1
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Casas-Hinojosa I, García-Medina S, Rosales-Pérez KE, Orozco-Hernández JM, Elizalde-Velázquez GA, Galar-Martínez M, Dublán-García O, Islas-Flores H. Short-term exposure to dexamethasone at environmentally relevant concentrations impairs embryonic development in Cyprinus carpio: Bioconcentration and alteration of oxidative stress-related gene expression patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165528. [PMID: 37451451 DOI: 10.1016/j.scitotenv.2023.165528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In recent years and as a result of the Covid-19 pandemic, the consumption of dexamethasone (DXE) has increased. This favors that this corticosteroid is highly released in aquatic environments, generating deleterious effects in aquatic organisms. The information on the toxic effects of DXE in the environment is still limited. Thus, the objective of this work was to determine whether DXE at short-term exposure can cause alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of DXE until 96 hpf. Alterations to embryonic development were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that DXE concentrations above 35 ng/L are capable of producing alterations to embryonic development in 50 % of the embryo population. Furthermore, DXE was able to induce alterations such as scoliosis, hypopigmentation, craniofacial malformations, pericardial edema and growth retardation, leading to the death of half of the population at 50 ng/L of DXE. Concerning oxidative stress, the results demonstrated that DXE induce oxidative damage on the embryos of C. carpio. In conclusion, DXE is capable of altering embryonic development and generating oxidative stress in common carp C. carpio.
Collapse
Affiliation(s)
- Veronica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Idalia Casas-Hinojosa
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
2
|
van den Bos R, Cromwijk S, Tschigg K, Althuizen J, Zethof J, Whelan R, Flik G, Schaaf M. Early Life Glucocorticoid Exposure Modulates Immune Function in Zebrafish ( Danio rerio) Larvae. Front Immunol 2020; 11:727. [PMID: 32411141 PMCID: PMC7201046 DOI: 10.3389/fimmu.2020.00727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
In this study we have assessed the effects of increased cortisol levels during early embryonic development on immune function in zebrafish (Danio rerio) larvae. Fertilized eggs were exposed to either a cortisol-containing, a dexamethasone-containing (to stimulate the glucocorticoid receptor selectively) or a control medium for 6 h post-fertilization (0–6 hpf). First, we measured baseline expression of a number of immune-related genes (socs3a, mpeg1.1, mpeg1.2, and irg1l) 5 days post-fertilization (dpf) in larvae of the AB and TL strain to assess the effectiveness of our exposure procedure and potential strain differences. Cortisol and dexamethasone strongly up-regulated baseline expression of these genes independent of strain. The next series of experiments were therefore carried out in larvae of the AB strain only. We measured neutrophil/macrophage recruitment following tail fin amputation (performed at 3 dpf) and phenotypical changes as well as survival following LPS-induced sepsis (150 μg/ml; 4–5 dpf). Dexamethasone, but not cortisol, exposure at 0–6 hpf enhanced neutrophil recruitment 4 h post tail fin amputation. Cortisol and dexamethasone exposure at 0–6 hpf led to a milder phenotype (e.g., less tail fin damage) and enhanced survival following LPS challenge compared to control exposure. Gene-expression analysis showed accompanying differences in transcript abundance of tlr4bb, cxcr4a, myd88, il1β, and il10. These data show that early-life exposure to cortisol, which may be considered to be a model or proxy of maternal stress, induces an adaptive response to immune challenges, which seems mediated via the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ruud van den Bos
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Suzanne Cromwijk
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Katharina Tschigg
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joep Althuizen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert Whelan
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marcel Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
3
|
Early life exposure to cortisol in zebrafish (Danio rerio): similarities and differences in behaviour and physiology between larvae of the AB and TL strains. Behav Pharmacol 2020; 30:260-271. [PMID: 30724799 DOI: 10.1097/fbp.0000000000000470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maternal stress and early life stress affect development. Zebrafish (Danio rerio) are ideally suited to study this, as embryos develop externally into free-feeding larvae. The objective of this study was therefore to assess the effects of increased levels of cortisol, mimicking thereby maternal stress, on larval physiology and behaviour. We studied the effects in two common zebrafish strains, that is, AB and Tupfel long-fin (TL), to assess strain dependency of effects. Fertilized eggs were exposed to a cortisol-containing medium (1.1 μmol/l) or control medium from 0 to 6 h following fertilization, after which at 5-day following fertilization, larval behaviour and baseline hypothalamus-pituitary-interrenal cells axis functioning were measured. The data confirmed earlier observed differences between AB larvae and TL larvae: a lower hypothalamus-pituitary-interrenal axis activity in TL larvae than AB larvae, and slower habituation to repeated acoustic/vibrational stimuli in TL larvae than AB larvae. Following cortisol treatment, increased baseline levels of cortisol were found in AB larvae but not TL larvae. At the behavioural level, increased thigmotaxis or 'wall hugging' was found in AB larvae, but decreased thigmotaxis in TL larvae; however, both AB larvae and TL larvae showed decreased habituation to repeated acoustic/vibrational stimuli. The data emphasize that strain is a critical factor in zebrafish research. The habituation data suggest a robust effect of cortisol exposure, which is likely an adaptive response to increase the likelihood of detecting or responding to potentially threatening stimuli. This may enhance early life survival. Along with other studies, our study underlines the notion that zebrafish may be a powerful model animal to study the effects of maternal and early life stress on life history.
Collapse
|
4
|
Brun NR, van Hage P, Hunting ER, Haramis APG, Vink SC, Vijver MG, Schaaf MJM, Tudorache C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun Biol 2019; 2:382. [PMID: 31646185 PMCID: PMC6802380 DOI: 10.1038/s42003-019-0629-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homoeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.
Collapse
Affiliation(s)
- Nadja R. Brun
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Patrick van Hage
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | | - Suzanne C. Vink
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Martina G. Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
5
|
Willi RA, Salgueiro-González N, Faltermann S, Hettich T, Fent K. Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:183-191. [PMID: 30954817 DOI: 10.1016/j.scitotenv.2019.03.426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Many glucocorticoids occur in the aquatic environments but their adverse effects to fish are poorly known. Here we investigate effects of the natural glucocorticoid corticosterone and the synthetic glucocorticoids betamethasone and flumethasone in zebrafish embryos. Besides studying the effects of each steroid, we compared effects of natural with synthetic glucocorticoids, used as drugs. Exposure at concentrations of 1 μg/L and higher led to concentration-related decrease in spontaneous muscle contractions at 24 h post fertilization (hpf) and increase in heart rate at 48 hpf. Betamethasone showed a significant increase at 0.11 μg/L in heart rate. Corticosterone also accelerated hatching at 60 hpf at 0.085 μg/L. Transcription of up to 24 genes associated with different pathways showed alterations at 96 and 120 hpf for all glucocorticoids, although with low potency. Corticosterone caused transcriptional induction of interleukin-17, while betamethasone caused transcriptional down-regulation of the androgen receptor, aromatase and hsd11b2, indicating an effect on the sex hormone system. Furthermore, transcripts encoding proteins related to immune system regulation (irg1l, gilz) and fkbp5 were differentially expressed by corticosterone and betamethasone, while flumethasone caused only little effects, mainly alteration of the irg1l transcript. Our study shows that these glucocorticoids caused more potent physiological effects in early embryos than transcriptional alterations in hatched embryos, likely due to increased metabolism in later developmental stages. Thus, these glucocorticoids may be of concern for early stages of fish embryos in contaminated aquatic environments.
Collapse
Affiliation(s)
- Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Susanne Faltermann
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Timm Hettich
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH -4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH -8092 Zürich, Switzerland.
| |
Collapse
|
6
|
Teixidó E, Kießling TR, Krupp E, Quevedo C, Muriana A, Scholz S. Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens. Toxicol Sci 2019; 167:438-449. [PMID: 30295906 PMCID: PMC6358258 DOI: 10.1093/toxsci/kfy250] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Detection of developmental phenotypes in zebrafish embryos typically involves a visual assessment and scoring of morphological features by an individual researcher. Subjective scoring could impact results and be of particular concern when phenotypic effect patterns are also used as a diagnostic tool to classify compounds. Here we introduce a quantitative morphometric approach based on image analysis of zebrafish embryos. A software called FishInspector was developed to detect morphological features from images collected using an automated system to position zebrafish embryos. The analysis was verified and compared with visual assessments of 3 participating laboratories using 3 known developmental toxicants (methotrexate, dexamethasone, and topiramate) and 2 negative compounds (loratadine and glibenclamide). The quantitative approach exhibited higher sensitivity and made it possible to compare patterns of effects with the potential to establish a grouping and classification of developmental toxicants. Our approach improves the robustness of phenotype scoring and reliability of assay performance and, hence, is anticipated to improve the predictivity of developmental toxicity screening using the zebrafish embryo.
Collapse
Affiliation(s)
- Elisabet Teixidó
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| | | | | | | | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| |
Collapse
|