1
|
Zhao D, Wang H, Wang Z, Lu S. Understanding competitive Cu 2+ and Zn 2+ adsorption onto functionalized cellulose fiber via experimental and theoretical approach. Int J Biol Macromol 2024; 273:132782. [PMID: 38825284 DOI: 10.1016/j.ijbiomac.2024.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Amidoxime groups were successfully introduced to develop a novel amidoxime-functionalized cellulose fiber (AO-Cell) for absorptive removal of heavy metal ions in wastewater. The chemical structure, and the competitive adsorption of Cu2+ and Zn2+ by AO-Cell were investigated by experiments study, Density functional theory (DFT) and molecular dynamic (MD) simulation. The results showed the N and O atoms in the amidoxime group can spontaneously interact with Cu2+ and Zn2+ through sharing long pair electrons to generate stable coordination structure, which was the dominant adsorption mechanism. Besides, the enlarged surface area, improved hydrophilicity and dispersion offered by AO-Cell facilitate the adsorption process by increasing the accessibility of absorption sites. As results of these synergetic modification, AO-Cell can remain effective in a wide pH range (1-6) and reach adsorption equilibrium within 60 min. At optimal conditions, the achieved theoretical adsorption capacity is as high as 84.81 mg/g for Cu2+ and 61.46 mg/g for Zn2+ in the solution with multiple ions. The competition between Cu2+ and Zn2+ in occupying the absorption sites arises from the difference in the metallic ion affinity and covalent index with the adsorbent as demonstrated by the MD analysis. Importantly, AO-Cell demonstrated favorable recyclability after up to 10 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Dezhi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China.
| | - Hexiang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China
| | - Zheng Wang
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Lu
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Shahzad A, Siddique A, Ferdous S, Amin MA, Qin M, Aslam U, Naeem M, Bashir T, Shakoor A. Heavy metals mitigation and growth promoting effect of endophytic Agrococcus terreus (MW 979614) in maize plants under zinc and nickel contaminated soil. Front Microbiol 2023; 14:1255921. [PMID: 38029198 PMCID: PMC10668838 DOI: 10.3389/fmicb.2023.1255921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Heavy metals such as iron, copper, manganese, cobalt, silver, zinc, nickel, and arsenic have accumulated in soils for a long time due to the dumping of industrial waste and sewage. Various techniques have been adapted to overcome metal toxicity in agricultural land but utilizing a biological application using potential microorganisms in heavy metals contaminated soil may be a successful approach to decontaminate heavy metals soil. Therefore, the current study aimed to isolate endophytic bacteria from a medicinal plant (Viburnum grandiflorum) and to investigate the growth-promoting and heavy metal detoxification potential of the isolated endophytic bacteria Agrococus tereus (GenBank accession number MW 979614) under nickel and zinc contamination. Methods Zinc sulfate and nickel sulfate solutions were prepared at the rate of 100 mg/kg and 50 mg/kg in sterilized distilled water. The experiment was conducted using a completely random design (CRD) with three replicates for each treatment. Results and Discussion Inoculation of seeds with A. tereus significantly increased the plant growth, nutrient uptake, and defense system. Treatment T4 (inoculated seeds), T5 (inoculated seeds + Zn100 mg/kg), and T6 (inoculated seeds + Ni 100 mg/kg) were effective, but T5 (inoculated seeds + Zn100 mg/kg) was the most pronounced and increased shoot length, root length, leaf width, plant height, fresh weight, moisture content, and proline by 49%, 38%, 89%, 31%, 113%, and 146%, respectively. Moreover the antioxidant enzymes peroxidase and super oxidase dismutase were accelerated by 211 and 68% in contaminated soil when plants were inoculated by A. tereus respectively. Similarly the inoculation of A. tereus also enhanced maize plants' absorption of Cu, Mn, Ni, Na, Cr, Fe, Ca, Mg, and K significantly. Results of the findings concluded that 100 mg/kg of Zn and Ni were toxic to maize growth, but seed inoculation with A. tereus helped the plants significantly in reducing zinc and nickel stress. The A. tereus strain may be employed as a potential strain for the detoxification of heavy metals.
Collapse
Affiliation(s)
- Asim Shahzad
- The College of Geography and Environment, Henan University, Kaifeng, China
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Anam Siddique
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Shazia Ferdous
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | | | - Mingzhou Qin
- The College of Geography and Environment, Henan University, Kaifeng, China
| | - Uzma Aslam
- Department of Botany, Mohi-Ud-Din Islamic University, AJ&K, Pakistan
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tasmia Bashir
- Department of Botany, Rawalpindi Women University Rawalpindi, Rawalpindi, Pakistan
| | - Abdul Shakoor
- The College of Geography and Environment, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Staszak K, Kruszelnicka I, Ginter-Kramarczyk D, Góra W, Baraniak M, Lota G, Regel-Rosocka M. Advances in the Removal of Cr(III) from Spent Industrial Effluents-A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:378. [PMID: 36614717 PMCID: PMC9822515 DOI: 10.3390/ma16010378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The review presents advances in the removal of Cr(III) from the industrial effluents published in the last ten years. Although Cr(III) has low solubility and is less dangerous for the aquatic environment than Cr(VI), it cannot be released into the aquatic environment without limitations and its content in water should be restricted. The development of efficient techniques for the removal of Cr(III) is also a response to the problem of chromium wastewater containing Cr(VI) ions. Very often the first step in dealing with such wastewater is the reduction in chromium content. In some cases, removal of Cr(III) from wastewaters is an important step for pretreatment of solutions to prepare them for subsequent recovery of other metals. In the review, hydrometallurgical operations for Cr(III) removal are presented, including examples of Cr(III) recovery from real industrial effluents with precipitation, adsorption, ion exchange, extraction, membrane techniques, microbial-enhanced techniques, electrochemical methods. The advantages and disadvantages of the operations mentioned are also presented. Finally, perspectives for the future in line with circular economy and low-environmental impact are briefly discussed.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Wojciech Góra
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Marek Baraniak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Grzegorz Lota
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Magdalena Regel-Rosocka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Jiang X, Guo Y, Li H, Li X, Liu J. Ecological evolution during the three-year restoration using rhizosphere soil cover method at a Lead-Zinc tailing pond in Karst areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158291. [PMID: 36030848 DOI: 10.1016/j.scitotenv.2022.158291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
A major challenge for the restoration of the Lead-Zinc tailing pond in Karst areas lies in how to establish vegetation with less soil and restore the ecological functions of the substrate. In this study, a novel method, rhizosphere soil cover method (RSC), was applied to recover the vegetation at a Pb-Zn tailing pond in Karst areas. Two local tolerate plants, Miscanthus sinensis and Pueraria phaseoloides, were planted as pioneer species. Although 68 % of the tailing pond was not covered with soil, the vegetation coverage has reached over 90 % after restoration for three years. Compared with the natural revegetation process (vegetation coverage was <5 % after 20 years of natural succession), the revegetation in the tailing pond was accelerated by RSC and planting pioneer species. Both the plant's diversity and richness have significantly increased in the tailings pond during the restoration (p < 0.05). The important value indicators of M. sinensis and P. phaseoloides were the highest in the plant community, indicating the dominant role of these two plants in revegetation. Moreover, the total organic carbon, total nitrogen, total phosphorus, and total potassium in the tailings increased annually (p < 0.05), which demonstrated that the revegetation has improved the chemical properties in the substrate. In addition, the Shannon diversity index of bacteria in the tailings increased significantly from 4.11 to 5.51. The relative abundance of microbial genes related to carbon fixation and nitrogen fixation in the tailings increased by 17 % and 43 %, respectively. Meanwhile, the physicochemical properties, microbial community structure, and nutrient cycling function in the tailings without topsoil were improved more obviously than those in soils. It is thereby concluded that RSC is an efficient means for ecological restoration of the tailing ponds in Karst areas to improve the ecosystem structure and function of Pb-Zn tailings.
Collapse
Affiliation(s)
- Xusheng Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yu Guo
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Xiangmin Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin 541004, China.
| |
Collapse
|
5
|
Sarkodie EK, Jiang L, Li K, Yang J, Guo Z, Shi J, Deng Y, Liu H, Jiang H, Liang Y, Yin H, Liu X. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front Microbiol 2022; 13:1049277. [PMID: 36569074 PMCID: PMC9767989 DOI: 10.3389/fmicb.2022.1049277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations. These limitations include high operational costs, high energy demands, post-waste disposal difficulties, and secondary pollution. Bioleaching has proven to be a promising alternative to these conventional approaches in removing toxic metal(loid)s from contaminated soil as it is cost-effective, environmentally friendly, and esthetically pleasing. The bioleaching process is influenced by factors including pH, temperature, oxygen, and carbon dioxide supply, as well as nutrients in the medium. It is crucial to monitor these parameters before and throughout the reaction since a change in any, for instance, pH during the reaction, can alter the microbial activity and, therefore, the rate of metal leaching. However, research on these influencing factors and recent innovations has brought significant progress in bioleaching over the years. This critical review, therefore, presents the current approaches to bioleaching and the mechanisms involved in removing toxic metal(loid)s from contaminated soil. We further examined and discussed the fundamental principles of various influencing factors that necessitate optimization in the bioleaching process. Additionally, the future perspectives on adding omics for bioleaching as an emerging technology are discussed.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
6
|
Jiang C, Ye H, Cui L, Pai P, Wang G. Relationship of serum copper and zinc with kidney function and urinary albumin to creatinine ratio: Cross-sectional data from the NHANES 2011-2016. Eur J Clin Nutr 2022; 76:1748-1754. [PMID: 35906329 DOI: 10.1038/s41430-022-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND & OBJECTIVE Chronic kidney disease (CKD) is a common condition in worldwide with underlying causes. The role of trace elements such as copper and zinc in CKD is uncertain. We aimed to examine the relationship of serum copper and zinc with kidney function status and explore its possible effect modifiers in the general population. METHODS Data from 5353 National Health and Nutrition Examination Survey (NHANES) participants from 2011 to 2016 were analyzed for the role of trace elements in the age range 18 to 80 years. The kidney outcomes were reduced estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 and increased urinary albumin-to-creatinine ratio (ACR) ≥ 30 mg/g. RESULTS Findings showed a significant positive association between serum copper and urinary ACR (OR = 1.04, 95% CI = 1.00-1.07). Serum copper levels of 18.0 μmol/L (median) or higher (reference level <18.0 μmol/L) were significantly associated with increased urinary ACR (OR = 1.67, 95% CI = 1.21-2.31) after adjusting for confounding factors. In contrast, there was a significant inverse association between serum zinc and reduced eGFR (OR = 0.89,95% CI = 0.81-0.99). Where serum zinc level was greater than 12.3 μmol/L (median), the prevalence of reduced eGFR was lower (OR = 0.65, 95% CI = 0.16-0.60). In addition, a stratified analysis based on various risk factors found that in those individuals with serum albumin greater than 43 g/L or systolic blood pressure greater than 120 mmHg, positive correlations between serum copper and risk of increased urinary ACR was more significant. CONCLUSIONS Our findings suggest that the reference levels of serum copper and zinc levels in healthy individuals may be different from current understanding. If further studies substantiate the same, the results will be a useful guide for designing future clinical trials and nutritional guidelines.
Collapse
Affiliation(s)
- Chongfei Jiang
- Department of Nephrology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Haiyan Ye
- Department of Infectious Disease or Clinical Microbiology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Liwen Cui
- Department of Nephrology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pearl Pai
- Department of Nephrology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Gang Wang
- Department of Nephrology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Santaolalla A, Alvarez-Braña Y, Barona A, Basabe-Desmonts L, Benito-Lopez F, Rojo N. Sustainable Mold Biomachining for the Manufacturing of Microfluidic Devices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Zhang Y, Zhan G, Song Y, Liu Y, Huang J, Zhou SF, Tan KB, Li Q. Utilization of waste vanadium-bearing resources in the preparation of rare-earth vanadate catalysts for semi-hydrogenation of α,β-unsaturated aldehydes. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Rajendran S, Priya AK, Senthil Kumar P, Hoang TKA, Sekar K, Chong KY, Khoo KS, Ng HS, Show PL. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. CHEMOSPHERE 2022; 303:135146. [PMID: 35636612 DOI: 10.1016/j.chemosphere.2022.135146] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This review provides a quantitative description of the nano-adsorbent processing and its viability against wastewater detoxification by extracting heavy metal ions. The impact of nano-adsorbent functionalities on specific essential attributes such as the surface area, segregation, and adsorption capacity were comprehensively evaluated. A detailed analysis has been presented on the characteristics of nanomaterials through their limited resistance to adsorb some heavy metal ions. Experimental variables such as the adsorbent dosage, pH, substrate concentration, response duration, temperature, and electrostatic force that influence the uptake of metal ions have been studied. Besides, separate models for the adsorption kinetics and isothermal adsorption have been investigated to understand the mechanism behind adsorption. Here, we reviewed the different adsorbent materials with nano-based techniques for the removal of heavy metals from wastewater and especially highlighted the nano adsorption technique. The influencing factors such as pH, temperature, dosage time, sorbent dosage, adsorption capacities, ion concentration, and mechanisms related to the removal of heavy metals by nano composites are highlighted. Lastly, the application potentials and challenges of nano adsorption for environmental remediation are discussed. This critical review would benefit engineers, chemists, and environmental scientists involved in the utilization of nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Kar Yeen Chong
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Life Cycle Assessment of a Circularity Case Study Using Additive Manufacturing. SUSTAINABILITY 2022. [DOI: 10.3390/su14159557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, considering the rising concern in climate change, there is a clear necessity for technologies that can prolong the useful life of products through the ability to repair, re-manufacture and refurbish. As such, additive manufacturing has been a subject of research due to its design and resource consumption capabilities. However, there is a lack of more detailed information regarding environmental performances, especially in Directed Energy Deposition technology. The present paper presents a life-cycle assessment of the production and use of Directed Energy Deposition, making use of foreground data to build a life-cycle inventory and quantify the potential impacts. The equipment is analyzed for its refurbishment capabilities on an obsolete mold , and compared with the environmental impact of producing a new mold through conventional technology. The compiled inventory with detailed and primary information will enrich the current literature on this technology. The impact results show that the robot, deposition table and security cell are the most relevant subsystems for the system production impacts. In the refurbishment analysis, the refurbished mold part has lower impacts than the conventionally produced, thus showing that there is great potential in using additive manufacturing for circular economy loops.
Collapse
|
11
|
Zhong M, Chen S, Wang T, Liu J, Mei M, Li J. Co-pyrolysis of polyester and cotton via thermogravimetric analysis and adsorption mechanism of Cr(VI) removal by carbon in aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. MINERALS 2022. [DOI: 10.3390/min12050506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mining has advanced primarily through the use of two strategies: pyrometallurgy and hydrometallurgy. Both have been used successfully to extract valuable metals from ore deposits. These strategies, without a doubt, harm the environment. Furthermore, due to decades of excessive mining, there has been a global decline in high-grade ores. This has resulted in a decrease in valuable metal supply, which has prompted a reconsideration of these traditional strategies, as the industry faces the current challenge of accessing the highly sought-after valuable metals from low-grade ores. This review outlines these challenges in detail, provides insights into metal recovery issues, and describes technological advances being made to address the issues associated with dealing with low-grade metals. It also discusses the pragmatic paradigm shift that necessitates the use of biotechnological solutions provided by bioleaching, particularly its environmental friendliness. However, it goes on to criticize the shortcomings of bioleaching while highlighting the potential solutions provided by a bespoke approach that integrates research applications from omics technologies and their applications in the adaptation of bioleaching microorganisms and their interaction with the harsh environments associated with metal ore degradation.
Collapse
|
13
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
14
|
Luo Z, Tang C, Hao Y, Wang Z, Yang G, Wang Y, Mu Y. Solidification/stabilization of heavy metals and its efficiency in lead-zinc tailings using different chemical agents. ENVIRONMENTAL TECHNOLOGY 2022; 43:1613-1623. [PMID: 33135954 DOI: 10.1080/09593330.2020.1845817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Lead-zinc tailings are generated during the mining process which is considered as hazardous solid waste due to its high heavy metal content and leachability in the natural state. At present, the most effective technology for disposing heavy metals in solid wastes is the solidification/stabilization (S/S) technique. In terms of S/S technology, chemical stabilization is one of the most potential and practical method. This paper aims to investigate the S/S property of four typical chemical agents (Na2S, NaH2PO4, TMT and Na2EDTA) on the heavy metals in lead-zinc tailings. The results reveal that the heavy metals lead and zinc in tailings are stabilized more effectively by using chelating agents TMT than by using inorganic chemical agents Na2S and NaH2PO4. When the dosage of TMT reaches 4%, the leaching concentration of lead and zinc is 0.18 and 14.60 mg/L according to toxicity characteristic leaching procedure (TCLP), and the stabilization efficiency of lead and zinc is 99.31% and 80.92%, respectively, while the leaching concentration of lead and zinc just drops to 0.41 and 16.00 mg/L with addition of 10% NaH2PO4. Furthermore, the leaching concentration of heavy metal lead in tailings treated by 4% Na2EDTA increases to 53.44 mg/L which far exceeds the standard of pollution control. Therefore, considering stabilization efficiency and dosage, TMT is the preferred agent for solidifying heavy metals in lead-zinc tailings.
Collapse
Affiliation(s)
- Zhongtao Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Changbo Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuhua Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenhua Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangjun Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yu Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuandong Mu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
Bioleaching and Selective Precipitation for Metal Recovery from Basic Oxygen Furnace Slag. Processes (Basel) 2022. [DOI: 10.3390/pr10030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Decreasing ore grades and an increasing consumption of metals has led to a shortage of important primary raw materials. Therefore, the urban mining of different deposits and anthropogenic stocks is of increasing interest. Basic oxygen furnace (BOF) slag is produced in huge quantities with the so-called Linz-Donawitz process and contains up to 5.2, 0.9, 0.1, and 0.07% of Mn, Al, Cr, and V, respectively. In the present study, sulfur-oxidizing Acidithiobacillus thiooxidans and iron- and sulfur-oxidizing Acidithiobacillus ferridurans were applied in batch and stirred tank experiments to investigate the biological extraction of metals from BOF slag. In the batch experiments, up to 96.6, 52.8, 41.6, and 29.3% of Cr, Al, Mn, and V, respectively, were recovered. The stirred tank experiments, with increasing slag concentrations from 10 to 75 g/L, resulted in higher extraction efficiencies for A. ferridurans and lower acid consumption. Selective metal precipitation was performed at pH values ranging between 2.5 and 5.0 to study the recovery of Mn, Al, Cr, and V from the biolixiviant. Selective precipitation of V and Cr was achieved at pH 4.0 from A. thiooxidans biolixiviant, while Fe and V could be selectively recovered from A. ferridurans biolixiviant at pH 3.0. This work revealed the potential of BOF slag as an artificial ore for urban mining and demonstrated that combining bioleaching and selective precipitation is an effective method for sustainable metal recovery.
Collapse
|
16
|
Nanda S, Kumar S, Mandre NR. Flotation behavior of a complex lead-zinc ore using individual collectors and its blends for lead sulfide. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2036185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sagarika Nanda
- Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Shravan Kumar
- Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - N. R. Mandre
- Department of Fuel, Minerals and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| |
Collapse
|
17
|
Zheng M, Cao M, Yang D, Tu S, Xiong S, Shen W, Zhou H. Enhanced desorption of cationic and anionic metals/metalloids from co-contaminated soil by tetrapolyphosphate washing and followed by ferrous sulfide treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118688. [PMID: 34921946 DOI: 10.1016/j.envpol.2021.118688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
In this study, a novel approach was employed for the remediation of cationic and anionic metals/metalloids co-contaminated soil by tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment. Tetrapolyphosphate could simultaneously enhance the desorption of cationic metals (Pb and Zn) and anionic metal/metalloid (Cr and As) from the contaminated soil in the whole tested pH range of 2-10. With addition of 0.15 mol/L tetrapolyphosphate at pH 7.0, the removal ratio of Pb, Zn, As and Cr could achieve 83.1%, 70.4%, 75.7% and 66.4% respectively. The fractionation analysis of heavy metals/metalloids demonstrated the release of exchangeable and Fe/Mn bound forms contributed to most desorption of Pb and Zn. The decreases of non-specifically sorbed form and amorphous and poorly-crystalline hydrous oxides of Fe and Al bound form were responsible for most removal of As. The comparison with other common washing agents (EDTA, oxalate and phosphate) under their respective optimal dosage could confirm that tetrapolyphosphate was superior to simultaneously desorb the cationic and anionic metals/metalloids with higher efficiency. After 12 h, applying 150 mg/L FeS at pH 3.5 could totally remove Pb, Zn, As and Cr from the washing effluent by sulfide precipitation, reduction and adsorption processes. Higher pH would inhibit the removal of As and Cr by FeS. Meanwhile, the residual of tetrapolyphosphate could be totally recovered from the washing effluent by employing anion exchange resin. This study suggests tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment is a promising approach for remediation of cationic and anionic metals/metalloids co-contaminated soil in view of its high efficiency and simple operation.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Menghua Cao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Danhua Yang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shuanglian Xiong
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenjuan Shen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Haiyan Zhou
- Institute of Eco-environment and Soil Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, PR China
| |
Collapse
|
18
|
Sun Y, Gu Y, Zhang P. Adsorption properties and recognition mechanisms of a novel surface imprinted polymer for selective removal of Cu(II)-citrate complexes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127735. [PMID: 34823959 DOI: 10.1016/j.jhazmat.2021.127735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Cu(II)-citrate (Cu(II)-CA) complex, as one of the components in plating solutions, increases the difficulty of Cu(II) treatment due to its stable structure and high mobility. In this work, a novel surface imprinted polymer (Cu-CA-SIP) for selective removal of Cu(II)-CA complex from aqueous solution is synthesized by using polyethyleneimine (PEI) grafted onto chloromethylated polystyrene (CMP) microspheres. Cu(II)-CA anions are successfully imprinted with the molar ration of 1:1 by Cu-CA-SIP at initial pH 4.0. Nearly 100% removal rate can be achieved even at low Cu(II)-CA concentration (0.5 mmol/L), and the maximum Cu(II) uptake of Cu-CA-SIP reaches 1.38 mmol/g at 303 K. In Cu(II)/Fe(III)-CA, Cu(II)/Ni(II)-CA, Cu(II)/Zn(II)-CA and Cu(II)/Cd(II)-CA systems, the relative selectivity coefficients of Cu-CA-SIP for Cu(II)-CA are 9.66, 2.32, 1.40 and 44.55, respectively. Moreover, Cu-CA-SIP can be retrieved with negligible loss of adsorption capacity after six times of reuse. The Cu-CA-SIP column can effectively treat the actual electroplating wastewater within 114 BV, and can still reach 104 BV after three dynamic cycles. Therefore, an innovative imprinted material is designed for the first time on the basis of coordination-configuration recognition mechanism for the treatment of electroplating wastewater, providing a new insight in developing surface imprinted polymer in environmental remediation.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Pengyu Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
19
|
Zhou S, Liao X, Li S, Fang X, Guan Z, Ye M, Sun S. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114192. [PMID: 34861501 DOI: 10.1016/j.jenvman.2021.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Unwieldy fine sulfide ores are produced during mining; without being appropriately disposed of, they can cause environmental pollution and waste resources. This study investigated the leaching performance of a moderately thermophilic consortia (Leptospirillum ferriphilum + Acidithiobacillus caldus + Sulfobacillus benefaciens) for fine lead-zinc sulfide raw ore. The results showed this microbial community created a low pH, high ORP, and high cell concentration environment for mineral leaching, improving bioleaching efficiency. Under the action of this consortia, the zinc leaching rate reached 96.44 in 8 days, and reached 100% after 12 days. EPS analysis indicated that the consortia could mediate the secretion of more polysaccharides to ensure leaching efficiency. EPS levels and amino acids were the main factors affecting bioleaching. An analysis of mineral surface characteristics showed the consortia effectively leached pyrite and sphalerite from the fine sulfide ore, and prevented the mineral surface forming the jarosite that could hinder bioleaching. This study found that bioleaching reduced the potential environmental toxicity of the minerals, providing an important reference for guiding the bioleaching of unwieldy fine sulfide raw ore.
Collapse
Affiliation(s)
- Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China.
| |
Collapse
|
20
|
Fang X, Sun S, Liao X, Li S, Zhou S, Gan Q, Zeng L, Guan Z. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150234. [PMID: 34562759 DOI: 10.1016/j.scitotenv.2021.150234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Temperature is considered to be one of the main factors affecting bioleaching, but few studies have assessed the effects of diurnal temperature range (DTR) on the bioleaching process. This study investigates the effects of different bioleaching temperatures (30 and 40 °C) and DTR on the bioleaching of metal sulfide ores by microbial communities. The results showed that DTR had an obvious inhibitory effect on the bioleaching efficiency of the artificial microbial community, although this effect was mainly concentrated in the early and middle stages (0-18 days) of exposure, gradually decreasing until almost disappearing in the late stage (18-24 days). Extracellular polymeric substance (EPS) analysis showed that DTR did not change the composition of the EPS matrix (humic acid-like substances, polysaccharides and protein-like substances), but had a significant effect on the generative behavior of EPS, inhibiting the secretion of EPS during the early and middle stages of the bioleaching process. However, the continual increase in EPS secretion in the bioleaching system gradually reduced the adverse effects of DTR on mineral dissolution. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy- energy dispersive spectrometry (SEM-EDS) analysis of the bioleached residue showed that DTR had no obvious effect on the mineralogical characteristics of sulfide ore. Therefore, in industrial sulfide ore bioleaching applications, in order to accelerate the artificial microbial community start-up process, temperature control measures should be increased in the bioleaching process to reduce the adverse effects of DTR on mineral dissolution.
Collapse
Affiliation(s)
- Xiaodi Fang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Siyu Zhou
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiaowei Gan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Liuting Zeng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhijie Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Separation of Cu, Co, Ni and Mn from acid leaching solution of ocean cobalt-rich crust using precipitation with Na2S and solvent extraction with N235. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0919-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Abstract
The interest in metal sulfide precipitation has recently increased given its capacity to efficiently recover several metals and metalloids from different aqueous sources, including wastewaters and hydrometallurgical solutions. This article reviews recent studies about metal sulfide precipitation, considering that the most relevant review article on the topic was published in 2010. Thus, our review emphasizes and focuses on the overall process and its main unit operations. This study follows the flow diagram definition, discussing the recent progress in the application of this process on different aqueous matrices to recover/remove diverse metals/metalloids from them, in addition to kinetic reaction and reactor types, different sulfide sources, precipitate behavior, improvements in solid–liquid separation, and future perspectives. The features included in this review are: operational conditions in terms of pH and Eh to perform a selective recovery of different metals contained in an aqueous source, the aggregation/colloidal behavior of precipitates, new materials for controlling sulfide release, and novel solid–liquid separation processes based on membrane filtration. It is therefore relevant that the direct production of nanoparticles (Nps) from this method could potentially become a future research approach with important implications on unit operations, which could possibly expand to several applications.
Collapse
|
23
|
Jiang K, Liu K, Peng Q, Zhou M. Adsorption of Pb(II) and Zn(II) ions on humus-like substances modified montmorillonite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. CHEMOSPHERE 2021; 282:131108. [PMID: 34119723 DOI: 10.1016/j.chemosphere.2021.131108] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.
Collapse
Affiliation(s)
| | - Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
25
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. CHEMOSPHERE 2021; 280:130595. [PMID: 33940449 DOI: 10.1016/j.chemosphere.2021.130595] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 05/16/2023]
Abstract
Release of pollutants due to inflating anthropogenic activities has a conspicuous effect on the environment. As water is uniquely vulnerable to pollution, water pollution control has received a considerable attention among the most critical environmental challenges. Diverse sources such as heavy metals, dyes, pathogenic and organic compounds lead to deterioration in water quality. Demand for the pollutant free water has created a greater concern in water treatment technologies. The pollutants can be mitigated through physical, chemical and biological methodologies thereby alleviating the health and environmental effects caused. Diverse technologies for wastewater treatment with an accentuation on pre-treatment of feedstock and post treatment are concisely summed up. Pollutants present in the water can be removed by processes some of which include filtration, reverse osmosis, degasification, sedimentation, flocculation, precipitation and adsorption. Membrane separation and adsorption methodologies utilized to control water pollution and are found to be more effective than conventional methods and established recovery processes. This audit relatively features different methodologies that show remarkable power of eliminating pollutants from wastewater. This review describes recent research development on wastewater treatment and its respective benefits/applications in field scale were discussed. Finally, the difficulties in the enhancement of treatment methodologies for pragmatic commercial application are recognized and the future viewpoints are introduced.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - B Tajsabreen
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - B Reshma
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
26
|
Menzel K, Barros L, García A, Ruby-Figueroa R, Estay H. Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Moazzam P, Boroumand Y, Rabiei P, Baghbaderani SS, Mokarian P, Mohagheghian F, Mohammed LJ, Razmjou A. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. CHEMOSPHERE 2021; 277:130196. [PMID: 33784558 DOI: 10.1016/j.chemosphere.2021.130196] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Sorour Salehi Baghbaderani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parastou Mokarian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fereshteh Mohagheghian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Layth Jasim Mohammed
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
28
|
Sun Y, Zhang P, Zha Q, Huang Y, Zheng W, Yang C, Wu Z. Novel iminodiacetic acid functionalized basalt fiber for adsorption of Cu (II) ions in batch experiments. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1947851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yue Sun
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Pengyu Zhang
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Qingyi Zha
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Yihan Huang
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Weisheng Zheng
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Caiqian Yang
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Abstract
Tungsten is recognized as a critical metal due to its unique properties, economic importance, and limited sources of supply. It has wide applications where hardness, high density, high wear, and high-temperature resistance are required, such as in mining, construction, energy generation, electronics, aerospace, and defense sectors. The two primary tungsten minerals, and the only minerals of economic importance, are wolframite and scheelite. Secondary tungsten minerals are rare and generated by hydrothermal or supergene alteration rather than by atmospheric weathering. There are no reported concerns for tungsten toxicity. However, tungsten tailings and other residues may represent severe risks to human health and the environment. Tungsten metal scrap is the only secondary source for this metal but reprocessing of tungsten tailings may also become important in the future. Enhanced gravity separation, wet high-intensity magnetic separation, and flotation have been reported to be successful in reprocessing tungsten tailings, while bioleaching can assist with removing some toxic elements. In 2020, the world’s tungsten mine production was estimated at 84 kt of tungsten (106 kt WO3), with known tungsten reserves of 3400 kt. In addition, old tungsten tailings deposits may have great potential for exploration. The incomplete statistics indicate about 96 kt of tungsten content in those deposits, with an average grade of 0.1% WO3 (versus typical grades of 0.3–1% in primary deposits). This paper aims to provide an overview of tungsten minerals, tungsten primary and secondary resources, and tungsten mine waste, including its environmental risks and potential for reprocessing.
Collapse
|
30
|
Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9941979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The accumulation of mine tailings on Earth is a serious environmental challenge. The importance for the recovery of heavy metals, together with the economic benefits of precious and base metals, is a strong incentive to develop sustainable methods to recover metals from tailings. Currently, researchers are attempting to improve the efficiency of metal recovery from tailings using bioleaching, a more sustainable method compared to traditional methods. In this work, the research status of using biological leaching technologies to recover heavy metals from tailings was reviewed. Furthermore, CiteSpace 5.7.R2 was used to visually analyze the keywords of relevant studies on biological leaching of tailings to intuitively establish the current research hotspots. We found that current research has made recent progress on influencing factors and microbial genetic data, and innovations have also been made regarding the improvement of the rate of metal leaching by biological leaching combined with other technologies. This is of great significance for the development of bioleaching technologies and industrial production of heavy metals in tailings. Finally, challenges and opportunities for bioleaching provide directions for further research by the scientific community.
Collapse
|
31
|
Zhu J, Yang K, Chen Y, Fan G, Zhang L, Guo B, Guan X, Zhao R. Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124504. [PMID: 33229261 DOI: 10.1016/j.jhazmat.2020.124504] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Ordinary Portland cement (OPC) clinker mainly consist four minerals, tricalcium silicate (C3S), dicalcium silicate (C2S,), tricalcium aluminate (C3A), and tetracalcium aluminoferrite (C4AF). To learn the doping behaviors of Zn in OPC clinker, a series of samples were prepared by calcinating the mixtures of CaCO3, SiO2, Al2O3, Fe2O3, and ZnO. Our results from energy-dispersive spectroscopy, X-ray diffraction and density functional theoretical simulations show that a small amount of ZnO enter C3S and C2S by replacing Ca ions while most incorporate into C4AF by substituting Fe atoms, resulting in a decrease of C3A in OPC as dosage increases. Further analyses from partial density of states and distributions of bond order-bond length indicate that the doping preference can be ascribed to the similar electron contributions and small structure distortions between host and guest ions. Unlike the strong Fe‒O bond, the newly formed Zn‒O is much weaker. The weak Zn‒O may be responsible for the limited solubility of Zn in C4AF. These results provide a possibility of increasing solubility of Zn in OPC clinker by increasing the contents of C3A and C4AF, thus will be very meaningful in the synthesis of OPC clinker by utilizing Zn-bearing alternative raw materials.
Collapse
Affiliation(s)
- Jianping Zhu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Kuo Yang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yang Chen
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Guangxin Fan
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Li Zhang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Benkai Guo
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xuemao Guan
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Ruiqi Zhao
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| |
Collapse
|
32
|
Kan X, Dong Y, Feng L, Zhou M, Hou H. Contamination and health risk assessment of heavy metals in China's lead-zinc mine tailings: A meta-analysis. CHEMOSPHERE 2021; 267:128909. [PMID: 33187663 DOI: 10.1016/j.chemosphere.2020.128909] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The lead-zinc areas of China have faced serious foulteousqulated heavy metal pollution. In this study, data on As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations in China's lead-zinc mine tailings were collected and screened from published literature (2015-2020). The contamination assessments, geographical distributions, and health risk assessments of the eight heavy metals were analyzed. The results revealed that the mean concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceeded the corresponding background values for soils. Moreover, most of the lead-zinc mine tailing areas contaminated by heavy metals were located in the southern and eastern regions of China. The health risk assessment results indicated that oral ingestion was the main exposure route of heavy metals in the mine tailings, and children were more vulnerable to adverse effects. For a single metal, As and Pb presented high non-carcinogenic risks, and As and Cu presented the unacceptable carcinogenic risks. This study provides a timely analysis proving the urgent necessity of the treatment of heavy metal pollution in lead-zinc tailings in China.
Collapse
Affiliation(s)
- Xiaoqing Kan
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yiqie Dong
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lu Feng
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing, 526200, Guangdong, China.
| |
Collapse
|
33
|
Tao L, Wang L, Yang K, Wang X, Chen L, Ning P. Leaching of iron from copper tailings by sulfuric acid: behavior, kinetics and mechanism. RSC Adv 2021; 11:5741-5752. [PMID: 35423117 PMCID: PMC8694737 DOI: 10.1039/d0ra08865j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
Copper tailing is a widespread and intractable solid waste in copper production. Traditional leaching and recovery technology for copper tailing focuses on copper but neglects the leaching of iron. With the increase in applications and demands of iron-containing materials for environment, understanding the leaching behaviors of iron can promote the utilization of copper tailings. In this study, the kinetics and mechanism of the leaching of iron from copper tailings using sulfuric acid were studied. Under optimal conditions (40 °C, sulfuric acid concentration of 0.53 mol L−1, stirring speed of 400 rpm, solid/liquid ratio of 1 : 10 and leaching time of 120 min), 66.45% of Fe, along with 65.32% of Zn and 59.95% of Cu, were leached from the tailings. The leaching of iron was confirmed to be controlled by solid-film diffusion. The reaction orders for sulfuric acid concentration, solid/liquid ratio, and stirring speed were found to be 0.85, −0.70, and 0.40, respectively. Results from XRF, XRD, and SEM indicated that oxides (including CaO, CuO, and ZnO) were leached first, after which Fe2SiO4 was preferentially reacted compared to Fe3O4. The accumulation of CaSO4 and SiO2 inhibited the further leaching of iron. Leaching behavior of copper tailings with sulfuric acid was expounded. Leaching was optimized: 1 M H2SO4, S/L of 1 : 10, T = 40 °C, 120 min. Fe2SiO4 was preferentially leached than Fe3O4. Leaching of Fe is controlled by solid-phase diffusion.![]()
Collapse
Affiliation(s)
- Lei Tao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 PR China +86 13888183303
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 PR China +86 13888183303
| | - Kanghuai Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 PR China +86 13888183303
| | - Xueqian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 PR China +86 13888183303
| | - Lu Chen
- Faculty of Business Management, Yunnan Communications Vocational and Technical College Kunming 650500 PR China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology Kunming 650500 PR China +86 13888183303
| |
Collapse
|
34
|
León-Vaz A, Romero LC, Gotor C, León R, Vigara J. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111301. [PMID: 32949933 DOI: 10.1016/j.ecoenv.2020.111301] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is one of the most common heavy metals in contaminated aquatic environments and one of the most toxic contaminants for phytoplankton. Nevertheless, there are not enough studies focused on the effect of this metal in algae. Through a proteomic approach, this work shows how Cd can alter the growth, cell morphology and metabolism of the microalga Chlorella sorokiniana. Using the sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), we concluded that exposure of Chlorella sorokiniana to 250 μM Cd2+ for 40 h caused downregulation of different metabolic pathways, such as photosynthesis, oxidative phosphorylation, glycolysis, TCA cycle and ribosomal proteins biosynthesis. However, photorespiration, antioxidant enzymes, gluconeogenesis, starch catabolism, and biosynthesis of glutamate, cysteine, glycine and serine were upregulated, under the same conditions. Finally, exposure to Cd also led to changes in the metabolism of carotenoids and lipids. In addition, the high tolerance of Chlorella sorokiniana to Cd points to this microalga as a potential microorganism to be used in bioremediation processes.
Collapse
Affiliation(s)
- Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Seville. Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Seville. Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 210071, Huelva, Spain.
| |
Collapse
|
35
|
Heavy Metals Removal Using Carbon Based Nanocomposites. ENVIRONMENTAL REMEDIATION THROUGH CARBON BASED NANO COMPOSITES 2021. [DOI: 10.1007/978-981-15-6699-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
The Use of Mining Waste Materials for the Treatment of Acid and Alkaline Mine Wastewater. MINERALS 2020. [DOI: 10.3390/min10121061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mining of metal ores generates both liquid and solid wastes, which are increasingly important to manage. In this paper, an attempt was made to use waste rocks produced in the mining of zinc and lead to neutralizing acid mine drainage and alkaline flotation wastewater. Waste rock is a quartz-feldspar rock of hydrothermal origin. It is composed of, besides quartz and potassium feldspar (orthoclase), phyllosilicates (chlorite and mica), and sulfides (chiefly pyrite). To determine its physicochemical parameters and their variability, acid mine water and flotation wastewater were monitored for 12 months. Acid mine drainage (AMD) is characterized by a low pH (~3), high zinc concentration (~750 mg·L−1), and high sulfate content (~6800 mg·L−1). On the other hand, the determinations made for flotation wastewater showed, among others, a pH of approximately 12 and ca. 780 mg·L−1 of sulfates. AMD and flotation wastewater neutralization by the waste rock was shown to be possible and efficient. However, in both cases, the final solution contained elevated concentrations of metals and sulfates. Premixing AMD with alkaline flotation wastewater in the first step and then neutralizing the obtained mixture with the waste rock was considered the best solution. The produced solution had a circumneutral pH. However, the obtained solution does not meet the legislative requirements but could be further treated by, for example, passive treatment systems. It is noteworthy that the proposed approach is low cost and does not require any chemical reagents.
Collapse
|
37
|
Piervandi Z, Khodadadi Darban A, Mousavi SM, Abdollahy M, Asadollahfardi G, Funari V, Dinelli E, Webster RD, Sillanpää M. Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings. CHEMOSPHERE 2020; 258:127288. [PMID: 32947659 DOI: 10.1016/j.chemosphere.2020.127288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The discharge of toxic elements from tailings soils in the aquatic environments occurs chiefly in the presence of indigenous bacteria. The biotic components may interact in the opposite direction, leading to the formation of a passivation layer, which can inhibit the solubility of the elements. In this work, the influence of jarosite on the bio-immobilization of toxic elements was studied by native bacteria. In batch experiments, the bio-immobilization of heavy metals by an inhibitory layer was examined in the different aquatic media using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. A variety of analyses also investigated the mechanisms of metals bio-immobilization. Among different tests, the highest metal solubility yielded 99% Mn, 91% Cr, 95% Fe, and 78% Cu using A. ferrooxidans in 9KFe medium after ten days. After 22 days, these percentages decreased down to 30% Mn and about 20% Cr, Fe, and Cu, likely due to metal immobilization by biogenic jarosite. The formation of jarosite was confirmed by an electron probe micro-analyzer (EPMA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The mechanisms of metal bio-immobilization by biogenic jarosite from tailings soil confirmed three main steps: 1) the dissolution of metal sulfides in the presence of Acidithiobacillus bacteria; 2) the nucleation of jarosite on the surface of sulfide minerals; 3) the co-precipitation of dissolved elements with jarosite during the bio-immobilization process, demonstrated by a structural study for jarosite. Covering the surface of soils by the jarosite provided a stable compound in the acidic environment of mine-waste.
Collapse
Affiliation(s)
- Zeinab Piervandi
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran
| | - Ahmad Khodadadi Darban
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran.
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modarres University, Tehran, Iran.
| | - Mahmoud Abdollahy
- Mineral Processing Group, Department of Mining Engineering, Tarbiat Modarres University, Tehran, Iran
| | | | - Valerio Funari
- Department of Earth System Science and Environmental Technologies, National Research Council ISMAR-CNR Bologna Research Area, Bologna, Italy
| | - Enrico Dinelli
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Richard David Webster
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Mika Sillanpää
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia; Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
38
|
Zeng C, Hu H, Feng X, Wang K, Zhang Q. Activating CaCO 3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. CHEMOSPHERE 2020; 249:126227. [PMID: 32087456 DOI: 10.1016/j.chemosphere.2020.126227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Efficient lead removal from metal-containing wastewater, such as acid mine drainage (AMD), is an important step in environmental purification and secondary resources recovery. In this paper, a novel approach by mechanochemically activating CaCO3 through simply wet ball milling in metal-containing solution was developed, where selective Pb2+ precipitation in the form of PbCO3 was achieved based on its reaction with the CO32- from the activated CaCO3. By such milling operation, the removal efficiency of Pb2+ from aqueous solution could reach over 99%, while more than 99% Zn2+ (as well as Mn, Ni and Cd) was remaining in the solutions, demonstrating the feasibility and high effectiveness of precipitating Pb2+ and serving the purpose of recovering other metals without Pb impurity. The solubility differences between Pb carbonate and other carbonates of Zn, Mn, Ni or Cd were understood to be the main pathway and using CaCO3 would offer an easy operation and environmental friendly process to purify the metals-containing wastewater by precipitating Pb, compared with the difficulties when using alkaline neutralization to treat them. In addition, basic zinc carbonate (a zinc-containing ore waste) as an alternative precipitant to CaCO3 in the separation process was also confirmed to increase the zinc recovery in the solution while maintaining high Pb2+ removal efficiency.
Collapse
Affiliation(s)
- Chaocheng Zeng
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huimin Hu
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China.
| | - Xinhao Feng
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Kui Wang
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Qiwu Zhang
- School of Resources & Environmental Engineering, Wuhan University of Technology, 430070, Wuhan, China.
| |
Collapse
|
39
|
Pawlaczyk M, Schroeder G. Efficient Removal of Ni(II) and Co(II) Ions from Aqueous Solutions Using Silica-based Hybrid Materials Functionalized with PAMAM Dendrimers. SOLVENT EXTRACTION AND ION EXCHANGE 2020. [DOI: 10.1080/07366299.2020.1766742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mateusz Pawlaczyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
40
|
Evidence of Natural and Anthropogenic Impacts on Rainwater Trace Metal Geochemistry in Central Mexico: A Statistical Approach. WATER 2020. [DOI: 10.3390/w12010192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trace metals Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, and As were determined on a monthly basis in a total of 52 rain samples collected from six different locations in the central region of Mexico during March 2016–April 2017. The average concentrations of trace metals (mg/L) in the rainwater samples showed an order of Zn (0.873) > Fe (0.395) > Mn (0.083) > Cr (0.041) ≥ Cu (0.041) > Pb (0.031) > Ni (0.020) > Co (0.013) > As (0.0003) > Cd (0.002). The differences observed in metal concentrations are related to variations in the influence of continental air masses, local transport, regional advection, and the solubility of trace metals. High concentrations of metals were observed in the months of March to May at all sites, probably due to the less extensive removal of air/air pollutants. The values obtained from the enrichment factor (EF) per metal showed relatively high values for Cd, Zn, Cu, Pb, Co, Ni, and Cr, suggesting anthropogenic origin. Pearson’s correlation matrix validated the distribution of trace metal sources and their relationships with local/regional meteorological characteristics. This paper presents relevant basic information for the evaluation of the toxic potential of rainwater and the possible health risks when using this source of water for human consumption.
Collapse
|
41
|
Li S, Tian Z, Liu R, Zhou W, Cheng H, Sun J, Zhao K, Wang Y, Zhou H. Effective multi-metal removal from plant incineration ash via the combination of bioleaching and brine leaching. RSC Adv 2020; 10:1388-1399. [PMID: 35494665 PMCID: PMC9048034 DOI: 10.1039/c9ra08267k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
Plant incineration ash is the final product from the remediation of multi-metal contaminated soils by the phytoextraction process. The content of heavy metals in plant ash was found to be higher than the regulatory criteria and it was thus classified as hazardous waste. So far, no eco-friendly and cost-effective technology has been developed for the management of this residue. Herein, a cleaner strategy of bioleaching combined with brine leaching of multi-metals from plant ash was developed. The bioleaching results indicated that 88.7% (Zn), 93.2% (Cd), 99.9% (Mn) and 13.8% (Pb) were achieved under optimum conditions of Fe(ii) concentration 6.0 g L-1, pH 1.8 and pulp density 15% (w/v). Subsequently, the introduction of brine leaching using 200 g L-1 NaCl significantly increased Pb recovery to 70.6% under conditions of 15% (w/v) pulp density, thereby ultimately achieving deep recovery of all metals. An investigation of the mechanism revealed that H+ attack and microorganisms were the dominant mechanism for bioleaching of Zn, Cd and Mn, and the bioleaching kinetics of Zn in ash were controlled by interface mass transfer and diffusion across the product layer. Risk assessment tests indicated that the leached residues could pass the TCLP test standard and be safely reused as nonhazardous materials. These findings demonstrated that the two-stage leaching strategy was feasible and promising for multi-metal removal from plant ash.
Collapse
Affiliation(s)
- Su Li
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Zhuang Tian
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Wenbo Zhou
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Kaifang Zhao
- Dongguan Kecheng Environmental Technology Co., Ltd. Dongguan 523899 China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University Changsha Hunan 410083 China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University Changsha 410083 China
| |
Collapse
|
42
|
Recycling Lead–Zinc Tailings for Cemented Paste Backfill and Stabilisation of Excessive Metal. MINERALS 2019. [DOI: 10.3390/min9110710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study demonstrates the feasibility of recycling lead–zinc tailing (LZT) as a cemented paste backfill (CPB) by considering the mechanical properties and environmental effects, thus providing an approach for safe and environmentally friendly treatment of LZT. First, the mechanical properties of CPB samples were tested. When the cement/tailing ratio was 1:6 and the slurry concentration was 70%, the maximum unconfined compressive strength (UCS) of the CPB cured for 28 days reaching 2.05 MPa, which could ensure safe mining. Then, the metals with pollution potential in the backfill slurry were investigated through static leaching. Finally, after adding immobilisation materials to stabilise excessive metals, the environmental stability of the CPB was demonstrated through dynamic leaching and a toxicity characteristic leaching procedure. The results show that the lead leached from the backfill slurry still exceeds the Chinese standard for groundwater quality (GB/T14848-2017 Class III). The addition of 2 mg/L polyaluminium sulfate (PAS) can further improve the strength of the CPB and maintain the environmental friendliness of the CPB. Therefore, the technology of recovering LZT as a CPB proposed in this study is an effective alternative to deal with LZT, which can help lead–zinc mines meet the requirements of cleaner production.
Collapse
|
43
|
Nong Q, Yuan K, Li Z, Chen P, Huang Y, Hu L, Jiang J, Luan T, Chen B. Bacterial resistance to lead: Chemical basis and environmental relevance. J Environ Sci (China) 2019; 85:46-55. [PMID: 31471030 DOI: 10.1016/j.jes.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Natural bacterial isolates from heavily contaminated sites may evolve diverse tolerance strategies, including biosorption, efflux mechanism, and intracellular precipitation under the continually increased stress of toxic lead (Pb) from anthropogenic activities. These strategies utilize a large variety of functional groups in biological macromolecules (e.g., exopolysaccharides (EPSs) and metalloproteins) and inorganic ligands, including carboxyl, phosphate and amide groups, for capturing Pb. The amount and type of binding sites carried by biologically originated materials essentially determines their performance and potential for Pb removal and remediation. Many factors, e.g., metal ion radius, electronegativity, the shape of the cell surface sheath, temperature and pH, are thought to exert significant influences on the abovementioned interactions with Pb. Conclusively, understanding the chemical basis of Pb-binding in these bacteria can allow for the development of effective microbial Pb remediation technologies and further elucidation of Pb cycling in the environment.
Collapse
Affiliation(s)
- Qiying Nong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhuang Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Ping Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tiangang Luan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
44
|
Carraro PS, Spessato L, Crespo LH, Yokoyama JT, Fonseca JM, Bedin KC, Ronix A, Cazetta AL, Silva TL, Almeida VC. Activated carbon fibers prepared from cellulose and polyester–derived residues and their application on removal of Pb2+ ions from aqueous solution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Zhu Y, Fan W, Zhou T, Li X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:253-266. [PMID: 31075592 DOI: 10.1016/j.scitotenv.2019.04.416] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Water contamination with heavy metal ions and organic compounds such as citrate, ethylenediaminetetraacetic acid, tartrate, pharmaceuticals, surfactants and natural organic matter, is a serious problem in the natural environment. Although many methods have been effectively applied to the removal of heavy metal complexes from aqueous solution, there is a lack of information available on the mechanisms, advantages and disadvantages of these various methods. This review summarizes the various treatment methods applied to the removal of heavy metal complexes, with a summary of the mechanisms of action and recent research progress. The methods reviewed in detail include electrolysis, membrane separation, adsorption, precipitation, replacement-coprecipitation, TiO2 photocatalysis and Fenton oxidation-precipitation, with the advantages and disadvantages of each method discussed. Furthermore, the heavy metal complex removal mechanisms are analyzed comprehensively. Results show that the adsorption method exhibited unique merits, showing much promise for future development. Finally, this review comprehensively analyzes future prospects and developments in methods for removal of chelated heavy metals.
Collapse
Affiliation(s)
- Ying Zhu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - Tingting Zhou
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Xiaomin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| |
Collapse
|
46
|
Microwave-Leaching of Copper Smelting Dust for Cu and Zn Extraction. MATERIALS 2019; 12:ma12111822. [PMID: 31195613 PMCID: PMC6600977 DOI: 10.3390/ma12111822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022]
Abstract
Industrial wastes may contain high concentrations of valuable metals. Extraction and recovery of these metals have several economic and environmental advantages. Various studies showed positive effects of microwaves as a pretreatment method before the leaching of minerals. However, there are empty rooms for exploring simultaneous microwave and leaching (microwave-leaching) of industrial waste material for the production of valuable metals. This investigation examined the microwave-leaching method to extract copper and zinc from a copper-smelter dust (CSD). The results of microwave-leaching mechanism were compared with conventional heating leaching based on kinetics modelling. The final Cu recovery in the conventional heating and microwave irradiation was 80.88% and 69.83%, respectively. Kinetic studies indicated that the leaching reactions follow diffusion across the product layer. Based on X-ray powder diffraction (XRD) analyses, during conventional experiments sulfate; components formed with high intensity as an ash layer which prevents reagent access to the solid surface and decreases the Cu dissolution. While the sulfate components did not detect in the microwave-leaching residuals which means that microwave irradiation helped to decrease the ash layer formation. Taking all mentioned results into consider it can be concluded that microwave-leaching can be considered as an efficient method for extraction of valuable metals from waste materials.
Collapse
|
47
|
Younes AA, El-Maghrabi HH. Removal of lead ions from wastewater using novel Schiff-base functionalized solid-phase adsorbent. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1604758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ahmed A. Younes
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Heba H. El-Maghrabi
- Petroleum Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|
48
|
Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091838. [PMID: 30149620 PMCID: PMC6165396 DOI: 10.3390/ijerph15091838] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 11/16/2022]
Abstract
Mining and smelting activities are the primary sources of toxic metal pollution in China. The purpose of this study was to investigate the pollution risk and identify sources of metals in the arable soil of a Zn/Pb mining and smelting district located in Huize, in Southwest China. Topsoil (346) and profile (three) samples were collected and analyzed to determine the total concentrations of eight toxic elements (Cd, Hg, As, Pb, Cr, Cu, Zn and Ni). The results showed that the mean Cd, Hg, As, Pb, Cr, Cu, Zn and Ni concentrations were 9.07, 0.37, 25.0, 512, 88.7, 239, 1761 and 90.3 mg/kg, respectively, all of which exceeded both the Huize and Yunnan soil background levels. Overall the topsoil was quite acidic, with a mean pH of 5.51. The mean geoaccumulation index (Igeo) revealed that the pollution level was in the order of Pb > Zn > Cd > Hg > As > Ni > Cu > Cr. The ecological risk index (Ei) indicated that there were serious contamination risks for Cd and Hg, high risk for Pb, moderate risk for As, and Cd and Hg were the dominant contributors to the high combined ecological risk index (Er) with a mean parameter of 699 meaning a serious ecological risk. The Nemerow pollution index (Pn) showed that 99.1% of soil samples were highly polluted or worse. Horizontally, high concentrations of Cd, Hg, As, Pb and Zn appeared in the north and middle of the study area, while Cr, Cu and Ni showed an opposite trend. Vertically, as the depth increased, Cd, Hg, As, Pb and Zn contents declined, but Cr, Cu and Ni exhibited an increasing trend. The mobilities of the metals were in the order of Zn > Cd > Hg > As > Pb. Horizontal and vertical distribution, coupled with correlation analysis, PCA and CA suggested that Cd, Hg, As, Pb and Zn mainly came from the anthropogenic sources, whereas Cr and Ni had a lithogenic origin. The source of Cu was a combination of the presence of parent materials as well as human activities. This study provides a base for the local government to control the toxic metal pollution and restore the soil environment system and an effective method to identify the sources of the studied pollutants.
Collapse
|
49
|
Ghasemi A, Sohrabi MR, Motiee F. Application of a Sawdust/Fe3O4 and Sawdust/Fe3O4/PEI as a Selective Adsorbent for Pb(II) Removal. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427217120217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|