1
|
Xue L, Xu J, Xiao P, Jiang Y, Lin Y, Feng C, Jin Y, Zhou Z, Wang G, Lu D. Perfluorooctane sulfonate (PFOS) induced bone loss by inhibiting FoxO1-mediated defense against oxidative stress in osteoblast. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117524. [PMID: 39675079 DOI: 10.1016/j.ecoenv.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Exposure to perfluorooctane sulfonate (PFOS) has been associated with lower bone density and the occurrence of osteoporosis in human studies, but the effects and mechanisms of PFOS induces bone loss is not well understood. Our research is aimed at examining the effects of PFOS on osteoblastic activity and investigating the toxicological mechanisms of PFOS-induced bone loss. Cell proliferation, ALP activity, bone nodule formation, ROS levels, and cell apoptosis were assessed after treating osteoblasts with different concentrations of PFOS. Through transcriptome analysis, the differentially expressed genes (DEGs) were screened and the biofunctions were elucidated by Kyoto Encyclopedia of Genes and Genomes (KEGG) and The Gene Set Enrichment Analysis (GSEA). Vation of important genes and protein expression was accomplished using RT-PCR and Western blot methods, respectively. The results show that PFOS can reduce bone formation markers and improve oxidative stress and cell apoptosis. The DEGs in PFOS-treated groups were involved in multiple pathways, including FoxO, HIF-1, Rap1, Hippo, and sphingolipid signaling. FoxO1 was validated as the key gene which regulates osteogenic differentiation and redox status. Our findings suggest that PFOS reduces bone formation through FoxO1-mediated oxidative stress and apoptosis, as well as inhibition of the OPG/RANKL and FoxO1/β-catenin pathways. It will be beneficial for early intervention or treatment of PFOS-induced bone loss, highlighting the importance of regulatory measures to limit human exposure to PFOS.
Collapse
Affiliation(s)
- Liming Xue
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiale Xu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Ping Xiao
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuanjie Lin
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chao Feng
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yu'e Jin
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Guoquan Wang
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Dasheng Lu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| |
Collapse
|
2
|
Humann-Guilleminot S, Blévin P, Gabrielsen GW, Herzke D, Nikiforov VA, Jouanneau W, Moe B, Parenteau C, Helfenstein F, Chastel O. PFAS Exposure is Associated with a Lower Spermatic Quality in an Arctic Seabird. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19617-19626. [PMID: 39441666 PMCID: PMC11542889 DOI: 10.1021/acs.est.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Several studies have reported an increasing occurrence of poly- and perfluorinated alkyl substances (PFASs) in Arctic wildlife tissues, raising concerns due to their resistance to degradation. While some research has explored PFAS's physiological effects on birds, their impact on reproductive functions, particularly sperm quality, remains underexplored. This study aims to assess (1) potential association between PFAS concentrations in blood and sperm quality in black-legged kittiwakes (Rissa tridactyla), focusing on the percentage of abnormal spermatozoa, sperm velocity, percentage of sperm motility, and morphology; and (2) examine the association of plasma levels of testosterone, corticosterone, and luteinizing hormone with both PFAS concentrations and sperm quality parameters to assess possible endocrine disrupting pathways. Our findings reveal a positive correlation between the concentration of longer-chain perfluoroalkyl carboxylates (PFCA; C11-C14) in blood and the percentage of abnormal sperm in kittiwakes. Additionally, we observed that two other PFAS (i.e., PFOSlin and PFNA), distinct from those associated with sperm abnormalities, were positively correlated with the stress hormone corticosterone. These findings emphasize the potentially harmful substance-specific effects of long-chain PFCAs on seabirds and the need for further research into the impact of pollutants on sperm quality as a potential additional detrimental effect on birds.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences (RIBES), Faculty of Science, Radboud
University, Nijmegen 6500, the Netherlands
- Laboratory
of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Pierre Blévin
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
- Akvaplan
niva AS, Fram Centre, Tromsø NO-9296, Norway
| | | | - Dorte Herzke
- Norwegian
Institute for Air Research, Fram Centre, Tromsø NO-9296, Norway
| | | | - William Jouanneau
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| | - Børge Moe
- Norwegian
Institute for Nature Research, Trondheim NO-7034, Norway
| | - Charline Parenteau
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| | - Fabrice Helfenstein
- Laboratory
of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
- Norwegian
Institute for Nature Research, Trondheim NO-7034, Norway
- Department
of Clinical Research, University of Bern, Bern 3010, Switzerland
| | - Olivier Chastel
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| |
Collapse
|
3
|
Wang Y, Huo Y, Khan A, Ma N, Mai W. Possible mechanisms for adverse effects on zebrafish sperm and testes associated with low-level chronic PFOA exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107108. [PMID: 39366191 DOI: 10.1016/j.aquatox.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Perfluorooctanoic acid (PFOA), which is widely used during the manufacturing of fluoropolymer coatings and polytetrafluoroethylene, is now a widespread pollutant in the environment and within the human body. This study used zebrafish, an aquatic model species, to investigate how low levels of chronic PFOA exposure affect the reproductive system. The results of the experiments in which zebrafish were exposed to 414 ng/L or 4140 ng/L for 60 days showed a variety of adverse effects on testicular tissue and sperm, including dose-dependent changes in plasma estradiol and testosterone levels, various sperm malformations, decreased sperm motility and concentration, and PFOA-induced oxidative stress and testicular damage with increased rates of apoptosis. In addition, offspring of the zebrafish that had been exposed to PFOA were characterized by increased malformation and mortality. Subsequent transcriptional analyses of the male gonads revealed the significant activation of oxidative stress bioprocesses and immuno-inflammatory signaling pathways, along with the dysregulation of reproductive bioprocesses. In conclusion, low-level chronic exposure to PFOA affects both the reproductive performance of adults and the development of offspring; the mechanisms for these adverse effects involve alterations in several molecular pathways that may be involved in PFOA-induced oxidative stress and reproductive abnormalities. The presented data can be used to assess the ecotoxicity of PFOA to the male reproductive system at environmentally-relevant concentrations.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Yu Huo
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Afrasyab Khan
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Ningna Ma
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Weijun Mai
- School of Life Science, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Kujoana TC, Sehlabela LD, Mabelebele M, Sebola NA. The potential significance of antioxidants in livestock reproduction: Sperm viability and cryopreservation. Anim Reprod Sci 2024; 267:107512. [PMID: 38901083 DOI: 10.1016/j.anireprosci.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Male reproductive efficiency is primarily defined by the generation of high-quality and viable sperm cells in farm animals. However, the literature shows that male fertility has declined in recent years due various factors including heat stress, which causes the development of free radicals and reactive oxygen species (ROS) which damages sperm cells. This review aimed to examine the potential significance of antioxidants in increasing and preserving sperm quality and viability. Data used to produce this review paper came from recently published articles in peer reviewed journals. Google Scholar, Science Direct, Research Gate, Web of Science, and the Directory of Open Access Journals were used to access the data. Various studies have shown that antioxidants play acritical role in preserving the sperm quality and viability by protecting sperm cells from the potential damage from oxidative stress induced by the development of oxygen species imbalances. However, there is less information on the use of natural or synthetic antioxidants to preserve semen quality through in vivo procedures, despite its growing popularity and promising results. Hence, there is a need for researchers to explore more on this topic, especially in other livestock species than poultry.
Collapse
Affiliation(s)
- Tlou Christopher Kujoana
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| | - Lerato Deirdre Sehlabela
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| | - Nthabiseng Amenda Sebola
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1709, South Africa.
| |
Collapse
|
5
|
Yang Y, Wang X, Yang M, Wei S, Li Y. Integrated Analysis of Per- and Polyfluoroalkyl Substance Exposure and Metabolic Profiling of Elderly Residents Living near Industrial Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4104-4114. [PMID: 38373080 DOI: 10.1021/acs.est.3c09014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used in industrial production, causing potential health risks to the residents living around chemical industrial plants; however, the lack of data on population exposure and adverse effects impedes our understanding and ability to prevent risks. In this study, we performed screening and association analysis on exogenous PFAS pollutants and endogenous small-molecule metabolites in the serum of elderly residents living near industrial plants. Exposure levels of 11 legacy and novel PFASs were determined. PFOA and PFOS were major contributors, and PFNA, PFHxS, and 6:2 Cl-PFESA also showed high detection frequencies. Association analysis among PFASs and 287 metabolites identified via non-target screening was performed with adjustments of covariates and false discovery rate. Strongly associated metabolites were predominantly lipid and lipid-like molecules. Steroid hormone biosynthesis, primary bile acid biosynthesis, and fatty-acid-related pathways, including biosynthesis of unsaturated fatty acids, linoleic acid metabolism, α-linolenic acid metabolism, and fatty acid biosynthesis, were enriched as the metabolic pathways associated with mixed exposure to multiple PFASs, providing metabolic explanation and evidence for the potential mediating role of adverse health effects as a result of PFAS exposure. Our study achieved a comprehensive screening of PFAS exposure and associated metabolic profiling, demonstrating the promising application for integrated analysis of exposome and metabolome.
Collapse
Affiliation(s)
- Yajing Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Minmin Yang
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuqian Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
6
|
Jang SI, Jo JH, Jung EJ, Lee WJ, Hwang JM, Bae JW, Shin S, Lee SI, Kim MO, Kwon WS. Perfluorooctanoic acid suppresses sperm functions via abnormal Protein Kinase B activation during capacitation. Reprod Toxicol 2024; 123:108528. [PMID: 38145882 DOI: 10.1016/j.reprotox.2023.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a perfluorinated compound, a synthesized chemical, and has been used in several industrial products for more than 70 years. Although PFOA is known to exert toxic effects in normal cells, there is no detailed information on its reproductive toxicity and its effects on sperm functions related to protein kinase B (AKT). Therefore, this study was conducted to explore the effects of PFOA on sperm functions via AKT. Boar spermatozoa were incubated with different concentrations of PFOA (0, 0.1, 1, 10, and 100 μM) to induce capacitation. Sperm functions (sperm motility, motion kinematic parameters, capacitation status, cell viability, and intracellular ATP levels) were evaluated. In addition, the expression levels of AKT, phospho-AKT, phospho-PKA, and tyrosine phosphorylated proteins were evaluated by western blotting. Results showed significant decreases in sperm motility and motion kinematic parameters. PFOA treatment significant suppressed spermatozoa capacitation and intracellular ATP levels. Furthermore, it significantly decreased the levels of phospho-PKA and tyrosine phosphorylated proteins. The levels of AKT phosphorylation at Thr308 and Ser473 also significantly decreased. These findings suggest that PFOA diminishes sperm functions during capacitation and induces unnatural phosphorylation in AKT, leading to reproductive toxicity. Therefore, people should be aware of reproductive toxicity when using PFOA.
Collapse
Affiliation(s)
- Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
7
|
Zhang Z, Tian J, Liu W, Zhou J, Zhang Y, Ding L, Sun H, Yan G, Sheng X. Perfluorooctanoic acid exposure leads to defect in follicular development through disrupting the mitochondrial electron transport chain in granulosa cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166954. [PMID: 37722425 DOI: 10.1016/j.scitotenv.2023.166954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental pollutant that can impair ovarian function, while the underlying mechanism is not fully understood, and effective treatments are lacking. In this study, we established a mouse model of PFOA exposure induced by drinking water and found that PFOA exposure impaired follicle development, increased apoptosis of granulosa cells (GCs), and hindered normal follicular development in a 3D culture system. RNA-seq analysis revealed that PFOA disrupted oxidative phosphorylation in ovaries by impairing the mitochondrial electron transport chain. This resulted in reduced mitochondrial membrane potential and increased mitochondrial reactive oxygen species (mtROS) in isolated GCs or KGN cells. Resveratrol, a mitochondrial nutrient supplement, could improve mitochondrial function and restore normal follicular development by activating FoxO1 through SIRT1/PI3K-AKT pathway. Our results indicate that PFOA exposure impairs mitochondrial function in GCs and affects follicle development. Resveratrol can be a potential therapeutic agent for PFOA-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jiao Tian
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Guijun Yan
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Zhu Z, Zhao H, Cui H, Adetunji AO, Min L. Resveratrol Improves the Frozen-Thawed Ram Sperm Quality. Animals (Basel) 2023; 13:3887. [PMID: 38136923 PMCID: PMC10740518 DOI: 10.3390/ani13243887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Cryopreservation generates a substantial quantity of ROS in semen, leading to a decline in sperm quality and fertilization capacity. The objective of this study was to investigate the effects of resveratrol and its optimal concentration on ram sperm quality after cryopreservation. Ram semen was diluted with a freezing medium containing different concentrations of resveratrol (0, 25, 50, 75, and 100 μM). After thawing, various sperm parameters such as total motility, progressive motility, acrosome integrity, plasma membrane integrity, mitochondrial membrane potential, glutathione (GSH) content, glutathione synthase (GPx) activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, lipid peroxidation (LPO) content, malondialdehyde (MDA) content, ROS level, SIRT1 level, DNA oxidative damage, and AMPK phosphorylation level were assessed. In addition, post-thaw sperm apoptosis was evaluated. Comparatively, the addition of resveratrol up to 75 μM significantly improved the sperm motility and sperm parameters of cryopreserved ram sperm. Specifically, 50 μM resveratrol demonstrated a notable enhancement in acrosome and plasma membrane integrity, antioxidant capacity, mitochondrial membrane potential, adenosine triphosphate (ATP) content, SIRT1 level, and AMPK phosphorylation levels compared to the control group (p < 0.05). It also significantly (p < 0.05) reduced the oxidative damage to sperm DNA. However, detrimental effects of resveratrol were observed at a concentration of 100 μM resveratrol. In conclusion, the addition of 50 μM resveratrol to the cryopreservation solution is optimal for enhancing the quality of cryopreserved ram sperm.
Collapse
Affiliation(s)
- Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| | - Haolong Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| | - Haixiang Cui
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| | - Adedeji O. Adetunji
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA;
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Z.Z.); (H.Z.); (H.C.)
| |
Collapse
|
9
|
Yang Y, Li Q, Shen Y, Wei R, Lan Y, Wang Q, Lei N, Xie Y. Combined toxic effects of perfluorooctanoic acid and microcystin-LR on submerged macrophytes and biofilms. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132193. [PMID: 37549579 DOI: 10.1016/j.jhazmat.2023.132193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and microcystin-LR (MCLR) are pervasive pollutants in surface waters that induce significant toxic effects on aquatic organisms. However, the combined environmental risk of PFOA and MCLR remains unclear. To assess the toxic effects of PFOA and MCLR on submerged macrophytes and biofilms, Vallisneria natans was exposed to different concentrations of PFOA and MCLR (0.01, 0.1, 1.0 and 10.0 μg L-1). Vallisneria natans was sensitive to high concentrations of MCLR (10 μg L-1): plants exposed to 10 μg L-1 of MCLR measured a biomass of 3.46 g, which was significantly lower than the 8.71 g of the control group. Additionally, antagonistic interactive effects were observed in plants exposed to combined PFOA and MCLR. Exposure to these pollutants adversely affected photosynthesis of the plants and triggered peroxidation that promoted peroxidase, superoxide dismutase and catalase activities, and increased malondialdehyde and glutathione concentrations. The total chlorophyll content was lower in the highest concentration of the combined treatment group (0.443 mg g-1) than in the control group (0.534 mg g-1). Peroxidase activity increased from 662.63 U mg-1 Pr to 1193.45 U mg-1 Pr with increasing PFOA concentrations. Metabolomics indicated that the stress tolerance of Vallisneria natans was improved via altered fatty acid metabolism, hormone metabolism and carbon metabolism. Furthermore, PFOA and MCLR influenced the abundance and structure of the microbial community in the biofilms of Vallisneria natans. The increased contents of autoinducer peptide and N-acylated homoserine lactone signaling molecules indicated that these pollutants altered the formation and function of the biofilm. These results expand our understanding of the combined effects of PFOA and MCLR in aquatic ecosystems.
Collapse
Affiliation(s)
- Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; Tianfu Yongxing Laboratory, Chengdu 610213, PR China.
| | - Yifan Shen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Renjie Wei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | | | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yanhua Xie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| |
Collapse
|
10
|
Han JW, Park HJ. Perfluorooctanoic acid induces cell death in TM3 cells via the ER stress-mitochondrial apoptosis pathway. Reprod Toxicol 2023; 118:108383. [PMID: 37044272 DOI: 10.1016/j.reprotox.2023.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally ubiquitous synthetic chemical highly persistent in organisms. PFOA exposure is pernicious to reproductive health as indicated by reports of male infertility. However, the PFOA toxicity mechanism to Leydig cells remains poorly understood. Therefore, this study aimed to investigate the toxicological events occurring in TM3 Leydig cells treated with PFOA (250, 500, 750µM) for 24h. PFOA was shown to significantly decrease cell viability resulting from inhibition of proliferation and elevation of apoptotic ratio in a dose dependent manner. Upregulation of pro-apoptotic gene expressions such as Bax, Bad, and p53, was observed in combination with an increase in the apoptosis-related protein levels of Bax, cleaved caspase-3, cleaved caspase-8, and phosphorylated p53. Furthermore, exposure of PFOA lead to mitochondrial damage involving mitochondrial membrane permeabilization. A release of cytochrome c and collapse of the mitochondrial membrane potential (∆Ψm) were observed compared to the untreated control. Additionally, PFOA stimulated unfolded protein response (UPR) upregulating ER stress marker, Bip/GRP78, and upregulated protein levels of UPR signal molecules IRE1, p-JNK, p-ERK1/2, p-p53, CHOP, and ERO1. Overall, the present study elucidated the ER stress-mitochondrial apoptosis pathway-related molecular mechanisms involved in PFOA-induced cell death in TM3 Leydig cells.
Collapse
Affiliation(s)
- Jong-Won Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
11
|
Perfluorooctanoic acid induces tight junction injury of Sertoli cells by blocking autophagic flux. Food Chem Toxicol 2023; 173:113649. [PMID: 36736878 DOI: 10.1016/j.fct.2023.113649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Perfluorooctanoic acid (PFOA), a man-made chemical widely used in consumers, could cause male reproductive toxicity by disrupting blood-testis barrier (BTB) integrity. Autophagy in Sertoli cells is essential for regulation of spermatogenesis and BTB. However, it remains a mystery that whether PFOA-induced BTB injury is associated with autophagy in Sertoli cells. In this study, we found that PFOA dose-dependently disrupted tight junction (TJ) function in Sertoli cells in vivo and in vitro. Furthermore, the results from transmission electron microscopy, Western blot and immunofluorescence analysis revealed that PFOA induced the accumulation of autophagosome in testicular Sertoli cells as well as TM4 cells. Further study confirmed that autophagosome accumulation resulted from the blockage of autophagic degradation because of disruption of autophagosome and lysosome fusion via downregulation of the expression of α-SNAP. In parallel, the overexpressed MMP9 was also observed in vivo and in vitro. Conversely, overexpression of α-SNAP inhibited the expression of MMP9 in TM4 cells. In conclusion, PFOA blocks autophagic flux through downregulating the expression levels of α-SNAP in Sertoli cells, and then induces the accumulation of MMP9 leading to disruption of TJ function. This finding will provide clues for effective prevention and treatment of PFOA-induced male reproductive toxicity.
Collapse
|
12
|
Wang H, Wei K, Wu Z, Liu F, Wang D, Peng X, Liu Y, Xu J, Jiang A, Zhang Y. Association between per- and polyfluoroalkyl substances and semen quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27884-27894. [PMID: 36396760 DOI: 10.1007/s11356-022-24182-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Some studies have suggested that perfluoroalkyl and polyfluoroalkyl substance (PFAS) exposure may be associated with semen quality in the general population, but with inconsistent results. To identify a more precise relationship between them, a meta-analysis was performed. We searched Embase, the PubMed, The Cochrane Library, Ovid databases, and Web of Science databases (before March 2022) for appropriate studies on the correlations of PFAS exposure with semen parameters. We extracted β value and 95% confidence intervals (CIs) to conduct meta-analysis. Subgroup analyses was performed by sample size, geographic location, and sample type. A total of seven articles involving 2190 participants were included in this study. The concentrations of perfluorooctanoic acid (PFOA) (β value = - 1.38; 95% CI: - 2.44, - 0.32) and perfluorononanoic acid (PFNA) (β value = - 1.31, 95% CI: - 2.35, - 0.26) were negatively associated with sperm progressive motility. Subgroup analysis revealed that PFNA exposure was related to sperm morphology in studies with the sample size exceeding 200 people (β value = - 0.14; 95% CI: - 0.26, - 0.01). Our study supports that exposure to some PFASs (e.g., PFNA, PFOA) may be associated with semen quality, such as lower sperm progressive motility. Therefore, it is of great significance for the prevention of male infertility by control the use of PFASs.
Collapse
Affiliation(s)
- Huanqiang Wang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Kai Wei
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhixin Wu
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Fucun Liu
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Danhua Wang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Xianzheng Peng
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
- Department of Nursing, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yongyou Liu
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Jida Xu
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - A'pei Jiang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
- Department of Nursing, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yan Zhang
- Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
- Department of Nursing, Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| |
Collapse
|
13
|
Sun Z, Wen Y, Wang B, Deng S, Zhang F, Fu Z, Yuan Y, Zhang D. Toxic effects of per- and polyfluoroalkyl substances on sperm: Epidemiological and experimental evidence. Front Endocrinol (Lausanne) 2023; 14:1114463. [PMID: 36891048 PMCID: PMC9986484 DOI: 10.3389/fendo.2023.1114463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
As emerging organic contaminants, per- and polyfluoroalkyl substances (PFASs) have aroused worldwide concern due to their environmental persistence, ubiquitous presence, bioaccumulation, and potential toxicity. It has been demonstrated that PFASs can accumulate in human body and cause multiple adverse health outcomes. Notably, PFASs have been detected in the semen of human, posing a potential hazard to male fecundity. This article reviews the evidence about the toxic effects of exposure to PFASs on male reproduction, focusing on the sperm quality. Epidemiological studies showed that PFASs, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were adversely associated with the semen parameters in humans, including sperm count, morphology and motility. Experimental results also confirmed that PFAS exposure led to testicular and epididymal damage, therefore impairing spermatogenesis and sperm quality. The mechanisms of reproductive toxicity of PFASs may be involved in blood-testosterone barrier destruction, testicular apoptosis, testosterone synthesis disorder, and membrane lipid composition alteration, oxidative stress and Ca2+ influx in sperm. In conclusion, this review highlighted the potential threat of exposure to PFASs to human spermatozoa.
Collapse
Affiliation(s)
- Zhangbei Sun
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yiqian Wen
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Binhui Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiyi Deng
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Fan Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhendong Fu
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
- *Correspondence: Dalei Zhang,
| |
Collapse
|
14
|
Yuan C, Wang J, Lu W. Regulation of semen quality by fatty acids in diets, extender, and semen. Front Vet Sci 2023; 10:1119153. [PMID: 37180054 PMCID: PMC10174315 DOI: 10.3389/fvets.2023.1119153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Fatty acids (FAs) are classified into different types according to the degree of hydrocarbon chain saturation, including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), omega-3 polyunsaturated fatty acids (omega-3 PUFAs) and omega-6 polyunsaturated fatty acids (omega-6 PUFAs), which play an important role in maintaining semen quality. This review focuses on the regulation of FAs in semen, diet and extender on semen quality, and expounds its effects on sperm motility, plasma membrane integrity, DNA integrity, hormone content, and antioxidant capacity. It can be concluded that there are species differences in the FAs profile and requirements in sperm, and their ability to regulate semen quality is also affected by the addition methods or dosages. Future research directions should focus on analyzing the FAs profiles of different species or different periods of the same species and exploring suitable addition methods, doses and mechanism of regulating semen quality.
Collapse
Affiliation(s)
- Chongshan Yuan
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Jun Wang,
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Wenfa Lu,
| |
Collapse
|
15
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|
16
|
Huang J, Xiang S, Chen S, Wu W, Huang T, Pang Y. Perfluoroalkyl substance pollution: detecting and visualizing emerging trends based on CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82786-82798. [PMID: 35752676 DOI: 10.1007/s11356-022-20756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In recent years, perfluoroalkyl substances (PFASs) have been detected in all kinds of environmental media and can harm animals and human beings. They have attracted the attention of environmental workers worldwide and have become another research hotspot in the field of environment. However, analyses of PFASs have seldom been studied systematically. Therefore, this study summarizes the available data in 6756 publications (2000-2022) using the CiteSpace software to provide insights into the specific characteristics of PFASs and consequently shows global development trends that scientists can use for establishing future research directions. As opposed to traditional review articles by experts, this study provides a new method for quantitatively visualizing information about the development of this field over the past 23 years. Results show that the countries with more research in this field are mainly the USA and China. The research on PFASs is mainly concentrated in environmental sciences and ecology. Zhanyun Wang and Robert C. Buck's research has the highest influence rate in this field, and their research group is worthy of attention. Through the analysis of hot keywords, we conclude that the research hotspots are mainly focused on PFASs' transmission media and pathways, human exposure and the mechanism of toxicity, and degradation and remediation measures. Collectively these results indicate the major themes of PFAS research are as follows: (1) transmission media and pathways, (2) human exposure and the mechanism of toxicity, (3) degradation and remediation measures. This study maps the major research domains of PFAS research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Jiahao Huang
- Lake Basin Management, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Song Xiang
- Lake Basin Management, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Shuqin Chen
- College of Resources and Environment, Anqing Normal University, Anqing, Anhui, 246011, People's Republic of China
| | - Wei Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Tianyin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yan Pang
- Lake Basin Management, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| |
Collapse
|
17
|
Development of a carbazole-based fluorescent probe for quantitative detection of fluoride ions in aqueous systems. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Liu B, Chen F. Neuropeptide Y promotes hepatic apolipoprotein A1 synthesis and secretion through neuropeptide Y Y5 receptor. Peptides 2022; 154:170824. [PMID: 35660638 DOI: 10.1016/j.peptides.2022.170824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apolipoprotein A1 (ApoA1), a major component of high-density lipoprotein (HDL), is a protective factor against cardiovascular disease (CVD). A recent epidemiological study found an association between neuropeptide Y (NPY) gene polymorphism and serum HDL levels. However, the direct effect of NPY on ApoA1 expression remains unknown. This study was designed to investigate the molecular mechanisms underlying the NPY-mediated regulation of hepatic ApoA1. METHODS Serum ApoA1, total cholesterol, and HDL-c and hepatic ApoA1 levels were measured after intraperitoneal administration of NPY or an NPY Y5 receptor (NPY5R) agonist in vivo. HepG2 and BRL-3A hepatocytes were treated in vitro with NPY in the presence or absence of NPY receptor antagonists, agonists, or signal transduction pathway inhibitors. Subsequently, the protein and mRNA expression of cellular and secreted ApoA1 were determined. RESULTS NPY considerably upregulated hepatic ApoA1 expression and stimulated ApoA1 secretion, both in vivo and in vitro. NPY5R inhibition blocked NPY-induced upregulation of ApoA1 expression, and NPY5R activation stimulated ApoA1 expression and secretion in hepatocytes. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and protein kinase A (PKA) inhibition almost completely blocked the upregulation of ApoA1 expression and secretion induced by NPY5R. CONCLUSIONS For the first time, we demonstrated that NPY5R activation promotes hepatic ApoA1 synthesis and secretion through the ERK1/2 and PKA signal transduction pathways. Thus, NPY5R may be a potential therapeutic target for treating CVD by promoting cholesterol reverse transport.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
19
|
Perfluorooctanoic acid affects mouse brain and liver tissue through oxidative stress. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:148-157. [PMID: 35792765 PMCID: PMC9287837 DOI: 10.2478/aiht-2022-73-3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate oxidative stress induced by perfluorooctanoic acid (PFOA) in the brain and liver tissues of Balb/c mice as well as protective effects of taurine and coenzyme Q10 (CoQ10) in both organs. For this purpose, animals were treated with PFOA (15 and 30 mg/kg) orally and their lipid peroxidation, total glutathione levels (GSH), and antioxidant enzyme activities measured and both tissues analysed for histopathological changes. Our results showed a dose-dependent decrease in body weight and increase in relative brain and liver weights, PFOA-induced lipid peroxidation and reduced glutathione peroxidase (GPx) activity in the brain tissue, and changes in GSH levels, GPx, superoxide dismutase (Cu-Zn SOD), and catalase (CAT) activities in the liver tissue. Pre-treatment with taurine or CoQ10 provided protection against PFOA-induced Cu-Zn SOD reduction in the liver tissue. Our findings evidence the depleting effect of PFOA on antioxidative systems and confirm that PFOA exerts its (neuro)toxicity through oxidative stress, but further research is needed to identify the exact toxicity mechanisms, especially in the brain.
Collapse
|
20
|
Wang TT, Wang S, Shao S, Wang XD, Wang DY, Liu YS, Ge CJ, Ying GG, Chen ZB. Perfluorooctanoic acid (PFOA)-induced alterations of biomolecules in the wetland plant Alismaorientale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153302. [PMID: 35066035 DOI: 10.1016/j.scitotenv.2022.153302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been widely studied by researchers due to their environmental persistence, chemical stability and potential toxicity. Some researchers have reported the physiological and biochemical toxicity of PFASs on plants through traditional and innovative methods; however, the changes in biological macromolecules caused by PFASs are rarely studied. Here, Fourier transform infrared spectroscopy (FTIR) was used to study how exposure to perfluorooctanoic acid (PFOA) alters the structure and function of biomolecules of the wetland plant Alisma orientale. Biomass results showed that PFOA had negative effects on plant growth. FTIR results showed that PFOA could result in changes in the structures, compositions, and functions of lipids, proteins and DNA in plant cells. In the treatment groups, the ratios of CH3 to lipids and carbonyl esters to lipids increased compared with the control, while the ratios of CH2 to lipids and olefinicCH to lipids decreased, which indicated lipid peroxidation caused by PFOA exposure. Changes in the compositions and secondary structures of proteins were also found, which were indicated by the decreased ratio of amide I to amide II and the increased ratio of β-sheet to α-helix in the treatment groups compared to the control. Moreover, PFOA affected the composition of DNA by promoting the B- to A-DNA transition. These results showed that the mechanism of PFOA toxicity toward plants at the biochemical level could be illustrated by FTIR.
Collapse
Affiliation(s)
- Tuan-Tuan Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Sai Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Shuai Shao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Xiao-Di Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ding-Ying Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Cheng-Jun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou, Hainan Province 570228, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhong-Bing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
22
|
Nasr M, Abd-Allah H, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. A comparative study between curcumin and curcumin nanoemulsion on high-fat, high-fructose diet-induced impaired spermatogenesis in rats. J Pharm Pharmacol 2022; 74:268-281. [DOI: 10.1093/jpp/rgab172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Objectives
Curcumin is a promising nutraceutical with reported diverse therapeutic properties, but of limited oral bioavailability. The current manuscript investigates the role of encapsulation of curcumin in nanoemulsion form in counteracting the adverse effect of chronic ingestion of a high-fat high-fructose diet (HFHF) by juvenile male rats regarding testicular abnormalities and declined spermatogenesis.
Methods
Curcumin nanoemulsion was administered orally to Wistar rats at a dose of 5 or 10 mg/kg and compared with curcumin powder, followed by a pharmacological and histological assessment.
Key findings
Results demonstrated that curcumin nanoemulsion was superior to curcumin powder, particularly in enhancing the percentage progressive motility of spermatozoa, normalization of essential and non-essential amino acids in semen, normalization of serum leptin and testosterone levels, as well as normalization of oxidative and nitrosative parameters. It was also proven to reduce testicular DNA fragmentation, while elevating testicular cellular energy. In addition, curcumin nanoemulsion administered at a dose of 10 mg/kg induced the highest level of spermatogenesis, delineated by histological examination of the seminiferous tubules.
Conclusions
It can be concluded that curcumin nanoemulsion administered at a dose of 10 mg/kg successfully ameliorates the adverse effects of a HFHF on spermatogenesis.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
23
|
Zou C, Yan H, Wen Z, Li C, Zhang S, Ying Y, Pan P, Li Y, Li H, Li X, Wang Y, Zhong Y, Ge RS, Rao D. Perfluorotridecanoic Acid Inhibits Leydig Cell Maturation in Male Rats in Late Puberty via Changing Testicular Lipid Component. Chem Res Toxicol 2021; 34:1542-1555. [PMID: 34081457 DOI: 10.1021/acs.chemrestox.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain (C13) perfluoroalkyl carboxylic acid. Here, we report the influence of PFTrDA exposure on the maturation of rat Leydig cells in late puberty in vivo. Male Sprague-Dawley rats were administered PFTrDA by gavage of 0, 1, 5, and 10 mg/kg/day from 35 days to 56 days postpartum. PFTrDA had no effect on body weight, testis weight, and epididymis weight. It significantly decreased the serum testosterone level after 5 and 10 mg/kg exposure, while it did not alter the serum estradiol level. The serum luteinizing hormone level was markedly reduced after 10 mg/kg PFTrDA exposure, while the follicle-stimulating hormone level was unchanged. Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3 transcript levels in the testis were markedly lowered in the 1-5 mg/kg PFTrDA group and the Lhb transcript level in the pituitary in the 10 mg/kg group. CYP11A1 and HSD11B1-positive Leydig cell numbers were markedly reduced after 10 mg/kg PFTrDA exposure. Testicular triglyceride and free fatty acid (palmitic acid, oleic acid, and linoleic acid) levels were significantly reduced by PFTrDA, while Mgll (up-regulation) and Scarb1 and Elovl5 (down-regulation) expression were altered. AKT1 and AMPK phosphorylation was stimulated after 10 PFTrDA mg/kg exposure. In conclusion, PFTrDA delays the maturation of Leydig cells in late puberty mainly by altering the free fatty acid profile.
Collapse
Affiliation(s)
- Cheng Zou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Haoni Yan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Changchang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Dapang Rao
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
24
|
Wang Z, Zhang T, Wu J, Wei X, Xu A, Wang S, Wang Z. Male reproductive toxicity of perfluorooctanoate (PFOA): Rodent studies. CHEMOSPHERE 2021; 270:128608. [PMID: 33081999 DOI: 10.1016/j.chemosphere.2020.128608] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an artificial organic substance widely used for decades, which seriously threatens human health. This study aimed to identify human-relevant correlates between PFOA exposure and the male rodent reproductive system. We performed a systematic literature review of the relevant literature of PubMed, Cochrane Library databases, Web of Science and Embase from the establishment to April 2020. Studies included the effects of PFOA on the reproductive system of male rodents. The meta-analysis was performed on the basis of the following points: level of testosterone and estradiol in serum, development of reproductive organs, pathological changes of reproduction organs and parameters of semen. A series of 16 studies was enrolled in this study. The standard mean difference (SMD) for PFOA-related reproductive toxicity was summarised as -0.39 (95% confidence interval [CI]: 0.71, -0.07). The lower serum testosterone levels, decreased absolute testicular and epididymal weights, higher serum estradiol levels, elevated relative testicular and seminal vesicle weights and increased incidence of Leydig cell adenoma and percentage of abnormal sperm were observed in the exposed group compared with the control group. However, no statistical difference was found in the day of preputial separation of pups and percentage of motile sperm. In conclusion, PFOA exposure heightens the reproductive system damage in male rodents. However, many studies included in the review did not identify mechanisms by which PFOA induces changes to the male reproductive system, which is an area for additional study.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Jiajin Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Xiyi Wei
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China
| | - Aiming Xu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| | - Zengjun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
25
|
Kong L, Wu Y, Hu W, Liu L, Xue Y, Liang G. Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116556. [PMID: 33588191 DOI: 10.1016/j.envpol.2021.116556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The public around the world is increasingly concerned about male reproductive health. The impact of nickel nanoparticles (Ni NPs) on male reproductive toxicity including sperm production, motility and fertilizing capacity has been confirmed by our previous researches. In the current study of Ni NPs-inducing toxicity, the expression profiles of piRNAs and their predicted target genes associated with male infertility, were obtained. The results showed that piR-mmu-32362259 was the highest differential expression multiples in both the testis tissues of male mice and GC-1 cells similarly. Notably, piR-mmu-32362259 target gene was significantly enriched in the PI3K-AKT signaling pathway. All these results suggest that piR-mmu-32362259 may affect the occurrence and development of injury in the mouse spermatogenesis process by regulating the PI3K-AKT signaling pathway. In order to verify the result, piR-mmu-32362259 low-expression lentivirus was used to transfect GC-1 cells to establish a stable transfected cell model. The effects of piR-mmu-32362259 on the viability, cycle and apoptosis as well as related protein expression levels of GC-1 cells induced by Ni NPs were detected using CCK8, flow cytometry and western blot assay, respectively. The results showed that low expression of piR-mmu-32362259 could not only alleviate the decrease of GC-1 cell viability, affect the cell cycle and reduce the apoptosis rate, but also significantly affect the expression levels of key proteins and their downstream molecules of PI3K/AKT/mTOR signaling pathway. Collectively, our current results provide a theoretical basis for further exploring the molecular regulatory mechanism of male reproductive toxicity induced by Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yongya Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Wangcheng Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Lin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
26
|
Shao W, Xu J, Xu C, Weng Z, Liu Q, Zhang X, Liang J, Li W, Zhang Y, Jiang Z, Gu A. Early-life perfluorooctanoic acid exposure induces obesity in male offspring and the intervention role of chlorogenic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115974. [PMID: 33218772 DOI: 10.1016/j.envpol.2020.115974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 05/28/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging organic pollutant (EOP) hazardous to human health. Effects of maternal PFOA exposure on offspring as well as the underlying mechanisms remain unclear. In this study, ICR mouse models of gestational low PFOA exposure (0.05 mg/kg/day) were established to investigate the roles on metabolic disorders of offspring. Body weight, body composition, hepatic lipid levels, transcriptome and metabolome were analyzed. Expression of genes related to lipid metabolism, inflammasome formation and gut barrier integrity were measured. Furthermore, oral administration of chlorogenic acid (CGA) (100 mg/kg/day) was performed to observe the rescue effect on lipid disorders caused by PFOA exposure. Our findings demonstrated that gestational exposure to PFOA resulted in obesity, hepatic inflammation, disorders of lipid metabolism, and disruption of gut barrier integrity in male offspring. Notably, these adverse effects were attenuated by CGA supplementation. These data suggested that PFOA exposure during early life stage induced potential risks for later onset of obesity and metabolic disorder which could be ameliorated by CGA treatment.
Collapse
Affiliation(s)
- Wentao Shao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China; School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, PR China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yi Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China; School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
27
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|
28
|
Yang Y, Meng K, Chen M, Xie S, Chen D. Fluorotelomer Alcohols' Toxicology Correlates with Oxidative Stress and Metabolism. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:71-101. [PMID: 33866421 DOI: 10.1007/398_2020_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are widely used as industrial raw materials due to their unique hydrophobic and oleophobic properties. However, because of accidental exposure to products containing FTOHs or with the widespread use of FTOHs, they tend to contaminate the water and the soil. There are reports demonstrating that FTOHs can cause various harmful effects in animals and humans (for example, neurotoxicity, hepatotoxicity, nephrotoxicity, immunotoxicity, endocrine-disrupting activity, and developmental and reproductive toxicities). Oxidative stress is related to a variety of toxic effects induced by FTOHs. To date, few reviews have addressed the relationship between the toxicity of FTOHs and oxidative stress. This article summarises research demonstrating that the toxicity induced by FTOHs correlates with oxidative stress and metabolism. Furthermore, during the metabolic process of FTOHs, a number of cytochrome P450 enzymes (CYP450) are involved and many metabolites are produced by these enzymes, which can induce oxidative stress. This is also reviewed.
Collapse
Affiliation(s)
- Yujuan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Min Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Lin T, Zhang Y, Ding X, Huang T, Zhang W, Zou W, Kuang H, Yang B, Wu L, Zhang D. Perfluorooctanoic acid induces cytotoxicity in spermatogonial GC-1 cells. CHEMOSPHERE 2020; 260:127545. [PMID: 32653749 DOI: 10.1016/j.chemosphere.2020.127545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane acid (PFOA), a typical perfluorinated chemical, has been suggested to interfere with male reproductive function. In this study, mouse spermatogonial GC-1 cells were in vitro treated with PFOA (250, 500 or 750 μM) for 24 h to investigate the cytotoxicity of PFOA and its underlying mechanisms. Our results indicated that exposure to intermediate and high doses of PFOA suppressed the viability of GC-1 cells in a concentration-dependent manner. Furthermore, PFOA treatment markedly enhanced the generation of reactive oxygen species and malondialdehyde, with diminished activity of superoxide dismutase. Particularly, PFOA exposure evoked a decline in mitochondrial membrane potential and ATP production. Furthermore, the apoptotic index and caspase-3 activity were significantly elevated after treatment with PFOA. In addition, PFOA incubation caused an increase in LC3B-II/LC3B-I ratio. Meanwhile, PFOA resulted in an excessive accumulation of autophagosomes in the cytoplasm. Taken together, exposure to PFOA can elicit cytotoxicity to spermatogonial GC-1 cells in vitro, which may be link to the mitochondrial oxidative damage and induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Yurong Zhang
- Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Xinbao Ding
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Huang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Wenjuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Weiying Zou
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Lei Wu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Dalei Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
30
|
Song L, Liu J, Shi T, Zhang Y, Xin Z, Cao X, Yang J. Angiotensin‐(1‐7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB J 2020; 34:16291-16306. [PMID: 33078906 DOI: 10.1096/fj.202001639r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Li‐Ni Song
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Jing‐Yi Liu
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Ting‐Ting Shi
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Yi‐Chen Zhang
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Zhong Xin
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Xi Cao
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| | - Jin‐Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care Department of Endocrinology Beijing Diabetes Institute Beijing Tongren Hospital Capital Medical University Beijing China
| |
Collapse
|
31
|
Lin CY, Lee HL, Hwang YT, Su TC. The association between total serum isomers of per- and polyfluoroalkyl substances, lipid profiles, and the DNA oxidative/nitrative stress biomarkers in middle-aged Taiwanese adults. ENVIRONMENTAL RESEARCH 2020; 182:109064. [PMID: 31884197 DOI: 10.1016/j.envres.2019.109064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used in consumer products. In vitro and animal studies have demonstrated that exposure to perfluorooctanoic acid (PFOA) and/or perfluorooctane sulfonate (PFOS) increases oxidative/nitrative stress. Recent studies have also found that isomers of PFOA/PFOS may have unique biological effects on clinical parameters. However, the correlation between PFOA/PFOS isomers and markers of oxidative/nitrative stress has never been investigated in the general population. In the current study, 597 adult subjects (ages between 22 and 63 years old) were enrolled from a control group of a case-control study entitled "Work-related risk factors and coronary heart disease". We investigated the correlation between the serum isomers of PFOA/PFOS, lipid profiles, and the urine compounds 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO2Gua) in these participants. There were 519 men and 78 women with a mean age of 45.8 years. Linear PFOA levels were positively correlated with serum low density lipoprotein cholesterol (LDL-C), small dense LDL, and triglyceride, and linear PFOS levels were positively correlated with LDL-C and HDL-C in multiple linear regression analyses. After controlling for potential confounders, the mean levels of 8-OHdG and 8-NO2Gua significantly increased across the quartiles of linear PFOS in multiple linear regression analyses. When both the 8-OHdG and 8-NO2Gua levels were above the 50th percentile, the odds ratio (OR) of higher levels of LDL-C (>75th percentile) with one unit increase in ln linear PFOS level was the highest (OR 3.15 (95% CI = 1.45-6.64), P = 0.003) in logistic regression models. In conclusion, serum linear PFOA/PFOS were correlated with lipid profiles, and linear PFOS was associated with urine oxidative/nitrative stress biomarkers. The positive correlation between linear PFOS and LDL-C was more marked when concentrations of urine oxidative/nitrative stress biomarkers were elevated. Further studies are needed to elucidate the causal relationships among PFAS isomers, lipid profiles, and oxidative/nitrative stress.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
32
|
Yuan Y, Ding X, Cheng Y, Kang H, Luo T, Zhang X, Kuang H, Chen Y, Zeng X, Zhang D. PFOA evokes extracellular Ca 2+ influx and compromises progesterone-induced response in human sperm. CHEMOSPHERE 2020; 241:125074. [PMID: 31627108 DOI: 10.1016/j.chemosphere.2019.125074] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane acid (PFOA), a persistent organic pollutant, is ubiquitously present in the environment and may detrimentally affect male reproductive health. In this study, mature human sperm were in vitro exposed to different concentrations of PFOA (0.25, 2.5 or 25 μg/ml) alone or in combination with progesterone (P4) to evaluate the toxicity and the potential mechanism of action. Exposure to high-dose PFOA (25 μg/ml) alone for 4 h caused a decline in capacity of human spermatozoa to penetrate synthetic mucus, with an increased production of reactive oxygen species (ROS). Furthermore, PFOA treatment (2.5 and 25 μg/ml) evoked a transient rise in intracellular calcium concentration [Ca2+]i by activating the sperm-specific CatSper channel. However, preincubation with PFOA (2.5-25 μg/ml) for 4 h significantly suppressed P4-stimulated extracellular Ca2+ influx in human spermatozoa. Moreover, PFOA pretreatment at all concentrations evaluated markedly compromised P4-induced acrosome reaction and sperm penetration into viscous medium. Taken together, these results suggest that PFOA exposure may impair human sperm function through inducing oxidative stress and disturbing P4-induced Ca2+ signaling.
Collapse
Affiliation(s)
- Yangyang Yuan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Xinbao Ding
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Xiaoning Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Xuhui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, 330031, PR China.
| | - Dalei Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
33
|
Li R, Zhou S, Zhu H, Zhang Z, Fang J, Liu P, Wang Y, Chang X, Zhang Y, Tang L, Zhou Z. Low dose of flurochloridone affected reproductive system of male rats but not fertility and early embryonic development. Reprod Biol Endocrinol 2019; 17:64. [PMID: 31387587 PMCID: PMC6685282 DOI: 10.1186/s12958-019-0508-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/28/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Fluorochloridone (FLC) is a widely used herbicide, and its target organs are testes and epididymides. The Globally Harmonized System of Classification and Labelling of Chemicals classified FLC as Level 2-possibly cause fertility or fetal damage (no relevant data support). The maximum residue levels of FLC in processed crops have been reviewed in the latest European Food Safety Authority (EFSA) report in 2018. However, the toxic effect of FLC on fertility and early embryonic development is limited, and the health risk assessment of FLC needs further consideration. This study investigated the potential effects of FLC on fertility and early embryonic development in rats. METHODS One hundred rats of each sex were divided into four groups including three FLC-treated groups at doses of 2 mg/kg, 5 mg/kg and 15 mg/kg, and a vehicle control group (0.5% (w/v) sodium carboxymethyl cellulose). Male and female rats were dosed for 9 and 2 consecutive weeks, intragastrically, prior to cohabitation and lasted throughout the mating period for males and continued until Gestation Day 7 (GD7) for females. Parameters such as weights and coefficients of reproductive organs, epididymal sperm number and motility, indexes of copulation, fecundity and fertility indexes, mating period, estrous cycle, corporalutea number, implantations, live, dead and resorbed fetuses, preimplantation loss rate, and postimplantation loss rate were observed in this study. RESULTS Obvious toxicity of male reproductive system was found at the dose of 15 mg/kg including decreases in testicular and epididymal weight, also in sperm motility rate. Whereas the increase in sperm abnormality rate was observed. However, no significant effects of FLC were found on lutea count, implantations count, fetuses count and weight, live fetuses count (rate), dead fetuses count (rate), resorbed fetuses count (rate), placentas weight, fetuses gender, preimplantation loss (rate) and postimplantation loss (rate). Furthermore, FLC had no adverse effects on fertility and early embryonic development in rats. CONCLUSION The no-observable-adverse-effect level (NOAEL) of FLC on fertility and early embryonic development in rats was considered to be 5 mg/kg/day.
Collapse
Affiliation(s)
- Rui Li
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Su Zhou
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Hongyan Zhu
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Zhichao Zhang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Jing Fang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Ping Liu
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Yu Wang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, 201203, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory for Public Health Safety/NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Tian YP, Zeng XW, Bloom MS, Lin S, Wang SQ, Yim SHL, Yang M, Chu C, Gurram N, Hu LW, Liu KK, Yang BY, Feng D, Liu RQ, Nian M, Dong GH. Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China. ENVIRONMENT INTERNATIONAL 2019; 124:130-138. [PMID: 30641256 DOI: 10.1016/j.envint.2019.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Previous investigations on the associations of polyfluoroalkyl substances (PFASs) with overweight/obesity are mixed. Moreover, little information has been reported about the association between isomers of PFASs with body mass index (BMI), waist circumference (WC) or overweight. To address this shortcoming in the literature, we conducted a study involving 1612 Chinese adults (1204 men and 408 women), ages 22-96 years old, from Shenyang, China, to analyze serum isomers of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other PFASs. Height, weight and WC were measured by a standardized protocol of WHO. Results indicated that increased serum concentrations of all (both branched and linear) isomers of PFASs were associated with a higher prevalence of overweight, and these associations were more pronounced in women. The adjusted odds ratios (ORs) from logistic regression analyses among women were 1.45 (95% confidence interval [CI]: 1.06, 1.99) for linear PFOS isomers, 1.33 (95% CI: 1.00, 1.77) for branched PFOS isomers, 1.39 (95% CI: 1.06, 1.81) for 3 + 4 + 5m PFOS, 1.54 (95% CI: 1.08, 2.21) for linear PFOA isomers, and 1.62 (95% CI: 1.05, 2.51) for branched PFOA isomers, respectively. Associations with increased WC were yielded a similar pattern. Linear regression models also showed positive associations between PFASs and BMI or WC. In conclusion, this study suggests that PFASs and their isomers are positively associated with overweight or increased WC, and the associations are stronger in women. Furthermore, PFOA and its isomers displayed the most robust obesogenic associations.
Collapse
Affiliation(s)
- Yan-Peng Tian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shao Lin
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Si-Quan Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mo Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kang-Kang Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Feng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Nian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
Wang X, Kong B, He B, Wei L, Zhu J, Jin Y, Shan Y, Wang W, Pan C, Fu Z. 8:2 Fluorotelomer alcohol causes immunotoxicity and liver injury in adult male C57BL/6 mice. ENVIRONMENTAL TOXICOLOGY 2019; 34:141-149. [PMID: 30536526 DOI: 10.1002/tox.22668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
8:2 Fluorotelomer alcohol (8:2 FTOH) is widely used in houseware and industrial goods and is ubiquitous in the surrounding environment. 8:2 FTOH has been linked to hepatoxicity, nephrotoxicity, and reproductive toxicity, as well as endocrine-disrupting effects. However, as of yet, the research regarding immunotoxicity of 8:2 FTOH remains largely limited. In the present study, adult male C57BL/6 mice were administered with 10, 30, and 100 mg/kg/d 8:2 FTOH by gavage for 28 days to investigate its immunotoxicity in vivo. The results showed that exposure to 8:2 FTOH caused increases in liver weight and histological changes in the liver, including vacuolation, cell swelling, immune cell infiltration, karyopyknosis and nuclear swelling. No histological change in either the spleen or the thymus was observed after administration of 8:2 FTOH. In addition, exposure to 8:2 FTOH reduced the concentration of IL-1β in serum, and mRNA levels of IL-1β, IL-6, and TNF-α in both the thymus and spleen. CXCL-1 mRNA expression was downregulated in both the liver and thymus after 8:2 FTOH administration, while only IL-1β mRNA expression was upregulated in the liver. Moreover, the exposure of primary cultured splenocytes to 8:2 FTOH inhibited the ConA-stimulated proliferation of splenocytes at concentrations of 30 and 100 μM, and the LPS-stimulated proliferation of splenocytes at 100 μM. Furthermore, 8:2 FTOH inhibited the level of secreted IFN-γ in ConA-stimulated splenocytes. The results obtained in the study demonstrated that 8:2 FTOH posed potential immunotoxicity and liver injury in mice. Our findings will provide novel data for the health risk assessment of 8:2 FTOH.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Shan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
36
|
López-Arellano P, López-Arellano K, Luna J, Flores D, Jiménez-Salazar J, Gavia G, Teteltitla M, Rodríguez JJ, Domínguez A, Casas E, Bahena I, Betancourt M, González C, Ducolomb Y, Bonilla E. Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries. ENVIRONMENTAL TOXICOLOGY 2019; 34:92-98. [PMID: 30277307 DOI: 10.1002/tox.22661] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acid family of compounds. Due to the presence of strong carbon-fluorine bonds, it is practically nonbiodegradable and highly persistent in the environment. PFOA has been detected in the follicular fluid of women, and positively associated with reduced fecundability and infertility. However, there are no reports concerning the experimental evaluation of PFOA on oocyte toxicity in mammals. The aim of the present study was to determine if PFOA is able to induce oxidative stress in fetal ovaries and cause apoptosis in oocytes in vitro. In addition, since inhibition of the gap junction intercellular communication (GJIC) by PFOA has been demonstrated in liver cells in vivo and in vitro, the effect of PFOA on the GJIC between the oocyte and its supportive cumulus cells was studied. Results show that PFOA induced oocyte apoptosis and necrosis in vitro (medium lethal concentration, LC50 = 112.8 μM), as evaluated with Annexin-V-Alexa 508 in combination with BOBO-1 staining. Reactive oxygen species (ROS) levels, as assessed by DCFH-DA, increased significantly in fetal ovaries exposed to ¼ LC50 (28.2 μM, a noncytotoxic and relevant occupational exposure concentration) and LC50 PFOA ex vivo. This perfluorinated compound also caused the blockage of GJIC in cumulus cells-oocyte complexes (COCs) obtained from female mice exposed in vivo, as evaluated by calcein transfer from cumulus cells to the oocyte. The ability of PFOA of disrupting the GJIC in COCs, generating ROS in the fetal ovary and causing apoptosis and necrosis in mammal's oocytes, might account for the reported association between increasing maternal plasma concentrations of PFOA with reduced fertility in women.
Collapse
Affiliation(s)
- Patricia López-Arellano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
- Maestría en Biología de la Reproducción Animal, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Keila López-Arellano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Jaquelinne Luna
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Diana Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Javier Jiménez-Salazar
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Graciela Gavia
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Mario Teteltitla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Juan José Rodríguez
- Unidad de Investigación en Genética y Toxicología Ambiental, FES-Zaragoza, UNAM, CDMX, Mexico
| | - Alejandro Domínguez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Eduardo Casas
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Ivan Bahena
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Miguel Betancourt
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Cristina González
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Yvonne Ducolomb
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| | - Edmundo Bonilla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, Mexico
| |
Collapse
|
37
|
Steves AN, Turry A, Gill B, Clarkson-Townsend D, Bradner JM, Bachli I, Caudle WM, Miller GW, Chan AWS, Easley CA. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model. Syst Biol Reprod Med 2018; 64:225-239. [PMID: 29911897 DOI: 10.1080/19396368.2018.1481465] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. ABBREVIATIONS CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.
Collapse
Affiliation(s)
- Alyse N Steves
- a Genetics and Molecular Biology Program , Laney Graduate School, Emory University , Atlanta , GA , USA
| | - Adam Turry
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - Brittany Gill
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | | | - Joshua M Bradner
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Ian Bachli
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA
| | - W Michael Caudle
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Gary W Miller
- d Rollins School of Public Health , Emory University , Atlanta , GA , USA
| | - Anthony W S Chan
- e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA.,f Department of Human Genetics , Emory University , Atlanta , GA , USA
| | - Charles A Easley
- b College of Public Health , University of Georgia , Athens , GA , USA.,c Regenerative Bioscience Center , University of Georgia , Athens , GA , USA.,e Division of Neuropharmacology and Neurologic Diseases , Yerkes National Primate Research Center , Atlanta , GA , USA
| |
Collapse
|
38
|
Liu H, Wang J, Sheng N, Cui R, Pan Y, Dai J. Acot1 is a sensitive indicator for PPARα activation after perfluorooctanoic acid exposure in primary hepatocytes of Sprague-Dawley rats. Toxicol In Vitro 2017; 42:299-307. [DOI: 10.1016/j.tiv.2017.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
|
39
|
Zhang L, Zhang H, Zhang H, Benson M, Han X, Li D. Roles of piRNAs in microcystin-leucine-arginine (MC-LR) induced reproductive toxicity in testis on male offspring. Food Chem Toxicol 2017; 105:177-185. [PMID: 28414124 DOI: 10.1016/j.fct.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
40
|
Yuan Y, Ge S, Lv Z, Wu M, Kuang H, Yang B, Yang J, Wu L, Zou W, Zhang D. Attenuation of perfluorooctanoic acid-induced testicular oxidative stress and apoptosis by quercetin in mice. RSC Adv 2017. [DOI: 10.1039/c7ra09036f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quercetin treatment attenuated PFOA-induced oxidative stress and apoptosis in the testes of mice.
Collapse
|