effects on their root accumulation and translocations in water hyacinth. This study provides rare field evidences and novel insights into the basipetal translocation of OPEs and BFRs in plants.
Collapse
Affiliation(s)
- Huiru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhilang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Yishan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yufei Feng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Aimin Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zicong Liao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Longwei Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Mingyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yousheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Liu JIWW, Lin YJ, Ko CF, Ding JY, Shih YH. The thermal degradation and soil recovery of thermal treatment of field-weathered decabrominated diphenyl ether-contaminated soil. CHEMOSPHERE 2023; 318:137736. [PMID: 36603677 DOI: 10.1016/j.chemosphere.2023.137736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
A farm at Taoyuan in Taiwan was highly contaminated with decabrominated diphenyl ether (BDE-209), a widely used commercial brominated flame retardant and persistent in the environment, more than 10 years. Since crops are able to absorb and accumulate BDE-209 from soils in our previous research, posing a hazardous risk for humans, it is essential to develop a practical method of soil treatment. Thermal treatment was studied among different approaches. In our previous study (Ko et al., 2022), we found that heating to 450 °C for 30 min achieved a complete removal of BDE-209 in soil. However, the high temperature significantly decreased the original soil organic matter (SOM) from 2.47% to 0.27%, altering the soil texture, damaging microbial biomass, and thus affecting the revegetation after the thermal treatment. Sugarcane bagasse, a common agricultural residue, served as an amendment to restore soil fertility. Current results indicate that 2.5% bagasse can improve the SOM in soil by up to 2.73% and restore its bacterial composition, making the plant growth conditions similar to those of the untreated contaminated soil. In light of the high removal efficiency provided by the 450°C-thermal treatment and the high recovery efficiency of sugarcane bagasse, the strategy presented in this study serves to be a promising method for sustainable remediation.
Collapse
Affiliation(s)
- Jennifer Ia Wen Wen Liu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yu-Jie Lin
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chi-Fong Ko
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Jiann-Yuan Ding
- Center of General Education, Wenzao Ursuline University of Languages, Kaohsiung, 80793, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Zhang Z, Hu M, Xuan D, Wu L, Zhang Y, He G, Zhou Y. Physiologically based pharmacokinetic (PBPK) modeling of BDE-209 following oral exposure in Chinese population. Food Chem Toxicol 2022; 169:113416. [PMID: 36096292 DOI: 10.1016/j.fct.2022.113416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
The wide usage of decabromodiphenyl ether (BDE-209) as additive brominated flame retardant has caused its widespread occurrence in the environment and high exposure risk in humans. Estimating its internal exposure dose and reconstruction of external exposure dose using physiologically based pharmacokinetic (PBPK) modelling approach is a key step in the risk assessment of BDE-209. However, the PBPK model for BDE-209 is currently unavailable. This study has established two oral permeability-limited PBPK models of BDE-209 without enterohepatic recirculation (EHR) (model 1) and with EHR (model 2) for Chinese population. Using the in vitro experiments, the average binding of BDE-209 to human plasma protein (99.64% ± 2.97%) was obtained. Moreover, blood sample analysis and systematic literature review were performed to obtain internal and external exposure data of BDE-209 used for model calibration and validation. The predictions of both models were within 2-fold of the observed, and a longer half-life of serum BDE-209 was observed in model 2 than model 1. Based on the models, a human biomonitoring guidance value (HBM-GV) of 93.61 μg/g lw was derived for BDE-209, and there is no health risk found for Chinese population currently. This study provides new quantitative assessment tools for health risk assessment of BDE-209.
Collapse
Affiliation(s)
- Zhichun Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Man Hu
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Dongliang Xuan
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Linying Wu
- Jiading District Center for Disease Control and Prevention, Shanghai, 201899, China
| | - Yanfei Zhang
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China
| | - Gengsheng He
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the Peoples' republic of China, Fudan University, Shanghai, 200032, China; School of Public Health, Fudan University, Shanghai, 200032, China; Pudong New Area Center for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, Shanghai, 200136, China.
| |
Collapse
|
6
|
Wang Y, Yu Y, Zhang H, Huo Y, Liu X, Che Y, Wang J, Sun G, Zhang H. The phytotoxicity of exposure to two polybrominated diphenyl ethers (BDE47 and BDE209) on photosynthesis and the response of the hormone signaling and ROS scavenging system in tobacco leaves. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128012. [PMID: 34923383 DOI: 10.1016/j.jhazmat.2021.128012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
To reveal the response and adaptative mechanism of plants to the organic pollutants PBDEs, physiological and transcriptomic techniques were used to study the effects of exposure to BDE47 and BDE209 on tobacco (Nicotiana tabacum L.) plant growth, physiological function and response of key genes. Exposure to both BDE47 and BDE209 inhibited the growth of tobacco plants. The number of down-regulated DEGs following exposure to BDE47 was significantly higher than that following exposure to BDE209. Enrichment analysis using the KEGG showed that BDE47 and BDE209 primarily affected tobacco leaf photosynthesis-antenna proteins, photosynthesis, plant hormone signal transduction and α-linolenic acid metabolism. BDE47 primarily inhibits the synthesis of Chl a, and BDE209 has a more significant impact on Chl b. Most photosynthesis-related DEGs were concentrated in PSII and PSI; the number of down-regulated DEGs in PSI was significantly higher than that in PSII, and the range in which the PSI activity was reduced was also higher than that of PSII, i.e., PSII and PSI (particularly PSI) were sensitive to the effects of exposure to BDE47 and BDE209 on photosynthesis. The increase of the ratio of regulatory energy dissipation played an important protective role in alleviating the photoinhibition of PSII. Exposure to BDE47 and BDE209 can lead to the accumulation of ROS in tobacco leaves, but correspondingly, the activities of antioxidant enzymes SOD, POD, CAT, APX and GPX and the up-regulated expression of their coding genes play an important role in preventing excessive oxidative damage. Exposure to BDE47 and BDE209 promoted the up-regulation of gene expression related to Pro synthesis. In particular, the Pro synthetic process of the Orn pathway was promoted. Exposure to BDE47 and BDE209 induced the up-regulated expression of genes related to the synthesis of ABA and JA, promoted the synthesis of ABA and JA, and activated ABA and JA signal transduction pathways. In conclusion, both BDE47 and BDE209 inhibit the synthesis of chlorophyll and hinder the process of light energy capture and electron transfer in tobacco leaves. BDE47 was more toxic than BDE209. However, tobacco leaves can also adapt to BDE47 and BDE209 by regulating the antioxidant system, accumulating Pro and initiating the hormone signal transduction process. The results of this study provide a theoretical basis for the phytotoxicity mechanism of PBDEs.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yuze Huo
- College of resources and environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoqian Liu
- College of resources and environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanhui Che
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Bhatt P, Ganesan S, Santhose I, Durairaj T. Phytoremediation as an effective tool to handle emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phytoremediation is a process which effectively uses plants as a tool to remove, detoxify or immobilize contaminants. It has been an eco-friendly and cost-effective technique to clean contaminated environments. The contaminants from various sources have caused an irreversible damage to all the biotic factors in the biosphere. Bioremediation has become an indispensable strategy in reclaiming or rehabilitating the environment that was damaged by the contaminants. The process of bioremediation has been extensively used for the past few decades to neutralize toxic contaminants, but the results have not been satisfactory due to the lack of cost-effectiveness, production of byproducts that are toxic and requirement of large landscape. Phytoremediation helps in treating chemical pollutants on two broad categories namely, emerging organic pollutants (EOPs) and emerging inorganic pollutants (EIOPs) under in situ conditions. The EOPs are produced from pharmaceutical, chemical and synthetic polymer industries, which have potential to pollute water and soil environments. Similarly, EIOPs are generated during mining operations, transportations and industries involved in urban development. Among the EIOPs, it has been noticed that there is pollution due to heavy metals, radioactive waste production and electronic waste in urban centers. Moreover, in recent times phytoremediation has been recognized as a feasible method to treat biological contaminants. Since remediation of soil and water is very important to preserve natural habitats and ecosystems, it is necessary to devise new strategies in using plants as a tool for remediation. In this review, we focus on recent advancements in phytoremediation strategies that could be utilized to mitigate the adverse effects of emerging contaminants without affecting the environment.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Swamynathan Ganesan
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Infant Santhose
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Thirumurugan Durairaj
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| |
Collapse
|
8
|
Olisah C, Human LRD, Rubidge G, Adams JB. Organophosphate pesticides sequestered in tissues of a seagrass species - Zostera capensis from a polluted watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113657. [PMID: 34509819 DOI: 10.1016/j.jenvman.2021.113657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate pesticides (OPPs) are persistent in the environment, but little information is available on their bioaccumulation in seagrass. In this study, the seagrass - Zostera capensis was collected from Swartkops Estuary in South Africa to investigate the bioaccumulation of OPPs from contaminated sediments and the water column. This plant was chosen because it grows abundantly in the estuary's intertidal zone, making it a viable phytoremediator in the urban environment. Extraction was performed by the QuEChERS method followed by GC-MS analysis. The mean concentration of ∑OPPs ranged from 0.01 to 0.03 μg/L for surface water; 6.20-13.35 μg/kg dw for deep-rooted sediments; 18.79-37.75 μg/kg dw for leaf tissues and 12.14-39.80 μg/kg dw for root tissues of Z. capensis. The biota-sediment accumulation factors (BSAFs) were greater than one, indicating the potential for Z. capensis to bioaccumulate and intercept the targeted pesticides. A weak insignificant correlation observed between log BSAFs and log Kow indicates that the bioaccumulation of OPPs in tissues of Z. capensis were not dependent on the Kow. Eight of the selected pesticides had root-leaf translocation factors (TFr-l) greater than 1, indicating that Z. capensis can transport these chemicals from roots to leaves. The results from this study implies that this plant species can clean up OPP contamination in the environment.
Collapse
Affiliation(s)
- Chijioke Olisah
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, Port Elizabeth, South Africa; Department of Botany, Nelson Mandela University, Port Elizabeth, South Africa; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa; Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Lucienne R D Human
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa; South African Environmental Observation Network (SAEON) Elwandle Coastal Node Nelson Mandela University, Port Elizabeth, South Africa
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, Port Elizabeth, South Africa; Department of Botany, Nelson Mandela University, Port Elizabeth, South Africa; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
9
|
Girones L, Oliva AL, Negrin VL, Marcovecchio JE, Arias AH. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling. MARINE POLLUTION BULLETIN 2021; 172:112864. [PMID: 34482253 DOI: 10.1016/j.marpolbul.2021.112864] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Coastal wetlands, such as mangroves, seagrass beds, and salt marshes, are highly threatened by increasing anthropic pressures, including chemical pollution. Persistent organic pollutants (POPs) have attracted attention in these particularly vulnerable ecosystems, due to their bioaccumulative, pervasive, and ecotoxic behavior. This article reviews and summarizes available information regarding current levels, biogeochemical cycling, and effects of POPs on coastal wetlands. Sediment POP levels were compared with international quality guidelines, revealing many areas where compounds could cause damage to biota. Despite this, toxicological studies on some coastal wetland plants and microorganisms showed a high tolerance to those levels. These taxonomic groups are likely to play a key role in the cycling of the POPs, with an active role in their accumulation, immobilization, and degradation. Toxicity and biogeochemical processes varied markedly along three main axes; namely species, environmental conditions, and type of pollutant. While more focused research on newly and unintentionally produced POPs is needed, mainly in salt marshes and seagrass beds, with the information available so far, the environmental behavior, spatial distribution, and toxicity level of the studied POPs showed similar patterns across the three studied ecosystems.
Collapse
Affiliation(s)
- Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina.
| | - Ana L Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Universidad Tecnológica Nacional (UTN)-FRBB, Bahía Blanca, Argentina; Universidad FASTA, Mar del Plata, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
10
|
Zhang Q, Yao Y, Wang Y, Zhang Q, Cheng Z, Li Y, Yang X, Wang L, Sun H. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117742. [PMID: 34329057 DOI: 10.1016/j.envpol.2021.117742] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Plants can take up and transform brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) from soil, water and the atmosphere, which is of considerable significance to the geochemical cycle of BFRs and OPFRs and their human exposure. However, the current understanding of the plant uptake, translocation, accumulation, and metabolism of BFRs and OPFRs in the environment remains very limited. In this review, recent studies on the accumulation and transformation of BFRs and OPFRs in plants are summarized, the main factors affecting plant accumulation from the aspects of root uptake, foliar uptake, and plant translocation are presented, and the metabolites and metabolic pathways of BFRs and OPFRs in plants are analyzed. It was found that BFRs and OPFRs can be taken up by plants through partitioning to root lipids, as well as through gaseous and particle-bound deposition to the leaves. Their microscopic distribution in roots and leaves is important for understanding their accumulation behaviors. BFRs and OPFRs can be translocated in the xylem and phloem, but the specific transport pathways and mechanisms need to be further studied. BFRs and OPFRs can undergo phase I and phase II metabolism in plants. The identification, quantification and environmental fate of their metabolites will affect the assessment of their ecological and human exposure risks. Based on the issues mentioned above, some key directions worth studying in the future are proposed.
Collapse
Affiliation(s)
- Qing Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaomeng Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
11
|
Liu Q, Wang X, Zhou J, Yu X, Liu M, Li Y, Sun H, Zhu L. Phosphorus Deficiency Promoted Hydrolysis of Organophosphate Esters in Plants: Mechanisms and Transformation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9895-9904. [PMID: 34247484 DOI: 10.1021/acs.est.1c02396] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The biotransformation of organophosphate esters (OPEs) in white lupin (Lupinus albus) and wheat (Triticum aestivum L.) was investigated in hydroponic experiments with different phosphorus (P)-containing conditions. The hydrolysis rates of OPEs followed the order of triphenyl phosphate (TPHP) > tri-n-butyl phosphate (TnBP) > tris(1,3-dichloro-2-propyl) phosphate (TDCPP). Hydrolysis of OPEs was accelerated at P-deficient conditions, and faster hydrolysis took place in white lupin than in wheat. Coincidingly, the production of acid phosphatase (ACP) in both plants was promoted, and much higher intracellular and extracellular ACPs were observed in white lupin under P-deficient conditions. In vitro experiments revealed that ACP was a key enzyme to hydrolyze OPEs. The hydrolysis rates of OPEs were significantly correlated with the Hirshfeld charges, calculated by density functional theory, of the oxygen atom in the single P-O bond. Using ultra-high-performance liquid chromatography coupled with Orbitrap Fusion mass spectrometer, 30 metabolites were successfully identified. Some of these metabolites, such as sulfate-conjugated products, hydration of cysteine-conjugated products of TPHP, and reductively dechlorinated metabolites of TDCPP, were observed for the first time in plants. It is noteworthy that OPEs may transform into many hydroxylated metabolites, and special attention should be paid to their potential environmental effects.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoyong Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
12
|
Wang C, Gao H, Chen J, Wang P, Zhang J, Hu Y, Pan Y. Long-term effects of decabromodiphenyl ether on denitrification in eutrophic lake sediments: Different sensitivity of six-type denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145147. [PMID: 33609823 DOI: 10.1016/j.scitotenv.2021.145147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 05/28/2023]
Abstract
The widespread use of polybrominated diphenyl ethers inevitably results in their increased release into natural waters and subsequent deposition in sediments. However, their long-term effects on the bacteria participating in each step of denitrification in eutrophic lake sediments are still unknown. Here, we conducted a one-year microcosm experiment to determine the long-term effects of decabromodiphenyl ether (BDE-209), at low (2 mg kg-1 dry weight) and high (20 mg kg-1 dry weight) contamination levels, on six-type denitrifying bacteria and their activities in sediments collected from Taihu Lake, a typical eutrophic lake in China. At the end of the experiment, sediment denitrifying reductase activities were inhibited by BDE-209 at both levels, with the greatest inhibition seen for nitric oxide reductase activity. The higher nitrate concentration in the contaminated sediments was attributed to the inhibition of nitrate reductase activities. The abundances of six-type denitrifying genes (narG, napA, nirK, nirS, norB, and nosZ) significantly decreased under high BDE-209 treatment, and narG and napA genes were more sensitive to the toxicity of BDE-209. The results from pyrosequencing showed that BDE-209, at either treatment concentration, decreased the six-type denitrifying bacterial diversities and altered their community composition. This shift of six-type denitrifying bacterial communities might also be driven by the debrominated products concentrations of BDE-209 and variations in sediment inorganic nitrogen concentrations. In particular, some genera from phylum Proteobacteria such as Pseudomonas, Cupriavidus, and Azoarcus were decreased significantly because of BDE-209 and its debrominated products.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
13
|
Wang F, Fan Y, Tang H, Dai Y, Liang W. Physiological Responses and Phytotoxicities of Lythrum salicaria to Decabromodiphenyl Ether (BDE-209). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:575-582. [PMID: 33528602 DOI: 10.1007/s00128-020-03097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Decabromodiphenyl ether (BDE-209), a member of a major group of brominated flame retardants, is detected in aquatic environments at considerable levels and induces physiological and toxic effects on aquatic plants. In this study, the physiological responses induced by and the toxic effects of BDE-209 at different concentrations (0, 0.2, 0.5 and 1.0 mg L-1) in Lythrum salicaria were examined. OJIP transient curves indicated that BDE-209 treatment negatively affected photosystem II (PSII) grouping. Additionally, the results showed that BDE-209 inhibited seedling development and elevated reactive oxygen species (ROS), phosphorylated histone H2AX (γ-H2AX), malondialdehyde (MDA) levels and antioxidative enzyme activities in the roots and shoots of L. salicaria. The results revealed that BDE-209 exposure contributed to ROS accumulation, which was considered as the probable toxicity mechanism. The current results provided an insight into the development of L. salicaria with high BDE-209 tolerance.
Collapse
Affiliation(s)
- Feihua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Yaocheng Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10039, People's Republic of China
| | - Haibin Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10039, People's Republic of China
| | - Yanran Dai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Wei Liang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
14
|
Regulatory effects of flavonoids luteolin on BDE-209-induced intestinal epithelial barrier damage in Caco-2 cell monolayer model. Food Chem Toxicol 2021; 150:112098. [DOI: 10.1016/j.fct.2021.112098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
|
15
|
Luo Y, Shi W, You M, Zhang R, Li S, Xu N, Sun W. Polybrominated diphenyl ethers (PBDEs) in the Danjiangkou Reservoir, China: identification of priority PBDE congeners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12587-12596. [PMID: 33083955 DOI: 10.1007/s11356-020-11254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Although the production of polybrominated diphenyl ethers (PBDEs) has been phased out over the past decade worldwide, they are still potentially hazardous to the environment due to their persistence and toxicity. This study investigated the levels of 55 PBDEs in water and sediments from the Danjiangkou Reservoir, China. The levels of PBDEs were in the range of not detected (ND)-286.67 ng/L in water and ND-236.04 ng/g in sediments. BDE209 was the predominant PBDE congener and constituted 15-50% and 44-68% of the total PBDEs in water and sediments, respectively. Commercial pentaBDE products (70-5DE, DE-71) were the dominant source of tetraBDE, pentaBDE, and hexaBDE, while commercial octaBDE (79-8DE) and decaBDE (102E and 82-0DE) products were the main sources of nonaBDE and decaBDE in water. PBDEs in sediments mainly stemmed from commercial decaBDE products and combustion sources. BDE-209 posed high ecological risks to aquatic organisms and dominated the total ecological risks of PBDEs. No cancer risks and non-cancer risks were observed for PBDEs. A ranking method based on four criteria, i.e., detection frequency, concentration, ecological risk, and health risks, was proposed, and 17 PBDEs were identified as high priority PBDEs for future monitoring and management in the Danjiangkou Reservoir.
Collapse
Affiliation(s)
- Yaomin Luo
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wanzi Shi
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingtao You
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Yao B, Luo Z, Zhi D, Hou D, Luo L, Du S, Zhou Y. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123674. [PMID: 33264876 DOI: 10.1016/j.jhazmat.2020.123674] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
The widespread of polybrominated diphenyl ethers (PBDEs) in the environment has caused rising concerns, and it is an urgent endeavor to find a proper way for PBDEs remediation. Various techniques such as adsorption, hydrothermal and thermal treatment, photolysis, photocatalytic degradation, reductive debromination, advanced oxidation processes (AOPs) and biological degradation have been developed for PBDEs decontamination. A comprehensive review of different PBDEs remediation techniques is urgently needed. This work focused on the environmental source and occurrence of PBDEs, their removal and degradation methods from water and soil, and prospects for PBDEs remediation techniques. According to the up-to-date literature obtained from Web of Science, it could be concluded that (i) photocatalysis and photocatalytic degradation is the most widely reported method for PBDEs remediation, (ii) BDE-47 and BDE-209 are the most investigated PBDE congeners, (iii) considering the recalcitrance nature of PBDEs and more toxic intermediates could be generated because of incomplete degradation, the combination of different techniques is the most potential solution for PBDEs removal, (iv) further researches about the development of novel and effective PBDEs remediation techniques are still needed. This review provides the latest knowledge on PBDEs remediation techniques, as well as future research needs according to the up-to-date literature.
Collapse
Affiliation(s)
- Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zirui Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dongmei Hou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Shizhi Du
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
17
|
Zheng Z, Arp HPH, Peters G, Andersson PL. Combining In Silico Tools with Multicriteria Analysis for Alternatives Assessment of Hazardous Chemicals: Accounting for the Transformation Products of decaBDE and Its Alternatives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1088-1098. [PMID: 33381962 PMCID: PMC7871322 DOI: 10.1021/acs.est.0c02593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Transformation products ought to be an important consideration in chemical alternatives assessment. In this study, a recently established hazard ranking tool for alternatives assessment based on in silico data and multicriteria decision analysis (MCDA) methods was further developed to include chemical transformation products. Decabromodiphenyl ether (decaBDE) and five proposed alternatives were selected as case chemicals; biotic and abiotic transformation reactions were considered using five in silico tools. A workflow was developed to select transformation products with the highest occurrence potential. The most probable transformation products of the alternative chemicals were often similarly persistent but more mobile in aquatic environments, which implies an increasing exposure potential. When persistence (P), bioaccumulation (B), mobility in the aquatic environment (M), and toxicity (T) are considered (via PBT, PMT, or PBMT composite scoring), all six flame retardants have at least one transformation product that can be considered more hazardous, across diverse MCDA. Even when considering transformation products, the considered alternatives remain less hazardous than decaBDE, though the range of hazard of the five alternatives was reduced. The least hazardous of the considered alternatives were melamine and bis(2-ethylhexyl)-tetrabromophthalate. This developed tool could be integrated within holistic alternatives assessments considering use and life cycle impacts or additionally prioritizing transformation products within (bio)monitoring screening studies.
Collapse
Affiliation(s)
- Ziye Zheng
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Peter H. Arp
- Department
of Environmental Engineering, Norwegian
Geotechnical Institute, Ullevaal
Stadion NO-0806, Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Gregory Peters
- Division
of Environmental Systems Analysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| | | |
Collapse
|
18
|
Wang G, Liu Y, Jiang N, Liu Y, Zhao X, Tao W, Lou Y, Li N, Wang H. Field study on bioaccumulation and translocation of polybrominated diphenyl ethers in the sediment-plant system of a national nature reserve, North China. CHEMOSPHERE 2020; 261:127740. [PMID: 32731024 DOI: 10.1016/j.chemosphere.2020.127740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are the ubiquitous contaminants in the coastal wetlands, with high persistence and toxicity. Environmental behaviors of PBDEs in sediment-plant system is a hot research area, where much uncertainties still occurred in field environment. In this study, the sediments and Suaeda heteroptera were synchronously collected to investigate the bioaccumulation and translocation of PBDEs in Liaohe coastal wetland. Mean concentrations of PBDEs in sediments, roots, stems and leaves were 8.37, 6.64, 2.42 and 1.40 ng/g d.w., respectively. Tissue-specific accumulation of PBDEs were detected in Suaeda heteroptera, with predominant accumulation in roots. Congener patterns of PBDEs were similar between sediments and roots, demonstrating root uptake as the key pathway of PBDE bioaccumulation. The proportions of lower brominated congeners increased from roots to leaves, implying the congener-specific translocation. Meanwhile, the lower brominated congeners exhibited higher sediment-tissue bioaccumulation (AFs) and translocation factors (TFs) compared to higher brominated congeners in Suaeda heteroptera, further verifying their preferential translocation. AFs and TFs of PBDEs were both not correlated with their log Kow, which was inconsistent with those of laboratory studies, reflecting the complicated behaviors of PBDEs in field environment. This is the first comprehensive report on bioaccumulation and translocation of PBDEs within Suaeda heteroptera in Liaohe coastal wetland.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China.
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Na Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinda Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Wei Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yadi Lou
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Na Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
19
|
Zhu H, Wang F, Li B, Yao Y, Wang L, Sun H. Accumulation and translocation of polybrominated diphenyl ethers into plant under multiple exposure scenarios. ENVIRONMENT INTERNATIONAL 2020; 143:105947. [PMID: 32659526 DOI: 10.1016/j.envint.2020.105947] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 05/20/2023]
Abstract
Plant foliar uptake is an essential part of the overall biogeochemical cycling of semivolatile organic compounds. Chambers were therefore designed to expose wheat to polybrominated diphenyl ethers (PBDEs) via various combinations of exposure routes (i.e., soil, air and particle). Under the simulated scenarios, most of PBDEs in wheat leaves originated from foliar uptake (including gaseous and particle-bound depositions) rather than translocation from root uptake. Our results further revealed that higher brominated PBDEs (h-PBDEs; i.e. hepta- through deca-BDEs) were inclined to enter wheat leaves via particle-bound deposition while gaseous deposition could not be ignored for less-brominated PBDEs (l-PBDEs; i.e., tri- through hexa-BDEs). Sequential extraction of wheat leaf displayed that the transfer velocities of h-PBDEs were lagged behind l-PBDEs during their deposition to leaf cuticle and subsequent erosion to mesophyll, where a large fraction of the target chemicals were ultimately stored (29-93% of total PBDEs burden). Applying McLachlan's framework to our data suggested that the uptake of PBDEs was controlled primarily by kinetically limited gaseous deposition for l-PBDEs and by particle-bound deposition for h-PBDEs. The combined use of exposure chamber measurement and framework provides a robust tool for interpreting the behaviors of PBDEs between the atmosphere and plant foliage.
Collapse
Affiliation(s)
- Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bing Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Hu Y, Sun Y, Pei N, Zhang Z, Li H, Wang W, Xie J, Xu X, Luo X, Mai B. Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114087. [PMID: 32041014 DOI: 10.1016/j.envpol.2020.114087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Halogenated flame retardants (HFRs) are ubiquitous in the environment, but little information is available about the bioaccumulation of HFRs in mangrove plants. In this study, three mangrove plant species were collected from Futian National Nature Reserve of Shenzhen City, South China to investigate the bioaccumulation of polybrominated diphenyl ethers (PBDEs) and several alternative halogenated flame retardants (AHFRs), including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), tetrabromop-xylene (pTBX), pentabromoethylbenzene (PBEB) and dechlorane plus (DP). The mean concentrations of PBDEs, DBDPE, BTBPE, pTBX, PBT, PBEB, HBB and DP in mangrove plant species were 2010, 1870, 36.2, 18.7, 40.1, 17.8, 9.68 and 120 pg g-1 dry weight, respectively. PBDEs were the dominant HFRs in mangrove plant tissues, followed by DBDPE. The relative abundance of BDE 209 in three mangrove plant tissues were much lower than those in sediments. Significant negative relationships between log root bioaccumulation factors and log Kow, and between log TFr-s (from root to stem) and log Kow were observed, indicating that HFRs with low hydrophobicity were easily absorbed by mangrove roots and stems. A positive correlation between log TFs-l (from stem to leaf) and log Kow were found, suggesting that air-leaf exchange may occur in mangrove plants. This study highlights the uptake of HFRs by mangrove plants, which can be used as remediation for HFRs contamination in the environment.
Collapse
Affiliation(s)
- Yongxia Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Zaiwang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Huawei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinli Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
21
|
Li R, Ding H, Guo M, Shen X, Zan Q. Do pyrene and Kandelia obovata improve removal of BDE-209 in mangrove soils? CHEMOSPHERE 2020; 240:124873. [PMID: 31574439 DOI: 10.1016/j.chemosphere.2019.124873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Combined pollution caused by polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in mangrove wetlands is serious, with their remediation to be been paid more and more attention. However, little is known about the combined impact of PAHs and mangrove species on removal of PBDEs in contaminated soils. In this study, BDE-209 and pyrene were selected and a 9 months experiment was conducted to explore how BDE-209 removal in contaminated soil varied with pyrene addition and Kandelia obovata planting, and to clarify corresponding microbial responses. Results showed that BDE-209 removals in soil induced by pyrene addition or K. obovata planting were significant and stable after 6 months, with the lowest levels of BDE-209 in combined pyrene addition with K. obovata planting. Unexpected, root uptake of BDE-209 in K. obovata was limited for BDE-209 removal in soil, which was verified by lower total amount of BDE-209 bioaccumulated in K. obovata's root. In soil without K. obovata planting, BDE-209 removal caused by pyrene addition coexisted with changed bacterial abundance at phylum Planctomycetes and Chloroflexi, class Planctomycetacia, and genus Blastopirellula. K. obovata-induced removal of BDE-209 in soil may be related to bacterial enrichment in phylum Proteobacteria, class Gammaproteobacteria and genus Ilumatobacter, Gaiella. Thus, in BDE-209 contaminated soil, microbial community responses induced by pyrene addition and K. obovata planting were different at phylum, class and genus levels. This is the first study demonstrating that pyrene addition and K. obovata planting could improve BDE-209 removal, and differently affected the corresponding responses of microbial communities.
Collapse
Affiliation(s)
- Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| | - Huan Ding
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China
| | - Meixian Guo
- Nanshan Second Experimental School, Shenzhen, 518053, China
| | - Xiaoxue Shen
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China
| | - Qijie Zan
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Guangdong Neilingding Futian National Nature Reserve, Shenzhen, 518000, China
| |
Collapse
|
22
|
Farzana S, Zhou H, Cheung SG, Tam NFY. Could mangrove plants tolerate and remove BDE-209 in contaminated sediments upon long-term exposure? JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120731. [PMID: 31202074 DOI: 10.1016/j.jhazmat.2019.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/17/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) such as BDE-209, the commonest congener, are known to be toxic. A 24-months study using mangrove mesocosms with mixed mangrove species, namely Avicennia marina (Am), Aegiceras corniculatum (Ac) and Kandelia obovata (Ko), or without any plant was conducted to examine toxicity, removal, translocation and uptake of BDE-209. At month 24, BDE-209 stimulated the production of root superoxide radical (O2-*), and leaf and root malondialdehyde (MDA) of Ko, enhanced leaf O2-* of Ac, but did not affect the production of O2-* and MDA in Am. These findings indicated that the tolerance to BDE-209 was species-specific, with Am being the most tolerant and Ko the most sensitive species. In leaf and root, BDE-209 stimulated peroxidase (POD) activity in both Ac and Ko, and superoxide dismutase (SOD) in Am. After 24-months, more than 60% and 40% of BDE-209 in contaminated sediments were removed in planted and unplanted groups, respectively, with more PBDEs in upper than bottom sediment layers. This study demonstrates that planting tolerant species such as Avicennia marina with high uptake could remedy PBDEs in contaminated sediments.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Haichao Zhou
- Marine Research Centre, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Zhou C, Pagano J, McGoldrick DJ, Chen D, Crimmins BS, Hopke PK, Milligan MS, Murphy EW, Holsen TM. Legacy Polybrominated Diphenyl Ethers (PBDEs) Trends in Top Predator Fish of the Laurentian Great Lakes (GL) from 1979 to 2016: Will Concentrations Continue to Decrease? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6650-6659. [PMID: 31141349 DOI: 10.1021/acs.est.9b00933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) were widely used as fire retardants and have been detected throughout the Great Lakes (GL) ecosystem. The concentration trends (after fish age normalization) of PBDEs in top predator fish (lake trout and walleye) of the GLs were determined from 1979 to 2016, which includes most of the period when PBDEs were manufactured and used in this region. The fish samples were collected by two national (U.S. and Canada) long-term monitoring and surveillance programs. Trends in total concentrations (age-normalized) of the five major PBDE congeners (BDE-47, 99, 100, 153, and 154) found in fish across all five lakes have varied over time. Significant increases were observed from 1990 to 2000 (16.3% per year). Rapidly decreasing concentrations (-19.5% per year) were found from 2000 to 2007. Since 2007, the decreasing trend has become smaller (less than -5.5% per year) and relatively unchanged from 2011 to 2015. BDE-47, the congener with the highest concentrations in lake trout, has decreased continuously (ranging from -6.7% to -16.2% per year) in all lakes except Lake Erie. This decrease can be associated with the voluntary and regulatory phase out of production and/or usage of PBDEs since 2000. However, it has been offset by recent (since 2007) increasing trends of the other four higher brominated BDE congeners, especially BDE-100 and 154. Production and usage of commercial penta- and octa- BDE mixtures containing primarily the five major PBDE congeners was discontinued in 2004 in the U.S.A. and 2008 in Canada. These results indicate increasing fish uptake and bioaccumulation of higher brominated BDE congeners may be related to the transformation of BDE-209 to lower brominated BDE compounds in the GL environment or food web. Considering the abundance of BDE-209 in existing products and sediment in GL region, the duration of the unchanging total PBDE concentration trend in GL fish could be longer than expected.
Collapse
Affiliation(s)
- Chuanlong Zhou
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13676 , United States
| | - James Pagano
- Environmental Research Center, Department of Chemistry , State University of New York at Oswego , Oswego , New York 13126 , United States
| | - Daryl J McGoldrick
- Environment & Climate Change Canada , Water Science and Technology Directorate , Burlington , Ontario L7S 1A1 , Canada
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 510632 , P. R. China
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13676 , United States
- AEACS, LLC. , New Kensington , Pennsylvania 15068 , United States
| | - Philip K Hopke
- Center for Air Resources Engineering and Science , Clarkson University , Potsdam , New York 13699 , United States
| | - Michael S Milligan
- Department of Chemistry and Biochemistry , State University of New York at Fredonia , Houghton Hall , Fredonia , New York 14063 , United States
| | - Elizabeth W Murphy
- Great Lakes National Program Office , United States Environmental Protection Agency , 77 W. Jackson Boulevard , Chicago , Illinois 60604 , United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering , Clarkson University , Potsdam , New York 13676 , United States
| |
Collapse
|
24
|
Sun Y, Sun P, Wang C, Liao J, Ni J, Zhang T, Wang R, Ruan H. Growth, physiological function, and antioxidant defense system responses of Lemna minor L. to decabromodiphenyl ether (BDE-209) induced phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:113-120. [PMID: 30884414 DOI: 10.1016/j.plaphy.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), represent one of the new types of persistent organic pollutants (POPs) that are currently found in ambient aquatic ecosystems. Lemna minor L. is a floating freshwater plant, which is widely employed for phytotoxicity studies of xenobiotic substances. For this study, we investigated the growth, physiological functions, and antioxidant capacities of L. minor, which were exposed to 0-20 mg L-1 decabromodiphenyl ether (BDE-209) for 14 days. A logistic model was suitable for describing the growth of L. minor when the BDE-209 concentration was in the range of from 0 to 15 mg L-1. When exposed to 5 and 10 mg L-1 BDE-209, the growth of L. minor was significantly increased, where the intrinsic rate (r) and the maximum capacity of the environment (K) of L. minor were significantly higher than those of the control. In this case, the chlorophyll content and soluble proteins were also markedly increased. Moreover, the photosynthetic function (Fv/Fm, PI) was enhanced. However, for 15 mg L-1 BDE-29 treated group, the growth of L. minor was significantly inhibited, with decreases in chlorophyll and the soluble protein content, until the L. minor yellowed and expired under a concentration of 20 mg L-1. Photosynthetic functions were also negatively correlated with increasing increments of BDE-209 (15 and 20 mg L-1). The malondialdehyde (MDA), superoxide anion radical (O2̄·) content, and permeability of the plasma membranes increased with higher BDE-209 concentrations (0-20 mg L-1). The superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities of L. minor increased when the BDE-209 concentration ranged from 0 to 10 mg L-1; however, the activities of SOD and POD were decreased. Only the CAT activity remained higher in contrast to the control group under 15-20 mg L-1 BDE-209. These results demonstrated that 15 mg L-1 BDE-209 imparted high toxicity to L. minor, which was a consequence of the overproduction of reactive oxygen species (ROS), which conveyed oxidative damage to plant cells. This study provided a theoretical understanding of BDE-209 induced toxicity as relates to the physiology and biochemistry of higher hydrophytes.
Collapse
Affiliation(s)
- Yuan Sun
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Peng Sun
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Cuiting Wang
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jiahui Liao
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Juanping Ni
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Tianan Zhang
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Runsong Wang
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Honghua Ruan
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
25
|
Li X, Chen AY, Wu Y, Wu L, Xiang L, Zhao HM, Cai QY, Li YW, Mo CH, Wong MH, Li H. Applying β-cyclodextrin to amaranth inoculated with white-rot fungus for more efficient remediation of soil co-contaminated with Cd and BDE-209. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:417-426. [PMID: 29627565 DOI: 10.1016/j.scitotenv.2018.03.310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/18/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
A pot experiment was conducted to investigate the effect of a series of β-cyclodextrin (β-CD) concentrations on bioremediation of soil co-contaminated with Cd and BDE-209 using amaranth and the white-rot fungus Phanerochaete chrysosporium, with BDE-209 degrading ability. Results showed that the white-rot fungus was beneficial to the growth of amaranth, Cd uptake and BDE-209 degradation. Addition of β-CD further increased biomass of both shoots and roots, shoot Cd concentrations and contents, chlorophyll concentrations and soil manganese peroxidase (MnP) activities. Furthermore, well-organized mesophyll cells were observed in β-CD treatments, implying that the combination of white-rot fungus and β-CD can alleviate the stresses of Cd and BDE-209 to mesophyll cells. The BDE-209 degradation rate was positively correlated to β-CD concentration and MnP activity in soil. Our results also revealed that RF+β0.8 treatment possessed the greatest Cd removal efficiency due to its well-configured mesophyll cells and the highest shoot biomass, chlorophyll concentration, and shoot Cd concentration. Considering simultaneous removal of Cd and BDE-209 from soil, using 0.8% β-CD to amaranth inoculated with white-rot fungus is a promising way forward for the phytoremediation of soil co-contaminated with Cd and BDE-209. A high percentage of mono-BDE was detected in inoculated amaranth, suggesting that BDE-209 was debrominated into low brominated PBDEs by the fungus in soil, which were then absorbed and further debrominated into mono-BDE in the plant.
Collapse
Affiliation(s)
- Xing Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Ao Yu Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yang Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Li Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Hai Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Quan Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yan Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Ce Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Consortium on Environment, Health, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, PR China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
26
|
Li K, Chen J, Zhu L. The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:692-699. [PMID: 29339338 DOI: 10.1016/j.envpol.2017.12.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Decabromodiphenyl ether (BDE-209), as a major component of brominated flame retardants, has been detected in the agricultural soil in considerable amount. Given that BDE-209 is toxic, ubiquitous and persistent, BDE-209 might induce toxic effects on rice cultivars planted in contaminated soil. A comparative study was conducted on phytotoxicities and GC-MS based antioxidant-related metabolite levels to investigate the differences of phytotoxicities of BDE-209 to rice cultivars in Yangtze River Delta of China. Rice seedlings were treated with BDE-209 at 0, 10, 50, 100 and 500 μg/L in a hydroponic setup. Results showed that BDE-209-induced phytotoxicites were cultivar-dependent and that the antioxidant defense systems in the cultivars were disturbed differently. Among the three selected cultivars (Jiayou 5, Lianjing 7 and Yongyou 9), Jiayou 5 and Lianjing 7 displayed lower toxic effects than Yongyou 9 in terms of the growth inhibition, lipid peroxidation and DNA damage. The increases of antioxidant enzymes were significantly higher in Jiayou 5 and Lianjing 7 than those in Yongyou 9. Multivariate analysis of antioxidant-related metabolites in the three cultivars indicated that l-tryptophan and l-valine were the most important ones among 10 metabolites responsible for the separation of cultivars. The up-regulation of l-tryptophan and l-valine were likely plant strategies to increase their tolerance. The current results provided an insight into the development of rice cultivars with higher BDE-209 tolerance.
Collapse
Affiliation(s)
- Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
27
|
Wu J, Yi Y, Fang Z, Tsang EP. Effects of biochar on phytotoxicity and translocation of polybrominated diphenyl ethers in Ni/Fe bimetallic nanoparticle-treated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2570-2579. [PMID: 29128943 DOI: 10.1007/s11356-017-0627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
In this study, soil culture experiments were conducted to explore the effects of biochar-supported Ni/Fe nanoparticles on the accumulation and translocation of polybrominated diphenyl ethers (PBDEs) in soil-plant system and its phytotoxicity to Brassica chinensis. Compared with those in BDE209 contaminated soils (S 1) and Ni/Fe nanoparticle-treated soil (S 3), the plant biomass, root, and shoot lengths in biochar-supported Ni/Fe nanoparticle-treated soil (S 4) were increased by 23 mg, 1.35 cm, and 2.08 cm and 27.2 mg, 1.75 cm, and 2.52 cm, respectively, suggesting that the phytotoxicity in S 4 treatment was significantly decreased. Moreover, in all treatments, the contents of BDE209, the total PBDEs, Ni, and Fe in sample plant tissues of S 4 were the lowest. In addition, the superoxide dismutase, peroxidase, and catalase activities in S 4 treatment were found to decrease by 33.8, 47.2, and 24.1%, respectively, compared to those in S 3. Results also showed that biochar addition not only reduced the uptake of PBDEs and heavy metals but also effectively improve soil fertility and reduce the leachability of Ni and Fe caused by Ni/Fe. Finally, the translocation factors (TFs) of PBDEs in four treatments followed the orders as S 1 > S 3 > S 4 > S 2, indicating that biochar has an inhibition effects on PBDE translocation in the plants. In summary, all of the results suggested that the phytotoxicity, translocation of PBDEs, and the negative effects caused by neat Ni/Fe nanoparticles in B. chinensis were decreased as a result of the effects of the biochar.
Collapse
Affiliation(s)
- Juan Wu
- School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong, 510006, China
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, The Netherlands
| | - Yunqiang Yi
- School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, China.
| | - Eric Pokeung Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| |
Collapse
|
28
|
Wang C, Ma C, Jia W, Wang D, Sun H, Xing B. Combined effects of dissolved humic acids and tourmaline on the accumulation of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) in Lactuca sativa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:68-77. [PMID: 28787706 DOI: 10.1016/j.envpol.2017.07.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/07/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
In order to investigate the effects of dissolved humic acid (DHA) and tourmaline on uptake of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) by Lactuca sativa, different fractions of DHA, including DHA1 and DHA4, as well as different doses of tourmaline were introduced into BDE-153 contaminated solutions for plant growth. The levels of BDE-153 in L. sativa tissues were positively correlated with the Fe levels (R2 = 0.9264) in seedings of the treatments with different doses of tourmaline. However, when adding DHA1 and DHA4 into the system, the correlation coefficients (R2) decreased to 0.6976 and 0.5451 from 0.9264, respectively. In contrast with the Fe contents, the presence of DHAs didn't affect the R2 between the levels of BDE-153 and the lipid contents in plant tissues. Our results indicated that both DHA1 and DHA4 could severely alter the BDE-153 uptake by L. sativa through reducing the Fe uptake instead of the lipid contents. Additionally, DHA4 exhibited much stronger abilities to alter the BDE-153 accumulation than DHA1. Transmission electron microscopy (TEM) observations indicated that either DHA1 or tourmaline or co-treatment with DHA and tourmaline had no negative impact on L. sativa at the cellular level. The present study provides important information for the impacts of different fractions of DHA extracted from soil on the BDE-153 migration in plant systems. Moreover, we elucidated the importance of the iron in tourmaline for migration of the polybrominated diphenyl ethers (PBDEs) in plant systems.
Collapse
Affiliation(s)
- Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Chuanxin Ma
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA; Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Weili Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
29
|
Analysis of emerging contaminants and nanomaterials in plant materials following uptake from soils. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Wang Q, Kelly BC. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore. CHEMOSPHERE 2017; 183:257-265. [PMID: 28550783 DOI: 10.1016/j.chemosphere.2017.05.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log KOW). Translocation factors (log TFs) were negatively correlated with log KOW. The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands.
Collapse
Affiliation(s)
- Qian Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Lu H, Sun J, Zhu L. The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 2017; 7:7130. [PMID: 28769098 PMCID: PMC5541004 DOI: 10.1038/s41598-017-07413-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Root exudates play an important role in the phytoremediation of soils contaminated by organic pollutants, but how root exudate components affect the remediation process is not well understood. In this study, we explored the effects and mechanisms of the major root exudates, including glucose, organic acids, and serine, in the rhizoremediation of pyrene-contaminated soil. The results showed that glucose increased the degradation of pyrene (54.3 ± 1.7%) most significantly compared to the organic acids (45.5 ± 2.5%) and serine (43.2 ± 0.1%). Glucose could significantly facilitate the removal of pyrene in soil through promoting dehydrogenase activity indicated by a positive correlation between the removal efficiency of pyrene and the soil dehydrogenase activity (p < 0.01). Furthermore, root exudates were able to change soil microbial community, particularly the bacterial taxonomic composition, thereby affecting the biodegradation of pyrene. Glucose could alter soil microbial community and enhance the amount of Mycobacterium markedly, which is dominant in the degradation of pyrene. These findings provide insights into the mechanisms by which root exudates enhance the degradation of organic contaminants and advance our understanding of the micro-processes involved in rhizoremediation.
Collapse
Affiliation(s)
- Hainan Lu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
32
|
Ji X, Ding J, Xie X, Cheng Y, Huang Y, Qin L, Han C. Pollution Status and Human Exposure of Decabromodiphenyl Ether (BDE-209) in China. ACS OMEGA 2017; 2:3333-3348. [PMID: 30023692 PMCID: PMC6044870 DOI: 10.1021/acsomega.7b00559] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 05/26/2023]
Abstract
Decabromodiphenyl ether (BDE-209/decaBDE) is a high-production-volume brominated flame retardant in China, where the decaBDE commercial mixture is manufactured in Laizhou Bay, Shandong Province, even after the prohibition of penta- and octaBDE mixtures. The demand for flame retardants produced in China has been increasing in recent years as China not only produces electronic devices but also has numerous electronic waste (e-waste) recycling regions, which receive e-wastes from both domestic and foreign sources. High concentrations of BDE-209 have been observed in biotic and abiotic media in each of the different areas, especially within the decaBDE manufacturers and e-waste recycling areas. BDE-209 has been viewed as toxic and bioaccumulative because it might debrominate to less brominated polybrominated diphenyl ethers (PBDEs) (lower molecular weight and hydrophobicity), which are more readily absorbed by organisms. The highest concentration of PBDEs in dust within urban areas reached 40 236 ng g-1 in the Pearl River Delta, and BDE-209 contributed the greatest proportion to the total PBDEs (95.1%). Moreover, the maximum hazard quotient was found for toddlers (0.703) for BDE-209, which was close to 1. This suggests that exposure to BDE-209 might lead to increased potential for adverse effects and organ harm (e.g., the lungs) through inhalation, dust ingestion, and dermal absorption, especially for the group of toddlers compared to others. In daily food and human tissues, the amount of BDE-209 was also extensively detected. However, the toxicity and adverse effect of BDE-209 to humans are still not clear; thus, further studies are required to better assess the toxicological effects and exposure scenarios, a more enhanced environmental policy for ecological risks regarding BDE-209 and its debrominated byproducts in China.
Collapse
Affiliation(s)
- Xiaowen Ji
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Jue Ding
- College
of the Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xianchuan Xie
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Yu Cheng
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Yu Huang
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Long Qin
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Chao Han
- State
Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing 210008, P. R. China
| |
Collapse
|
33
|
Chen J, Wang C, Shen ZJ, Gao GF, Zheng HL. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:390-399. [PMID: 27750135 DOI: 10.1016/j.scitotenv.2016.10.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have become ubiquitous environmental contaminants, particularly in mangrove wetlands. However, little is known about the long-term effect of mangrove plants on PBDE removal from contaminated sediments. A 12-month microcosm experiment was conducted to understand the effect of two mangrove species, namely Avicennia marina (Am) and Aegiceras corniculatum (Ac), on PBDE removal from the sediments spiked with 2000ngg-1 dry weight of BDE-47, and to explore the microbial mechanism responsible for the planting-induced effects on BDE-47 removal. Results showed that planting of mangrove species, either Am or Ac, could accelerate BDE-47 removal from contaminated sediments during the 12months experiment, mainly through enhancing microbial degradation process. In particular, Am sediment had significantly higher BDE-47 degradation efficiency compared with Ac sediment, which may be mainly attributed to higher activities of urease and dehydrogenase, as well as higher 16S rRNA gene copies of total bacteria and organohalide-respiring bacteria (OHRB) in Am sediment. Moreover, planting could shift sediment bacterial community composition and selectively enrich some bacterial genera responsible for PBDE degradation. Such selective enrichment effect of Am on the potential PBDE-degrading bacteria differed distinctly from that of Ac. These results indicated that long-term planting of mangrove species, especially Am, could significantly promote BDE-47 removal from the contaminated sediments by enhancing microbial activity, increasing total bacterial and OHRB abundances and altering bacterial community composition.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, Jiangsu 210008, PR China.
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Gui-Feng Gao
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| |
Collapse
|