1
|
Tian L, Yang R, Li D, Wu T, Sun F. Enantioselective biomarkers of maize toxicity induced by hexabromocyclododecane based on submicroscopic structure, gene expression and molecular docking. ENVIRONMENTAL RESEARCH 2024; 252:119119. [PMID: 38734290 DOI: 10.1016/j.envres.2024.119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Hexabromocyclododecane (HBCD), as a monitored chemical of the Chemical Weapons Convention, the Stockholm Convention and the Action Plan for New Pollutants Treatment in China, raises significant concerns on its impact of human health and food security. This study investigated enantiomer-specific biomarkers of HBCD in maize (Zea mays L.). Upon exposure to HBCD enantiomers, the maize root tip cell wall exhibited thinning, uneven cell gaps, and increased deposition on the cell outer wall. Elevated malondialdehyde (MDA) indicated lipid peroxidation, with higher mitochondrial membrane potential (MMP) inhibition in (+)-enantiomer treatments (47.2%-57.9%) than (-)-enantiomers (14.4%-37.4%). The cell death rate significantly increased by 37.7%-108.8% in roots and 16.4%-62.4% in shoots, accompanied by the upregulation of superoxide dismutase isoforms genes. Molecular docking presenting interactions between HBCD and target proteins, suggested that HBCD has an affinity for antioxidant enzyme receptors with higher binding energy for (+)-enantiomers, further confirming their stronger toxic effects. All indicators revealed that oxidative damage to maize seedlings was more severe after treatment with (+)-enantiomers compared to (-)-enantiomers. This study elucidates the biomarkers of phytotoxicity evolution induced by HBCD enantiomers, providing valuable insights for the formulation of more effective policies to safeguard environmental safety and human health in the future.
Collapse
Affiliation(s)
- Liu Tian
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Ronghe Yang
- Research Center for Chemical Safety&Security and Verification Technology, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Die Li
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Tong Wu
- Research Center for Chemical Safety&Security and Verification Technology, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Fengxia Sun
- Research Center for Chemical Safety&Security and Verification Technology, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
2
|
Yu J, Tang Q, Yin G, Chen W, Lv J, Li L, Zhang C, Ye Y, Song X, Zhao X, Tang T, Zhang C, Zeng L, Xu Z. Uptake, accumulation and toxicity of short chain chlorinated paraffins to wheat (Triticum aestivum L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132954. [PMID: 37972496 DOI: 10.1016/j.jhazmat.2023.132954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai 200233, China
| | - Weifang Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Chenghao Zhang
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunxiang Ye
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijiao Song
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Wu T, Li X, Zheng Z, Liu Z, Yang M, Zhang N, Cui J, Zhang B. Hexabromocyclododecanes in surface soil-maize system around Baiyangdian Lake in North China: Distribution, enantiomer-specific accumulation, transport, temporal trend and dietary risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131180. [PMID: 36924746 DOI: 10.1016/j.jhazmat.2023.131180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the occurrence of hexabromocyclododecanes (HBCDs) in soil-maize system around Baiyangdian Lake. The total concentration of ΣHBCDs was in the order of industrial area > residential area > marginal area > Fuhe River estuary in soil. γ-HBCD was predominated in soils, roots and stems, while α-HBCD was the main diastereoisomer in leaves and kernels. Concentration of ΣHBCDs and three diastereoisomer concentrations in soils were significantly reduced and remained low level from 2018 to 2019. Selectivity enrichment of (+)α- and (-)γ-HBCD was found in soils, roots, stems and leaves, whereas only (+)β-HBCD dominated in stems. Most of the total root bioaccumulation factors (ΣRCFs) were less than 1.0, but no significant correlation was showed between translocation factors (TFs) and log Kow. RCFs and TFs of enantiomers suggested (-)β- and (-)γ-HBCD were easily translocated from soil to roots, while (+)α-, (-)β- and (-)γ-HBCD tended to translocate from stems to leaves. Estimated daily intake (EDI) and of ΣHBCDs, diastereoisomers and enantiomers were all lower than the threshold value, while the Calculated margins of exposure (MOE) were well above the threshold value, which demonstrate the safe consumption of Maize around Baiyangdian Lake.
Collapse
Affiliation(s)
- Tong Wu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Xixi Li
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhiyuan Zheng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zixin Liu
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
| | - Mei Yang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Nan Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Bingzhu Zhang
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| |
Collapse
|
4
|
Zhang Q, Yao Y, Wang Y, Zhang Q, Cheng Z, Li Y, Yang X, Wang L, Sun H. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117742. [PMID: 34329057 DOI: 10.1016/j.envpol.2021.117742] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Plants can take up and transform brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) from soil, water and the atmosphere, which is of considerable significance to the geochemical cycle of BFRs and OPFRs and their human exposure. However, the current understanding of the plant uptake, translocation, accumulation, and metabolism of BFRs and OPFRs in the environment remains very limited. In this review, recent studies on the accumulation and transformation of BFRs and OPFRs in plants are summarized, the main factors affecting plant accumulation from the aspects of root uptake, foliar uptake, and plant translocation are presented, and the metabolites and metabolic pathways of BFRs and OPFRs in plants are analyzed. It was found that BFRs and OPFRs can be taken up by plants through partitioning to root lipids, as well as through gaseous and particle-bound deposition to the leaves. Their microscopic distribution in roots and leaves is important for understanding their accumulation behaviors. BFRs and OPFRs can be translocated in the xylem and phloem, but the specific transport pathways and mechanisms need to be further studied. BFRs and OPFRs can undergo phase I and phase II metabolism in plants. The identification, quantification and environmental fate of their metabolites will affect the assessment of their ecological and human exposure risks. Based on the issues mentioned above, some key directions worth studying in the future are proposed.
Collapse
Affiliation(s)
- Qing Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaomeng Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Liu X, Li W, Kümmel S, Merbach I, Sood U, Gupta V, Lal R, Richnow HH. Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of β-Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13812-13821. [PMID: 34609852 DOI: 10.1021/acs.est.1c03322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Hexachlorocyclohexane (β-HCH) is a remnant from former HCH pesticide production. Its removal from the environment gained attention in the last few years since it is the most stable HCH isomer. However, knowledge about the transformation of β-HCH in soil-plant systems is still limited. Therefore, experiments with a contaminated field soil were conducted to investigate the transformation of β-HCH in soil-plant systems by compound specific isotope analysis (CSIA). The results showed that the δ13C and δ37Cl values of β-HCH in the soil of the planted control remained stable, revealing no transformation due to a low bioavailability. Remarkably, an increase of the δ13C and δ37Cl values in soil and plant tissues of the spiked treatments were observed, indicating the transformation of β-HCH in both the soil and the plant. This was surprising as previously it was shown that wheat is unable to transform β-HCH when growing in hydroponic culture or garden soil. Thus, results of this work indicate for the first time that a microbial community of the soil inoculated the wheat and then facilitated the transformation of β-HCH in the wheat, which may have implications for the development of phytoremediation concepts. A high abundance of HCH degraders belonging to Sphingomonas sp., Mycobacterium sp., and others was detected in the β-HCH-treated bulk and rhizosphere soil, potentially supporting the biotransformation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Wang Li
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Applied Geosciences, Technical University Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06102 Halle, Germany
| | - Utkarsh Sood
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001, India
| | - Rup Lal
- The Energy and Resources Institute, Lodhi Road, New Delhi 110003, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
6
|
Huang H, Lv L, Wang D, Guo B, Lv J, Luo L, Wen B, Kang Y. Biochemical and molecular responses of maize (Zea mays L.) to 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH) diastereomers: Oxidative stress, DNA damage, antioxidant enzyme gene expression and diversity of root exudates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141872. [PMID: 32906041 DOI: 10.1016/j.scitotenv.2020.141872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The phytotoxicities of TBECH diastereomers to plants at the biochemical and molecular levels were investigated in a hydroponic study by using maize as a model plant. The results showed that TBECH could induce the production of two species of reactive oxygen species (ROS), O2•- and H2O2, in maize tissues. The accumulation of ROS was the highest when maize was exposed to β-TBECH. TBECH enhanced the phosphorylation of plant histone, and the contents of γ-H2AX in maize followed the order β-TBECH > αβ-TBECH > γδ-TBECH > γ-TBECH. Transcriptome profiling revealed that antioxidant enzyme genes (AEGs) were over-expressed in maize when stressed by technical grade TBECH. The RT-PCR detection further validated that three typical AEGs, including CAT, SOD, and POD genes, were time-dependent and selectively expressed under the influence of TBECH diastereomers. Molecular compositions of maize root exudates characterized by FT-ICR-MS were significantly different among the four groups of TBECH diastereomer treatments. TBECH diastereomers specifically affected the chemical diversity and abundance of root exudates. New insights into the biochemical effects of TBECH on plants are provided in this work, which is helpful to deepening the understanding of their stereo-selectivity.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China.
| | - Lili Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Yunshui Haorui Environmental Technology Co. LTD, Beijing 100195, China
| | - Bin Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Lei Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| |
Collapse
|
7
|
Zhu H, Wang F, Li B, Yao Y, Wang L, Sun H. Accumulation and translocation of polybrominated diphenyl ethers into plant under multiple exposure scenarios. ENVIRONMENT INTERNATIONAL 2020; 143:105947. [PMID: 32659526 DOI: 10.1016/j.envint.2020.105947] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 05/20/2023]
Abstract
Plant foliar uptake is an essential part of the overall biogeochemical cycling of semivolatile organic compounds. Chambers were therefore designed to expose wheat to polybrominated diphenyl ethers (PBDEs) via various combinations of exposure routes (i.e., soil, air and particle). Under the simulated scenarios, most of PBDEs in wheat leaves originated from foliar uptake (including gaseous and particle-bound depositions) rather than translocation from root uptake. Our results further revealed that higher brominated PBDEs (h-PBDEs; i.e. hepta- through deca-BDEs) were inclined to enter wheat leaves via particle-bound deposition while gaseous deposition could not be ignored for less-brominated PBDEs (l-PBDEs; i.e., tri- through hexa-BDEs). Sequential extraction of wheat leaf displayed that the transfer velocities of h-PBDEs were lagged behind l-PBDEs during their deposition to leaf cuticle and subsequent erosion to mesophyll, where a large fraction of the target chemicals were ultimately stored (29-93% of total PBDEs burden). Applying McLachlan's framework to our data suggested that the uptake of PBDEs was controlled primarily by kinetically limited gaseous deposition for l-PBDEs and by particle-bound deposition for h-PBDEs. The combined use of exposure chamber measurement and framework provides a robust tool for interpreting the behaviors of PBDEs between the atmosphere and plant foliage.
Collapse
Affiliation(s)
- Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bing Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Sun Y, Zhu H. Spatial and temporal distributions of hexabromocyclododecanes in surface soils of Jinan, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:629. [PMID: 32902786 DOI: 10.1007/s10661-020-08587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Contamination by hexabromocyclododecanes (HBCDDs) in the soil environment is an ongoing concern because of their "specific exemption" on the production and use in China. In this study, spatial distribution, temporal trend, and diastereoisomer profiles of HBCDDs were examined in surface soils collected in Jinan, China. Concentrations of ΣHBCDD (sum of α-, β-, and γ-HBCDDs) in soils ranged from 1.70 to 228 ng/g dry weight (dw), with a mean value of 26.1 ng/g dw. Soils collected from e-waste dismantling sites (mean 146 ng/g dw) contained significantly higher concentrations of ΣHBCDD than those of urban (15.5 ng/g dw) and farmland soils (3.86 ng/g dw) (p < 0.01). The temporal trend suggested that ΣHBCDD levels in the industrial area rose significantly between 2014 and 2019 (p < 0.05), with an annual increase of 12%. An increase in ΣHBCDD levels was also observed in urban and farmland soil samples during the study period, although it did not reach a significant level (p > 0.05). All surface soils were dominated by γ-HBCDD (mean 60.7% of total concentrations); however, the proportions of α-isomer increased from 28.7% in urban and rural soils to 43.4% in industrial soils. The calculated risk quotients of HBCDDs present in soils were at least 25-fold lower than the threshold limit value. The mean mass inventory of HBCDDs was approximately 2501 kg in the cultivated land of Jinan City; further studies are needed to discern the uptake of HBCDDs by crops and the fate of these chemicals in agricultural ecosystems.
Collapse
Affiliation(s)
- Yulian Sun
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Fan Y, Chen SJ, Li QQ, Zeng Y, Yan X, Mai BX. Uptake of halogenated organic compounds (HOCs) into peanut and corn during the whole life cycle grown in an agricultural field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114400. [PMID: 32220776 DOI: 10.1016/j.envpol.2020.114400] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Here, we elucidated the uptake and translocation of numerous halogenated organic compounds (HOCs) into corn and peanut throughout their life cycle cultivated in an agricultural field of an electronic waste recycling area, where plants were simultaneously exposed to contaminants in soil and ambient air. The geometric mean concentrations of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were 22.3 and 11.9 ng/g in peanut and 16.6 and 13.6 ng/g in corn, respectively. Decabromodiphenyl ethane (DBDPE, 6.07 ng/g) and dechlorane plus (DPs, 6.22 ng/g) also showed significant concentrations in peanuts. The plant uptake was initiated from root absorption at the emergence stage but it was subsequently surpassed by leaves absorption from the air since the late seedling stage or early reproductive stage. There was a rapid uptake of lower halogenated HOCs at the early vegetative stages in both species. However, robust uptake of highly halogenated compounds at the reproductive stages suggests a delayed accumulation of them by the plants. PBDE and PCB congener profiles suggest more noticeable tendency for inter-compartment translocation in peanut than in corn during the plant development. The DP and HBCD isomeric compositions in peanut (enriched with syn-DP and γ-HBCD) were different from those in the rhizosphere soils and air, suggesting a more stereoisomer-selective uptake and/or biotransformation in this species compared to corn. The bioaccumulation factors for root-soil and stem-root of these HOCs in most cases were <1. The tissue-distributions demonstrated that leaves serve as a significant reservoir of absorbed HOCs under the field conditions, whereas the low concentrations in peanut and corn kernels indicated translocation of most HOCs into this compartment was significantly hindered (especially for highly halogenated compounds).
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Qi-Qi Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
10
|
Liu X, Wu L, Kümmel S, Merbach I, Lal R, Richnow HH. Compound-Specific Isotope Analysis and Enantiomer Fractionation to Characterize the Transformation of Hexachlorocyclohexane Isomers in a Soil-Wheat Pot System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8690-8698. [PMID: 32543837 DOI: 10.1021/acs.est.9b07609] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The uptake by plants from soil is one of the first steps for hexachlorocyclohexane (HCH) isomers to enter the food web. However, the HCH transformation associated with the uptake process is still not well understood. Therefore, a soil-wheat pot experiment was conducted to characterize the HCH transformation during wheat growth using compound-specific isotope analysis (CSIA) and enantiomer fractionation. The results showed that the δ13C and δ37Cl values of β-HCH remained stable in soil and wheat, revealing no transformation. In contrast, an increase of δ13C and δ37Cl values of α-HCH indicated its transformation in soil and wheat. A shift of the enantiomer fraction (EF) (-) from 0.50 to 0.35 in soil at the jointing stage and 0.35 to 0.57 at the harvest stage suggested that the preferential transformation of enantiomers varied at different growth stages. Based on the dual element isotope analysis, the transformation mechanism in the soil-wheat system was different from that in wheat in hydroponic systems. The high abundance of HCH degraders, Sphingomonas sp. and Novosphingobium sp., was detected in the α-HCH-treated rhizosphere soil, supporting the potential for biotransformation. The application of CSIA and EF allows characterizing the transformation of organic pollutants such as HCHs in the complex soil-plant systems.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department of Civil & Mineral Engineering, University of Toronto, 35 St George Street, Toronto ON M5S 1A4, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ines Merbach
- Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06102 Halle, Germany
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
11
|
Sorption Behavior of Hexabromocyclododecanes (HBCDs) on Weihe River Sediment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010247. [PMID: 31905817 PMCID: PMC6981516 DOI: 10.3390/ijerph17010247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022]
Abstract
The sorption of hexabromocyclododecanes (HBCDs) on sediment affects the fate and transport of HBCDs in rivers. The sorption of HBCDs on sediment from the Weihe River was investigated by performing batch equilibration experiments, and the effects of changing the pH ionic, strength, and humic acid concentration (HA) on sorption were evaluated. The obtained results indicated that fast rather than slow sorption was the dominant process. Nonlinear sorption isotherms were acquired, and the Freundlich (R2 0.94–0.98) and Langmuir (R2 0.95–0.99) models both described the sorption of HBCDs well. The adsorption capacity for α-HBCD, β-HBCD, and γ-HBCD were calculated using the Langmuir model, and were 443.56, 614.29 and 1146.37 mg/kg, respectively. Thermodynamic analysis shows that HBCDs sorption on sediment is a spontaneous exothermic process. HBCDs sorption was affected by the HA concentration and ionic strength. The amounts of HBCDs sorbed to the sediment decreased as the ionic strength increased, and first increased and then decreased as the HA concentration increased. Changes in pH did not clearly affect the sorption of HBCDs. Synchrotron radiation Fourier-transform infrared spectra (SR-FTIR) was used to characterize the adsorption mechanism, and the obtained result indicated that hydrophobic interactions dominated the mechanism involved in HBCDs sorption on sediment.
Collapse
|
12
|
Lü H, Ma XJ, Huang XJ, Lu S, Huang YH, Mo CH, Cai QY, Wong MH. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109321. [PMID: 31394478 DOI: 10.1016/j.jenvman.2019.109321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The distribution and diastereomeric profiles of hexabromocyclododecanes (HBCDs, identified as persistent organic pollutants) in soil-vegetable system of open fields remain unknown. In this study, three main HBCD diastereoisomers (α-, β-, and γ-HBCDs) were analyzed in paired soil and vegetable samples from vegetable farms in four cities (Guangzhou, Jiangmen, Huizhou, Foshan) of the Pearl River Delta region, Southern China. The sum concentrations of the three diastereoisomers (∑HBCDs) in soils varied from 0.99 to 18.4 ng/g (dry weight) with a mean of 5.77 ng/g, decreasing in the order of Jiangmen > Guangzhou > Huizhou > Foshan. The distributions of HBCDs in both soil and vegetable were diastereomer-specific, with γ-HBCD being predominant. The ∑HBCDs in vegetables ranged from 0.87 to 32.7 ng/g (dry weight) with a mean of 16.6 ng/g, generally higher than those of the corresponding soils. Thus bioconcentration factors (BCFs, the ratio of contaminant concentration in vegetable to that in soil) of HBCDs were generally greater than 1.0, implying higher accumulation in vegetable. The estimated daily intake (EDI) of ΣHBCDs via consumption of vegetables varied from 0.26 to 9.35 ng/kg bw/day with a mean of 3.60 ng/kg bw/day for adults and from 0.32 to 11.5 ng/kg bw/day with a mean of 4.41 ng/kg bw/day for Children, far lower than the oral reference dose (RfD, 2 × 105 ng/kg bw/day) proposed by US National Research Council. These results suggest that HBCD in the vegetables posed low health risk for the local population. These data are the first report on HBCD occurrence and health risk in soil-vegetable system of open fields.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Jing Ma
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xue-Jing Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shaoyou Lu
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hung Wong
- College of Natural Resources and Environment, Integrate Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Huang H, Wang D, Wen B, Lv J, Zhang S. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:364-372. [PMID: 30513427 DOI: 10.1016/j.scitotenv.2018.11.351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
In vitro biotransformation of HBCDs by maize cytochrome P450 (CYP) enzymes, responses of CYPs to HBCDs at protein and transcription levels, and in silico simulation of interactions between CYPs and HBCDs were investigated in order to elucidate the roles of CYPs in the metabolism of HBCDs in maize. The results showed that degradation reactions of HBCDs by maize microsomal CYPs followed the first-order kinetics and were stereo-selective, with the metabolic rates following the order (-)γ- > (+)γ- > (+)α- > (-)α-HBCD. The hydroxylated metabolites OH-HBCDs, OH-PBCDs and OH-TBCDs were detected. (+)/(-)-α-HBCDs significantly decreased maize CYP protein content and inhibited CYP enzyme activity, whereas (+)/(-)-γ-HBCDs had obvious effects on the induction of CYPs. HBCDs selectively mediated the gene expression of maize CYPs, including the isoforms of CYP71C3v2, CYP71C1, CYP81A1, CYP92A1 and CYP97A16. Molecular docking results suggested that HBCDs could bind with these five CYPs, with binding affinity following the order CYP71C3v2 < CYP81A1 < CYP97A16 < CYP92A1 < CYP71C1. The shortest distances between the Br-unsubstituted C atom of HBCD isomers and the iron atom of heme in CYPs were 4.18-11.7 Å, with only the distances for CYP71C3v2 being shorter than 6 Å (4.61-5.38 Å). These results suggested that CYP71C3v2 was an efficient catalyst for degradation of HBCDs. For (+)α- and (-)γ-HBCDs, their binding affinities to CYPs were lower and the distances to the iron atom of heme in CYPs were shorter than their corresponding antipodes, consistent with the in vitro experimental results showing that they had shorter half-lives and were more easily hydroxylated. This study provides solid evidence for the roles of maize CYPs in the metabolism of HBCDs, and gives insight into the molecular mechanisms of the enantio-selective metabolism of HBCDs by plant CYPs.
Collapse
Affiliation(s)
- Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Dan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|