1
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Tan A, Wang H, Zhang H, Zhang L, Yao H, Chen Z. Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ 2024; 12:e18001. [PMID: 39346031 PMCID: PMC11430171 DOI: 10.7717/peerj.18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.
Collapse
Affiliation(s)
- Aobo Tan
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hui Wang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hehe Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hanyue Yao
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhi Chen
- Department of Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
3
|
Ahmed M, Fonseca Acosta N, Garcia Hernandez H, Dupont C. Comprehensive assessment of cow manure hydrothermal treatment products for land application and energy recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122168. [PMID: 39178792 DOI: 10.1016/j.jenvman.2024.122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
In this study, cow manure was hydrothermally treated in a 2-litre reactor for 1 h at temperatures between 100 °C and 260 °C. Both the raw manure and the solid and liquid products of the hydrothermal treatment were characterized to understand the fate of the inorganic elements and to assess the suitability of the products for land applications and energy recovery. Satisfactory elemental balances were obtained for the organic and most inorganic elements and indicated that most inorganic elements were incorporated into the solids with lower solubility, with the exception of potassium and sodium, which were mostly solubilized in the process water; calcium and chlorine were also solubilized to a lesser extent in the process water. Elemental composition and surface functional groups showed that hydrochar produced within the hydrothermal carbonization range (180-260 °C) seemed better suited for utilization as a soil amendment than raw cow manure. The potential for energy recovery lies in the anaerobic digestion of the process water, from which higher methane yields can be obtained than from raw cow manure. Lower temperatures in hydrothermal carbonization are considered a compromise for the safe land applications of cow manure, energy recovery from the process water, and enhanced dewaterability. These findings can help to eliminate bottlenecks in the upscaling of cow manure hydrothermal treatment and promote the circular bio-economy.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Natthalie Fonseca Acosta
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Hector Garcia Hernandez
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Sanitary Engineering, Central-South Regional Technological Institute, Technological University of Uruguay (UTEC), Maciel s/n esq. Luis Morquio, Durazno, Uruguay
| | - Capucine Dupont
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| |
Collapse
|
4
|
Ashrafi F, Heidari A, Farzam M, Karimi A, Amini M. The interactions of Cr (VI) concentrations and amendments (biochar and manure) on growth and metal accumulation of two species of Salicornia in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:201-218. [PMID: 35896883 DOI: 10.1007/s11356-022-22138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are among the most dangerous contaminants in the environment. Organic components and plant species that can accumulate and stabilize heavy metals in their organs are a good option for soil remediation of these elements. Therefore, this study aimed to investigate the effects of manure and biochar on the accumulation of heavy metals by Salicornia species. Salicornia persica Akhani and Salicornia perspolitana Akhani were cultivated outdoor in experimental pots. The effects of experimental treatments, including Cr (VI) concentrations, manure, and biochar on the two studied species, were investigated. The results indicated a significant effect (p < 0.05) of biochar on the accumulation of heavy metals by two species, S. persica and S. perspolitana, so that Cr concentrations in the roots and shoots were 258 and 5.41 mg/kg, respectively. In addition, Cr accumulations under manure treatments in the roots and shoots were 334.34 and 9.79 mg/kg, respectively. The content of photosynthetic pigments in both S. persica and S. perspolitana species under biochar treatment was higher than in control and manure treatments. In general, one can conclude that the accumulation of Cr in S. perspolitana was higher than in S. persica. Applying biochar and manure amendments could stabilize Cr in soil and reduce Cr accumulation in both S. persica and S. perspolitana species.
Collapse
Affiliation(s)
- Fahime Ashrafi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ava Heidari
- Department of Environmental Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Farzam
- Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Karimi
- Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Malihe Amini
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, P.O. Box: 8767161167, Jiroft, Kerman, Iran.
| |
Collapse
|
5
|
Wani KI, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120350. [PMID: 36209933 DOI: 10.1016/j.envpol.2022.120350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) pollution has become a serious global problem due to the non-biodegradable nature of the HMs and their persistence in the environment. Agricultural soil is a non-renewable resource that requires careful management so that it can fulfill the increasing demand for agricultural food production. However, different anthropogenic activities have resulted in a large-scale accumulation of HMs in soil which is detrimental to soil and plant health. Due to their ubiquity, increased bioavailability, toxicity, and non-biodegradable nature, HM contamination has formed a roadblock in the way of achieving food security, safety, and sustainability in the future. Chromium (Cr), specifically Cr(VI) is a highly bioavailable HM with no proven role in the physiology of plants. Chromium has been found to be highly toxic to plants, with its toxicity also influenced by chemical speciation, which is in turn controlled by different factors, such as soil pH, redox potential, organic matter, and microbial population. In this review, the different factors that influence Cr speciation were analyzed and the relationship between biogeochemical transformations of Cr and its bioavailability which may be beneficial for devising different Cr remediation strategies has been discussed. Also, the uptake and transport mechanism of Cr in plants, with particular reference to sulfate and phosphate transporters has been presented. The biological solutions for the remediation of Cr contaminated sites which offer safe and viable alternatives to old-style physical and chemical remediation strategies have been discussed in detail. This review provides theoretical guidance in developing suitable approaches for the better management of these remediation strategies.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
6
|
Tao X, Chen F, Li J, Liu Y, Hu X, Chen R. Efficient promotion of Cr(VI) removal over Bi2S3 nanoparticles with cupric ions: Potential applications in electroplating wastewater and contaminated groundwater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Qing Z, Guijian L, Shuchuan P, Chuncai Z, Arif M. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue. CHEMOSPHERE 2022; 305:135438. [PMID: 35750229 DOI: 10.1016/j.chemosphere.2022.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The presence of excessive hexavalent chromium (Cr(VI)) in the contaminated soils and plants has become a global environmental issue due to its toxicity and carcinogenicity. This work investigated the feasibility of immobilizing Cr(VI) in the soil-plant environment using calcium silicate hydrate (C-S-H) synthesized from coal gangue. The results revealed that the C-S-H amendment increased soil pH and organic matter (OM), which further promoted Cr(VI) immobilization. Results also revealed that exchangeable and carbonate bound fractions of Cr were either converted into Fe/Mn oxide and OM bound fractions of Cr or hardly released residual fraction of Cr due to C-S-H treatment. The C-S-H accelerated conversion of Cr(VI) into Cr(III) promoting plant growth and alleviating the toxic effect of Cr(VI). Cr(VI) was mainly immobilized and accumulated in the plant roots which resulted in comparatively lower Cr(VI) content in the edible part of plants. The exchangeable fraction of Cr in soil could be used as a bioavailability evaluation index of Cr(VI) in plants. In short, C-S-H was proved to be a practical and environmentally friendly amendment for in-situ immobilization of Cr(VI) contaminated soil.
Collapse
Affiliation(s)
- Zhang Qing
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Liu Guijian
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Shuchuan
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Zhou Chuncai
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| |
Collapse
|
8
|
Bacterial biofilm mediated bioremediation of hexavalent chromium: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhang L, He F, Guan Y. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128382. [PMID: 35739652 DOI: 10.1016/j.jhazmat.2022.128382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
10
|
Thalassinos G, Nastou E, Petropoulos SA, Antoniadis V. Soil dynamics of Cr(VI) and responses of Portulaca oleracea L. grown in a Cr(VI)-spiked soil under different nitrogen fertilization regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14469-14478. [PMID: 34617214 DOI: 10.1007/s11356-021-16413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The reduction potential of the highly toxic Cr(VI) to the inert Cr(III) in an alkaline soil was studied during a 50-day experiment with Portulaca oleracea L. grown in pots. We aimed at assessing whether our test species can be a phytoremediation candidate for Cr(VI)-contaminated soils. We measured the Cr(VI) reduction rate in soil, determined the Cr(VI) and Cr(III) concentrations in aerial and root P. oleracea tissues, and calculated the transfer coefficient (TC = metal in plant over metal in soil) and the translocation factor (TF = metal in aerial biomass over metal in roots) in order to assess Cr(VI) uptake and distribution in plant tissues, while we also studied the effect of added nitrogen in the studied parameters. We added five different Cr(VI) levels (from the unamended T-0 to the treatment of T-4 = 150 mg Cr(VI) kg-1 soil) and also had two N levels (equivalent to 0 and 200 kg ha-1). The results indicated that Cr in plant tissues was mainly found in its reduced form (Cr(III)) and only a minor fraction of Cr was detected in its oxidized form (Cr(VI)), with only 1.04% of plant Cr being hexavalent at T-4 with no added N and 1.30% at T-4 with added N. The main remediation mechanism was found to be that of the naturally occurring Cr(VI) reduction that effectively produced Cr(III), followed by the uptake of Cr(VI) from our test plants (at T-4 with no N, 58% of soil added Cr(VI) was reduced and 0.1% absorbed, while at T-4 with added N, 63% was reduced and only 0.4% absorbed by plant). We also found that Cr(VI) in P. oleracea tissues was mainly found in roots and relatively low Cr(VI) concentrations were found in the above-ground tissues. We concluded that P. oleracea is a tolerant plant species, especially if assisted with a sufficient level of N fertilization, although it failed to approach the threshold of being categorized as an accumulator species. However, as this is a rather preliminary experiment, before reaching more conclusive suggestions about P. oleracea as a potential phytoremediation species, further investigation is necessary in order to verify the gained results with naturally contaminated soils with Cr under field conditions.
Collapse
Affiliation(s)
- Georgios Thalassinos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, GR384 46, Volos, Greece
| | - Elina Nastou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, GR384 46, Volos, Greece
| | - Spyridon A Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, GR384 46, Volos, Greece
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, GR384 46, Volos, Greece.
| |
Collapse
|
11
|
Wang Y, Yang J, Han H, Hu Y, Wang J, Feng Y, Yu B, Xia X, Darma A. Differential transformation mechanisms of exotic Cr(VI) in agricultural soils with contrasting physio-chemical and biological properties. CHEMOSPHERE 2021; 279:130546. [PMID: 33894520 DOI: 10.1016/j.chemosphere.2021.130546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The transformation mechanisms of Cr(VI) in agricultural soils at the molecular level remain largely unknown due to the multitude of abiotic and biotic factors. In this study, the different speciation and distribution of Cr in two types of agricultural soil (Ultisol and Fluvo-aquic soils) after two weeks of aging was investigated using synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy, microfocused X-ray fluorescence (μ-XRF) and X-ray transmission microscopy (STXM). The microbial community structure of the two soils was also analyzed via high-throughput sequencing of 16S rRNA. Cr(VI) availability was relatively lower in the Ultisol than in the Fluvo-aquic soil after aging. Cr K-edge bulk XANES and STXM analysis indicated that Cr(VI) was reduced to Cr(III) in both soils. μ-XRF analysis and STXM analysis indicated the predominant association of Cr with Mn/Fe oxides and/or organo-Fe oxides in both soils. Additionally, STXM-coupled imaging and multiedge XANES analyses demonstrated that carboxylic groups were involved in the reduction of Cr(VI) and subsequent retention of Cr(III). 16S rRNA analysis showed considerably different bacterial communities across the two soils. Redundancy analysis (RDA) suggested that soil properties, including the total carbon content, Fe oxide component and pH, were closely linked to Cr(VI)-reducing functional bacteria in the Ultisol, including chromium-reducing bacteria (CRB) (e.g., Bacillus sp.) and dissimilatory iron-reducing (DIRB) (e.g., Shewanella sp.) bacteria, which possibly promoted Cr(VI) reduction. These findings shed light on the molecular-level transformation mechanisms of Cr(VI) in agricultural soils, which facilitates the effective management of Cr-enriched farmland.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; College of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Yongfeng Hu
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK, S7N 2V3, Canada
| | - Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Baoshan Yu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
12
|
Xia S, Song Z, Jeyakumar P, Bolan N, Wang H. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1543-1567. [PMID: 31673917 DOI: 10.1007/s10653-019-00445-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is a common environmental contaminant due to industrial processes and anthropogenic activities such as mining of chrome ore, electroplating, timber treatment, leather tanning, fertilizer and pesticide, etc. Cr exists mainly in both hexavalent [Cr(VI)] and trivalent [Cr(III)] form, being Cr(VI) with non-degradability and potential to be hidden, thereby affecting surrounding environment and being toxic to human health. Therefore, researches on remediation of Cr pollution in the environment have received much attention. Biochar is a low-cost adsorbent, which has been identified as a suitable material for Cr(VI) immobilization and removal from soil and wastewater. This review incorporates existing literature to provide a detailed examination into the (1) Cr chemistry, the source and current status of Cr pollution, and Cr toxicity and health; (2) feedstock and characterization of biochar; (3) processes and mechanisms of immobilization and removal of Cr by biochar, including oxidation-reduction, electrostatic interactions, complexation, ion exchange, and precipitation; (4) applications of biochar for Cr(VI) remediation and the modification of biochar to improve its performance; (5) factors affecting removal efficiency of Cr(VI) with respect to its physico-chemical conditions, including pH, temperature, initial concentration, reaction time, biochar characteristics, and coexisting contaminants. Finally, we identify current issues, challenges, and put forward recommendations as well as proposed directions for future research. This review provides a thorough understanding of using biochar as an emerging biomaterial adsorbent in Cr(VI)-contaminated soils and wastewater.
Collapse
Affiliation(s)
- Shaopan Xia
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Souza LRR, Pomarolli LC, da Veiga MAMS. From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10205-10227. [PMID: 32064582 DOI: 10.1007/s11356-020-08032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Soil pollution with toxic elements is a recurrent issue due to environmental disasters, fossil fuel burning, urbanization, and industrialization, which have contributed to soil contamination over the years. Therefore, the remediation of toxic metals in soil is always an important topic since contaminated soil can affect the environment, agricultural safety, and human health. Many remediation methods have been developed; however, it is essential to ensure that they are safe, and also take into account the limitation of each methodology (including high energy input and generation of residues). This scenario has motivated this review, where we explore soil contamination with arsenic, lead, mercury, and chromium and summarize information about the methods employed to remediate each of these toxic elements such as phytoremediation, soil washing, electrokinetic remediation, and nanoparticles besides elucidating some mechanisms involved in the remediation. Considering all the discussed techniques, nowadays, different techniques can be combined together in order to improve the efficiency of remediation besides the new approach of the techniques and the use of one technique for remediating more than one contaminant.
Collapse
|
14
|
Palansooriya KN, Shaheen SM, Chen SS, Tsang DCW, Hashimoto Y, Hou D, Bolan NS, Rinklebe J, Ok YS. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. ENVIRONMENT INTERNATIONAL 2020; 134:105046. [PMID: 31731004 DOI: 10.1016/j.envint.2019.105046] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 05/18/2023]
Abstract
Soil contamination by potentially toxic elements (PTEs) has led to adverse environmental impacts. In this review, we discussed remediation of PTEs contaminated soils through immobilization techniques using different soil amendments with respect to type of element, soil, and amendment, immobilization efficiency, underlying mechanisms, and field applicability. Soil amendments such as manure, compost, biochar, clay minerals, phosphate compounds, coal fly ash, and liming materials are widely used as immobilizing agents for PTEs. Among these soil amendments, biochar has attracted increased interest over the past few years because of its promising surface properties. Integrated application of appropriate amendments is also recommended to maximize their use efficiency. These amendments can reduce PTE bioavailability in soils through diverse mechanisms such as precipitation, complexation, redox reactions, ion exchange, and electrostatic interaction. However, soil properties such as soil pH, and clay, sesquioxides and organic matter content, and processes, such as sorption/desorption and redox processes, are the key factors governing the amendments' efficacy for PTEs immobilization in soils. Selecting proper immobilizing agents can yield cost-effective remediation techniques and fulfill green and sustainable remediation principles. Furthermore, long-term stability of immobilized PTE compounds and the environmental impacts and cost effectiveness of the amendments should be considered before application.
Collapse
Affiliation(s)
- Kumuduni Niroshika Palansooriya
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for High Performance Soil, Callaghan, NSW-2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Liu S, Pu S, Deng D, Huang H, Yan C, Ma H, Razavi BS. Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities. ENVIRONMENT INTERNATIONAL 2020; 134:105277. [PMID: 31726366 DOI: 10.1016/j.envint.2019.105277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) contamination is especially hazardous to soil biota. Application of manure and biochar has been frequently proposed to remediate Cr-contaminated soil. However, the understanding of mechanisms behind manure and biochar impacts on soil enzyme activities requires advanced visualization technologies. For the first time, we compared manure and its biochar influence on the spatial distribution of β-glucosidase, N-acetyl-glucosaminidase and phosphomonoesterase activities in Cr-contaminated soil using direct zymography. Maize was planted for 45 days in (a) soil mixed with manure, (b) soil mixed with manure-derived biochar and (c) soil without any addition. Soil pH decreased over 45 days, inducing an increase in acid soluble Cr. The concomitant decrease in β-glucosidase and N-acetyl-glucosaminidase activities explained the narrowing rhizosphere extent of enzyme activities by 13-44%, indicating that increased Cr bioavailability decreases microbial activities. A larger maize performance index and the greatest plant shoot/root ratio after biochar application suggested enhanced maize growth (p < 0.05). In contrast, manure induced the narrowest extent of β-glucosidase and phosphomonoesterase activities due to the addition of labile organic compounds and nutrients following its application. Our study emphasizes the importance of pH on Cr bioavailability and enzyme activities and demonstrates that biochar application is more ideally suited for remediating Cr-contaminated soil.
Collapse
Affiliation(s)
- Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; College of Earth Sciences, Chengdu University of Technology, 1#Dongsanlu, Erxainqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Daili Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hongyan Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Chun Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1# Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, 401871 Frederiksberg, Denmark
| | - Bahar S Razavi
- Department of Soil Science and Plant Nutrition, University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Caporale AG, Agrelli D, Rodríguez-González P, Adamo P, Alonso JIG. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from south Italy. CHEMOSPHERE 2019; 233:92-100. [PMID: 31170588 DOI: 10.1016/j.chemosphere.2019.05.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Due to carcinogenicity of hexavalent chromium [Cr(VI)], its accurate quantification in Cr-contaminated soils is of paramount importance. The aim of this work was to quantify Cr(VI) by species-specific IDMS in soil samples from two Italian case studies: A) farmland potentially contaminated by pseudo-total Cr and Zn and heavy hydrocarbons due to past illegal burial of tannery wastes; B) Solofrana valley where volcanic soils are potentially contaminated by pseudo-total Cr and Cu due to tannery activities. Hexavalent Cr extraction from soils was performed by focused microwaves (5 min at 80 °C) using 50 mM EDTA, followed by the separation of Cr species by IC and detection by ICP-MS. The Cr(VI) extracted from 20 soil samples of case study A ranged from 0.15 to 11.18 μg g-1, with 70% of samples exceeding the Cr(VI) screening value set by Italian Parliament for residential/urban soil to assess their potential contamination. Higher levels of Cr(VI) (22.0-107.1 μg g-1) were extracted from other 7 Cr-most-enriched soil samples, which required a pre-treatment with n-hexane to remove part of organic compounds from each sample, since these reducing agents made the quantification of Cr(VI) by IDMS more challenging because they caused an almost complete reduction of 50Cr(VI) used for IDMS quantification. Hexavalent Cr extracted from soil samples of case study B ranged from 0.70 to 5.79 μg g-1, with 42% of samples exceeding the value set by Italian legislation. In both case studies, the Cr(VI) extracted from soil was significantly correlated to the pseudo-total Cr content.
Collapse
Affiliation(s)
- Antonio G Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Naples, Italy.
| | - Diana Agrelli
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Naples, Italy; CIRAM - Interdepartmental Center for Environmental Research, University of Naples Federico II, Via Mezzocannone 16, 80134, Naples, Italy
| | - Pablo Rodríguez-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Naples, Italy
| | - J Ignacio García Alonso
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
17
|
Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26449-26471. [PMID: 31363977 DOI: 10.1007/s11356-019-05992-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
The biosphere is polluted with metals due to burning of fossil fuels, pesticides, fertilizers, and mining. The metals interfere with soil conservations such as contaminating aqueous waste streams and groundwater, and the evidence of this has been recorded since 1900. Heavy metals also impact human health; therefore, the emancipation of the environment from these environmental pollutants is critical. Traditionally, techniques to remove these metals include soil washing, removal, and excavation. Metal-accumulating plants could be utilized to remove these metal pollutants which would be an alternative option that would simultaneously benefit commercially and at the same time clean the environment from these pollutants. Commercial application of pollutant metals includes biofortification, phytomining, phytoremediation, and intercropping. This review discusses about the metal-accumulating plants, mechanism of metal accumulation, enhancement of metal accumulation, potential commercial applications, research trends, and research progress to enhance the metal accumulation, benefits, and limitations of metal accumulators. The review identified that the metal accumulator plants only survive in low or medium polluted environments with heavy metals. Also, more research is required about metal accumulators in terms of genetics, breeding potential, agronomics, and the disease spectrum. Moreover, metal accumulators' ability to uptake metals need to be optimized by enhancing metal transportation, transformation, tolerance to toxicity, and volatilization in the plant. This review would benefit the industries and environment management authorities as it provides up-to-date research information about the metal accumulators, limitation of the technology, and what could be done to improve the metal enhancement in the future.
Collapse
Affiliation(s)
- Aishath Naila
- Research Centre, Central Administration, The Maldives National University (MNU), Rahdhebai Hingun, Machangoalhi, 20371, Male, Maldives
| | - Gerrit Meerdink
- Food Science and Technology Unit, Department of Chemical Engineering, University of the West Indies, - St. Augustine Campus, St. Augustine, Trinidad & Tobago
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Sydney, Australia
| | - Ahmad Z Sulaiman
- Faculty of Bio-Engineering and Technology, Universiti Malaysia Kelantan (UMK), Campus Jeli, Beg Berkunci No. 100, 17600, Kelantan Darul Naim, Jeli, Malaysia
| | - Azilah B Ajit
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
18
|
Yang Y, Peng Y, Yang Z, Cheng P, Li F, Wang M, Liu T. The Kinetics of Aging and Reducing Processes of Cr(VI) in Two Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:82-89. [PMID: 30850854 DOI: 10.1007/s00128-019-02585-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
To investigate the aging process and reduction of Cr(VI) in two soils. The adsorption behavior of the soils demonstrated that the paddy soil had higher adsorption capacity for Cr(VI), but the capacity was lower for Cr(III), which contrasted the results for fluro-aquic soil. The mobilizable Cr was assessed using EDTA extraction. The results suggested that the reduction of Cr(VI) to Cr(III) and the aging process occurred simultaneously. A simplified kinetic model was established and the rate constants of the reduction and aging processes were obtained. The aging process and reduction of Cr(VI) were faster in the paddy soil, due to a higher adsorption capacity and stronger reducing ability, as indicated by the organic matter and amorphous Fe oxides. The Cr(III) aging was faster in the fluro-aquic soil due to the low solubility of Cr(III) at a high pH. The modeling study provides a fundamental understanding of the dynamics of Cr mobility in a complicated soil system.
Collapse
Affiliation(s)
- Yang Yang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangzhou, 510650, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yemian Peng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangzhou, 510650, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zesheng Yang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangzhou, 510650, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pengfei Cheng
- Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangzhou, 510650, People's Republic of China
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fangbai Li
- Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangzhou, 510650, People's Republic of China
| | - Meng Wang
- Environmental Monitoring Station, Zibo, 255040, People's Republic of China
| | - Tongxu Liu
- Guangdong Institute of Eco-Environmental Science & Technology, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
19
|
Antoniadis V, Shaheen SM, Levizou E, Shahid M, Niazi NK, Vithanage M, Ok YS, Bolan N, Rinklebe J. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. ENVIRONMENT INTERNATIONAL 2019; 127:819-847. [PMID: 31051325 DOI: 10.1016/j.envint.2019.03.039] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 05/22/2023]
Abstract
Trace elements (TEs) may have toxic effects to plants and humans; thus, countries and organizations impose maximum allowable regulation limits of their concentrations in soils. Usually such limits are placed in different categories according to soil use, soil properties or based on both attributes. However, some countries have regulation limits irrespective of differentiation in soil properties. In this review, we aimed at collecting TE regulation limits in soils from major countries and organizations around the globe, and critiquing them by assessing potential human health risks in the case of soils attaining the maximum allowable values. We explored the soil-to-human pathway and differentiated among three major exposures from TEs, i.e., residential, industrial and agricultural. We observed the existence of problems concerning TE regulation limits, among which the fact that limits across countries do not regulate the same TEs, not even a minimum number of TEs. This indicates that countries do not seem to agree on which regulation limits of TEs pose a high risk. Also, these regulation limits do not take into account TE mobility to neighbouring environment interphases such as plant, especially edible, and water matrices. Moreover, limits for same TEs are vastly diverse across countries; this indicates that those countries have conflicting information concerning TE-related health risks. Subsequently, we addressed this problem of diversity by quantifying resultant risks; we did that by calculating human health risk indices, taking into consideration the cases in which the highest allowable TE limits are attained in soil. Arsenic limits were found to generate a relatively high hazard quotient (HQi, accounting for human intake over the maximum allowable oral reference dose for that same TE), indicating that its risk tends to be underestimated. Other TE limits, such as those of Cd, Cu, Ni, Pb, and Zn typically result in low HQi, meaning that limits in their cases are rather overprotective. Our approach reveals the need of reducing diversity in regulation limits by drafting soil legislations of worldwide validity, since risks are common across countries. We suggest that new directions should strategically tend to (a) reduce limits of TEs with underestimated contribution to health risk (such as As), (b) cautiously increase limits of TEs that currently cause minor health risks, (c) quantify TE risks associated with uptake to edible plants and potable water, and (d) consider multi-element contamination cases, where risks are cumulatively enhanced due to TE synergism.
Collapse
Affiliation(s)
- Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, NSW, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Guan CY, Tseng YH, Tsang DCW, Hu A, Yu CP. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:137-145. [PMID: 30419460 DOI: 10.1016/j.jhazmat.2018.10.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
The plant microbial fuel cell (PMFC) is a novel technology which integrates plants, microbes, and electrochemical elements together to create renewable energy. However, information regarding using the PMFC system to remediate metal-contaminated soils is still limited. In this study, we evaluate the potential of PMFC systems to remediate soils polluted by Cr(VI). We compare different plants and different electrode materials with regard to their electricity generation and Cr(VI) removals under different soil Cr(VI) concentrations. In PMFC systems, the soil pH was transformed from slightly acidic to neutral, and the electrical conductivity was reduced during operation. The removal efficiency of Cr(VI) in soils could reach 99%, and the total Cr of soils could also be reduced. The closed circuit voltage of PMFC systems of Chinese pennisetum using the graphite carbon felt as the electrodes could reach the daily average value of 469.21 mV. PMFC systems have successfully demonstrated the ability to remove Cr(VI) from soils collected from actual metal-contaminated sites. Our results suggest that using PMFCs to remediate contaminated soils is promising, and the effects of decontamination are mostly contributed by bioelectrochemical processes and plant uptake.
Collapse
Affiliation(s)
- Chung-Yu Guan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Ho Tseng
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
21
|
Levizou E, Zanni AA, Antoniadis V. Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14-23. [PMID: 29961221 DOI: 10.1007/s11356-018-2658-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Varying concentrations of soil Cr(VI) were used in order to explore the tolerance thresholds and phytoremediation potential of Greek oregano (Origanum vulgare), in a pot experiment conducted outdoors. Oregano exhibited a rather exceptional capacity to bioaccumulate Cr in both the aerial part (up to 1200 mg of total Cr kg-1 DM) and the root-reaching 4300 mg kg-1 DM when grown in soil [Cr(VI)] of 150-200 mg kg-1. Plant responses indicated that there was a threshold set at 100 mg Cr(VI) kg-1 in the soil, above which the following results were recorded: (i) a restriction of Cr translocation from below- to above-ground plant part, (ii) a raise of the soil-to-root Cr transfer, and (iii) the Cr(III) evolution from the reduction of Cr(VI) was significantly decelerated in the root and accelerated in the aerial part. Soil [Cr] that surpassed this threshold challenged plant tolerance, resulting in a dose-dependent reduction of growth and antioxidant phenolics pool. Nonetheless, the significant Cr uptake capacity at plant level accounted for the considerably short remediation time (i.e., 29 years at soil [Cr(VI)] of 150 mg kg-1) calculated according to these results. The overall performance of oregano indicated that phytoremediation would be feasible at sites with Cr contamination levels ranging within the above-defined thresholds.
Collapse
Affiliation(s)
- Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece.
| | - Anna A Zanni
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
22
|
Antoniadis V, Zanni AA, Levizou E, Shaheen SM, Dimirkou A, Bolan N, Rinklebe J. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite. CHEMOSPHERE 2018; 195:291-300. [PMID: 29272798 DOI: 10.1016/j.chemosphere.2017.12.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 05/25/2023]
Abstract
Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg-1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator.
Collapse
Affiliation(s)
- Vasileios Antoniadis
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Volos, Greece.
| | - Anna A Zanni
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Volos, Greece.
| | - Efi Levizou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Volos, Greece.
| | - Sabry M Shaheen
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Anthoula Dimirkou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Volos, Greece
| | - Nanthi Bolan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia and Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, Callaghan NSW 2308, Australia.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
23
|
Gattullo CE, D'Alessandro C, Allegretta I, Porfido C, Spagnuolo M, Terzano R. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:381-389. [PMID: 29096251 DOI: 10.1016/j.jhazmat.2017.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing.
Collapse
Affiliation(s)
- Concetta Eliana Gattullo
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Caterina D'Alessandro
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Carlo Porfido
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Matteo Spagnuolo
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|