1
|
Liu D, Li X, Liu J, Wang F, Leng Y, Li Z, Lu P, Rose NL. Probing the occurrence, sources and cancer risk assessment of polycyclic aromatic hydrocarbons in PM 2.5 in a humid metropolitan city in China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:902-914. [PMID: 38592781 DOI: 10.1039/d3em00566f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Fifty-two consecutive PM2.5 samples from December 2021 to February 2022 (the whole winter) were collected in the center of Chongqing, a humid metropolitan city in China. These samples were analysed for the 16 USEPA priority polycyclic aromatic hydrocarbons (16 PAHs) to explore their composition and sources, and to assess their cancer risks to humans. The total concentrations of the 16 PAHs (ng m-3) ranged from 16.45 to 174.15, with an average of 59.35 ± 21.45. Positive matrix factorization (PMF) indicated that traffic emissions were the major source (42.4%), followed by coal combustion/industrial emission (31.3%) and petroleum leakage/evaporation (26.3%). The contribution from traffic emission to the 16 PAHs increased from 40.0% in the non-episode days to as high as 46.2% in the air quality episode during the sampling period. The population attributable fraction (PAF) indicates that when the unit relative risk (URR) is 4.49, the number of lung cancer cases per million individuals under PAH exposure is 27 for adults and 38 for seniors, respectively. It was 5 for adults and 7 for seniors, when the URR is 1.3. The average incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors was 0.25 × 10-6, 0.23 × 10-6, 0.71 × 10-6, and 1.26 × 10-6, respectively. The results of these two models complemented each other well, and both implied acceptable PAH exposure levels. Individual genetic susceptibility and exposure time were identified as the most sensitive parameters. The selection and use of parameters in risk assessment should be further deepened in subsequent studies to enhance the reliability of the assessment results.
Collapse
Affiliation(s)
- Decai Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
| | - Xingquan Li
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
| | - Jiaxin Liu
- Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Fengwen Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
- Key Laboratory for Urban Atmospheric Environment Integrated Observation & Pollution Prevention and Control of Chongqing, Chongqing Academy of Eco-Environmental Sciences, Chongqing 401147, China
| | - Yan Leng
- Chongqing Dianjiang Middle School, Dianjiang, Chongqing, 408303, China
| | - Zhenliang Li
- Key Laboratory for Urban Atmospheric Environment Integrated Observation & Pollution Prevention and Control of Chongqing, Chongqing Academy of Eco-Environmental Sciences, Chongqing 401147, China
| | - Peili Lu
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China.
| | - Neil L Rose
- Environmental Change Research Centre, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Qi A, Wang P, Lv J, Zhao T, Huang Q, Wang Y, Zhang X, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115494. [PMID: 37742577 DOI: 10.1016/j.ecoenv.2023.115494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2-3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4-7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution.
Collapse
Affiliation(s)
- Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianhua Lv
- Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Wu X, Wang J, Yuan Z, Wang S. Polycyclic aromatic compounds (PACs) in tree barks and tree cores of a national large-scale coal-fired power base of China: Sources, atmospheric toxicities, and pollution histories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163045. [PMID: 36963675 DOI: 10.1016/j.scitotenv.2023.163045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important hazardous air pollutants in China due to the country's coal-dominant energy structure. In order to reveal the pollution characteristics, sources, toxicity, and pollution historical trends of PACs in the atmosphere of the middle reach of the Huaihe River (MRHR), a large-scale coal-fired power base of China, tree barks and tree cores were collected and employed as passive air samplers and historical trend recorders, and 76 PACs were identified for the first time. ΣPACs in tree barks ranged from 170 to 3800 ng g-1 (mean = 700 ± 720 ng g-1), with the high concentrations observed mainly in the coal-mining and coal-bearing area. 16 priority PAHs (PriPAHs) were the predominant substances and accounted for 59 ± 8.3 % of ΣPACs. The combustion of coal and fuel oil was the most significant source of PACs, accounting for 43 % of ΣPACs, followed by the combustion of biomass (30 %) and non-combustion sources (27 %). Based on a bark-air partitioning model, volumetric air concentrations for ΣPACs were calculated to be 450-11,000 ng m-3 (mean = 1600 ± 2000 ng m-3). The BaP-toxic equivalent concentrations (TEQBaP) of ΣPACs (mean = 9.7 ± 15 ng m-3) were significantly higher than the Chinese guideline (1 ng m-3) and were mostly caused by coal & fuel oil combustion (55 ± 13 %). High molecular weight PACs were detected in lower percentages in tree cores than in tree barks, indicating that PACs in the particle phase were difficult to enter the tree core. Major PACs decreased in tree core samples between 2000 and 2020 as pollution control efforts improved, however, some PACs showed different trends when influenced by point sources.
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jie Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| |
Collapse
|
4
|
Hao W, Gao B, Liang B, Chen J, Dong L, Wang Z, Tian M. Distinct seasonal variability of source-dependent health risks from PM 2.5-bound PAHs and related derivatives in a megacity, southwest China: Implications for the significance of secondary formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163742. [PMID: 37116800 DOI: 10.1016/j.scitotenv.2023.163742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
In contrast to polycyclic aromatic hydrocarbons (PAHs) which have been regularly monitored, the source-dependent health risk of their derivatives in ambient environment has not been well understood, especially regarding seasonal variability. In this study, oxygenated and nitrated PAHs (OPAHs and NPAHs) in PM2.5 samples from different seasons in urban Chongqing were analyzed and compared with PAHs from a human health perspective. Benzo[a]pyrene equivalent concentrations (BaPeq) were annually averaged at 6.13 ± 8.97 ng/m3 (n = 118) in the present study, with highest levels in winter followed by spring, autumn, and summer. The BaPeq values of OPAHs were higher than PAHs in spring and summer with seasonal averaged value up to 3.7 times of that for PAHs, manifesting significant underestimation of the health impact if only PAHs were considered. Incremental lifetime cancer risk (ILCR) model results suggested that the potential cancer risks were accumulated mostly from inhalation exposure during infancy and adulthood. Furthermore, in comparison with PAHs, OPAHs, mainly 6H-Benzo[c,d]pyren-6-one, had significant contribution to cancer risks (annually averaged at 58.3 %). Source-dependent cancer risks based on positive matrix factorization model denoted secondary formed PAH derivatives as a critical contributor to cancer risk, particularly in spring and summer (attributed to about 61 % of ILCR). The enhanced secondary formation of PAH derivatives during spring and summer was partially justified by diagnostic ratios and further analysis revealed that higher temperature, higher O3 level, and lower relative humidity besides stronger solar intensity during these two seasons as the most likely causes of this seasonal variation. Results in this study emphasizes that more knowledge on the formation and toxicity of OPAHs is imperative, especially in the context of complex PM2.5-ozone pollution in China.
Collapse
Affiliation(s)
- Weiwei Hao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bo Gao
- Guangdong Provincial Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Bo Liang
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Jing Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lingchi Dong
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ziqian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mi Tian
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Wei L, Yu Z, Zhu C, Chen Y, Pei Z, Li Y, Yang R, Zhang Q, Jiang G. An evaluation of the impact of traffic on the distribution of PAHs and oxygenated PAHs in the soils and moss of the southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160938. [PMID: 36526168 DOI: 10.1016/j.scitotenv.2022.160938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Contaminants in high-altitude mountains such as the Tibetan Plateau (TP) have attracted extensive attention due to their potential impact on fragile ecosystems. Rapid development of the economy and society has promoted pollution caused by local traffic emissions in the TP. Among the pollutants emitted by traffic, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are of particular concern due to their high toxicity. The TP provides an environment to explore the degree and range of contribution for traffic-induced PAHs and OPAHs. In this study, soils and moss were collected at different altitudes and distances from the G318 highway in the southeast TP. The total concentrations of PAHs (∑16PAHs) and OPAHs (∑6OPAHs) in soils were in the range of 3.29-119 ng/g dry weight (dw) and 0.54-9.65 ng/g dw, respectively. ∑16PAH and ∑6OPAH concentrations decreased logarithmically with increasing distance from traffic. A significantly positive correlation between ∑16PAHs and altitude was found at sampling points closest to traffic. Dominant PAHs constituents in soil and moss included chrysene (CHR), benzo[g,h,i]perylene (BghiP), and benzo[b]fluoranthene (BbF); prevalent OPAH compounds were 9-fluorenone (9-FO) and 9,10-anthraquinone (ATQ). These compounds were related to characteristics of traffic emissions. The multiple diagnosis ratio and correlation analysis showed that exhaust emissions were the main source of the PAHs and OPAHs in the studied environment. PMF modeling quantification of the relative contribution of traffic emissions to PAHs in roadside soils was 45 % on average. The present study characterized the extent and range of traffic-induced PAH and OPAH emissions, providing valuable information for understanding the environmental behaviors and potential risks of traffic-related contaminants in high-altitude areas.
Collapse
Affiliation(s)
- Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chengcheng Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Siudek P. Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) in the Coastal Urban Environment of Poland: Sources and Transport Patterns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14183. [PMID: 36361064 PMCID: PMC9657786 DOI: 10.3390/ijerph192114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study combines an interseasonal variation of deposition profiles of fine-particulate-bound polycyclic aromatic hydrocarbons (PM2.5-bound PAHs) with source apportionment analysis. Comprehensive measurements were conducted in four representative periods of 2019 in the coastal urban region of the Baltic Sea in Poland. The mean daily deposition flux of Σ13PAHs was 229 ng m-2 day-1, which was lower than in other urban/industrial sites of Europe and Asia. The seasonal PAHs distribution exhibited a clear U-shaped pattern, reaching maximum values in January and December and the minimum in June. A strong influence of local/regional anthropogenic emissions and meteorological factors (precipitation, ambient temperature, wind regimes) was observed. The contribution of medium molecular weight PAHs (fluoranthene, pyrene, benzo(a)anthracene, chrysene) to the total sum of PAHs deposition fluxes increased from 24% in spring to 38% in summer, as a result of photochemistry, urban traffic, and shipping emissions. The highest contribution of 5- and 6-ring PAHs occurred primarily in autumn (55%), followed by winter (39%), spring (35%), and summer (26%). Benzo(a)pyrene (human carcinogenic compound) had a relatively high deposition flux in winter, which was almost 14 and 20 times higher than the values registered in spring and summer, respectively. The FLEXTRA dispersion model was used to study potential pollution regions for PM2.5-bound PAHs and to investigate changes in the PAH deposition regime in different seasons. This study reveals that the winter contribution of PAHs was mostly impacted by local urban activities (i.e., residential heating and coal-fired power plants). Winter PAH deposition fluxes were particularly associated with atmospheric particles transported from surrounding areas and industrially impacted regions of SE-S-SW Poland and Europe.
Collapse
Affiliation(s)
- Patrycja Siudek
- Institute of Meteorology and Water Management, Waszyngtona 42, PL-81-342 Gdynia, Poland
| |
Collapse
|
7
|
Qiao M, Qi W, Liu H, Qu J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence, ecotoxicity, and sources. ENVIRONMENT INTERNATIONAL 2022; 163:107232. [PMID: 35427839 DOI: 10.1016/j.envint.2022.107232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) have been ubiquitously detected in atmospheric, soil, sediment, and water environments, some of which show higher concentrations and toxicities than the parent polycyclic aromatic hydrocarbons (PAHs). The occurrence, source, fate, risks and methods of analysis for OPAHs in the atmosphere, soil, and the whole environment (comprising the atmosphere, soil, water, and biota) have been reviewed, but reviews focusing on OPAHs in the water environment have been lacking. Due to the higher polarity and water solubility of OPAHs than PAHs, OPAHs exist preferentially in water environments. In this review, the occurrence, ecological toxicity and source of OPAHs in surface water environments are investigated in detail. Most OPAHs show higher concentrations than the corresponding PAHs in surface water environments. OPAHs pose non-ignorable ecological risks to surface water ecosystems. Wastewater treatment plant effluent, atmospheric deposition, surface runoff, photochemical and microbiological transformation, and sediment release are possible sources for OPAHs in surface water. This review will fill important knowledge gaps on the migration and transformation of typical OPAHs in multiple media and their environmental impact on surface water environments. Further studies on OPAHs in the surface environment, including their ecotoxicity with the co-existing PAHs and mass flows of OPAHs from atmospheric deposition, surface runoff, transformation from PAHs, and sediment release, are also encouraged.
Collapse
Affiliation(s)
- Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Xia W, Liang B, Chen L, Zhu Y, Gao M, Chen J, Wang F, Chen Y, Tian M. Atmospheric wet and dry depositions of polycyclic aromatic compounds in a megacity of Southwest China. ENVIRONMENTAL RESEARCH 2022; 204:112151. [PMID: 34634311 DOI: 10.1016/j.envres.2021.112151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The dry and wet depositions of polycyclic aromatic hydrocarbons (PAHs) and related derivatives have rarely been characterized separately. Parent, oxygenated and nitrated PAHs (PAHs, OPAHs and NPAHs) have been measured in monthly-averaged wet and dry deposition samples collected from January to December 2019 in urban Chongqing. The annual average concentrations of Ʃ17PAHs, Ʃ9OPAHs and Ʃ9NPAHs in wet deposition samples were 457 ± 375, 1311 ± 1416 and 8.25 ± 10.2 ng/L, respectively, with significant monthly variations introduced by rainfall and air-borne particle deposition. Most PAHs species were associated with the particulate phase in wet deposition, while OPAHs and NPAHs were mainly distributed in the dissolved phase, probably due to the lower octanol-water partitioning coefficient of N/OPAHs than that of PAHs. Annual deposition fluxes of PAHs, OPAHs and NPAHs in dry deposition were 25264, 25310 and 388 ng/m2/yr, respectively, higher than those in wet deposition (9869, 24083 and 207 ng/m2/yr). This indicates that PACs, especially PAHs, were removed from the atmosphere mainly via dry deposition. The contributions of wet deposition to total deposited PACs were larger for months with higher precipitation and for PACs with higher molecular weight. Composition pattern and temporal variation results indicated that wet deposition fluxes were mainly affected by precipitation-related particle deposition and chemical properties (e.g., water solubility), while dry deposition fluxes were affected more by factors such as gas/particle partitioning, particle size distribution and physicochemical properties of PACs. Principle component analysis combined with diagnostic ratios revealed that PACs in atmospheric deposition samples were from vehicle emission (48.6%), coal combustion (13.4%), petrogenic source (5.9%) and secondary formation (32.1%).
Collapse
Affiliation(s)
- Weiwei Xia
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Bo Liang
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401123, China
| | - Lin Chen
- Department of Otorhinolaryngology, The first Hospital Affiliated to Army Medical University (Southwest Hospital), Chongqing, 400038, China
| | - Yunxi Zhu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Min Gao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jing Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fengwen Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mi Tian
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
9
|
Tian M, Liang B, Zhang L, Hu H, Yang F, Peng C, Chen Y, Jiang C, Wang J. Measurement of size-segregated airborne particulate bound polycyclic aromatic compounds and assessment of their human health impacts - A case study in a megacity of southwest China. CHEMOSPHERE 2021; 284:131339. [PMID: 34198059 DOI: 10.1016/j.chemosphere.2021.131339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Particle size distribution of particulate polycyclic aromatic compounds (PACs) is one of the important factors controlling human exposure to PACs in air. In this study, size-segregated airborne particle samples were collected in a megacity in southwest China to analyze PACs concentrations and evaluate related health risks. Annual average concentrations of Σ19PAHs (polycyclic aromatic hydrocarbons, 17.4 ng/m3) and Σ10OPAHs (oxygenated PAHs, 15.3 ng/m3) were one order of magnitude higher than those of Σ9MPAHs (methyl PAHs, 0.97 ng/m3) and Σ27NPAHs (nitrated PAHs, 1.54 ng/m3). More than 55% of PACs masses were associated with fine particles (aerodynamic diameter Dae < 2.1 μm). Inhalation exposure assessment showed that less than 60% of particulate bound PACs could deposit in the respiratory tract, which implies that the traditional model using ambient concentration of PACs would overestimate the inhalation risk. On the other hand, incremental lifetime cancer risks from dermal absorption (ILCRderm) were comparable to those from inhalation (ILCRinh) exposure despite the much lower daily dermal absorption dose than the daily inhalation dose, which implies that the health impact might be underestimated if only considering inhalation exposure. Cancer risks from inhalation exposure were mainly attributed to fine particles while those from dermal exposure were mostly associated with coarse particles. Although neither ILCRderm nor ILCRinh exceeded the threshold value of 10-6 set by USEPA, the total ILCR exceeded this criterion, manifesting potential health risks from exposure to airborne particulate PACs in this region.
Collapse
Affiliation(s)
- Mi Tian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Bo Liang
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401123, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
| | - Huilin Hu
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Chao Peng
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Changtan Jiang
- Chongqing Environmental Monitoring Center, Chongqing, 401147, China
| | - Jun Wang
- Chongqing Environmental Monitoring Center, Chongqing, 401147, China
| |
Collapse
|
10
|
Feng T, Wang F, Yang F, Li Z, Lu P, Guo Z. Carbonaceous aerosols in urban Chongqing, China: Seasonal variation, source apportionment, and long-range transport. CHEMOSPHERE 2021; 285:131462. [PMID: 34252809 DOI: 10.1016/j.chemosphere.2021.131462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Seventy-seven PM2.5 samples were collected at an urban site (Chongqing University Campus A) in October 2015 (autumn), December 2015 (winter), March 2016 (spring), and August 2016 (summer). These samples were analysed for organic carbon (OC), elemental carbon (EC), and their associated char, soot, 16 PAHs, and 28 n-alkanes to trace sources, and atmospheric transport pathways. The annual average of OC, EC, char, soot, ΣPAHs, and Σn-alkanes were 20.75 μg/m3, 6.18 μg/m3, 5.43 μg/m3, 0.75 μg/m3, 38.29 ng/m3, and 328.69 ng/m3, respectively. OC, ΣPAHs, and Σn-alkane concentrations were highest in winter and lowest in summer. EC, char, and soot concentrations were highest in autumn and lowest in winter. Source apportionment via positive matrix factorization (PMF) indicated that coal/biomass combustion-natural gas emissions (23.8%) and motor vehicle exhaust (20.2%) were the two major sources, followed by diesel and petroleum residue (21.1%), natural biogenic sources (17.7%), and evaporative/petrogenic sources (17.2%). The highest source contributor in autumn and winter was evaporative/petrogenic sources (30.6%) and natural biogenic sources (34.5%), respectively, whereas diesel engine emission contributed the most in spring and summer (32.1% and 38.0%, respectively). Potential source contribution function (PSCF) analysis identified southeastern Sichuan and northwestern Chongqing as the major potential sources of these pollutants. These datasets provide critical information for policymakers to establish abatement strategies for the reduction of carbonaceous pollutant emissions and improve air quality in Chongqing and other similar urban centres across China.
Collapse
Affiliation(s)
- Ting Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China; Department of Environmental Science, Chongqing University, Chongqing, 400030, China
| | - Fengwen Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China; Department of Environmental Science, Chongqing University, Chongqing, 400030, China; Key Laboratory for Urban Atmospheric Environment Integrated Observation & Pollution Prevention and Control of Chongqing, Chongqing Academy of Eco-Environmental Sciences, Chongqing, 401147, China.
| | - Fumo Yang
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenliang Li
- Key Laboratory for Urban Atmospheric Environment Integrated Observation & Pollution Prevention and Control of Chongqing, Chongqing Academy of Eco-Environmental Sciences, Chongqing, 401147, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400030, China; Department of Environmental Science, Chongqing University, Chongqing, 400030, China
| | - Zhigang Guo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
11
|
Saber AN, Zhang H, Islam A, Yang M. Occurrence, fates, and carcinogenic risks of substituted polycyclic aromatic hydrocarbons in two coking wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147808. [PMID: 34058590 DOI: 10.1016/j.scitotenv.2021.147808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
This paper reports for the first time the occurrence, fates, and carcinogenic risks of 20 substituted polycyclic aromatic hydrocarbons (SPAHs) and 16 priority PAH species in two coking wastewater treatment plants (WWTPs) (plant E and central WWTP). The measured total concentrations of PAHs and SPAHs in raw wastewater of coking plant E were 3700 and 1200 μg·L-1, respectively, with naphthalene (1400 μg·L-1), and fluoranthene (353 μg·L-1) as dominant PAH species and 2-methylnaphthalene (167 μg·L-1), anthraquinone (133 μg·L-1), and 1-methylnaphthalene (132 μg·L-1) as dominant SPAHs. For the 11 methyl-PAHs (MPAHs), 4 oxygenated-PAHs (OPAHs), and 5 nitrated-PAHs (NPAHs) investigated, the biological wastewater treatment process removed 98.6% MPAHs, 83.9% OPAHs, and 89.1% NPAHs. Mass balance analysis result revealed that transformation was the major mechanism to remove low-molecular-weight (LMW) MPAHs (59.9-77.3%), a large part of OPAHs, including anthraquinone, methylanthraquinone, and 9-fluorenone (46.7-49.6%), and some NPAHs, including 2-nitrofluorene and 9-nitroanthrancene (52.9-59.1%). Adsorption by activated sludge mainly accounted for removing high-molecular-weight (HMW) SPAHs (59.6-71.01%). The relatively high concentrations of SPAHs in excess sludge (15,000 μg·g-1) and treated effluent (104 μg·L-1) are of great concern for their potential adverse ecological impacts. SPAHS exhibited similar behaviors in central WWTP, though the influent concentrations were much lower. The concentration levels of SPAHs in the ambient air of coking plant E and central WWTP may also pose potential lung cancer risks (LCR) to the workers through inhalation, where all studied SPAHs except 3-nitrofluoranthene and 7-nitrobenz[a]anthracene exceeded the acceptable cancer risk standards (>10-6) recommended by U.S EPA. This study could help identify the ecological and healthy risks during coking wastewater treatment and provide useful information for policy-making.
Collapse
Affiliation(s)
- Ayman N Saber
- National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt.
| | - Haifeng Zhang
- National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ashraful Islam
- National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Ozaki N, Kindaichi T, Ohashi A. PAHs emission source analysis for air and water environments by isomer ratios - Comparison by modified Cohen's d. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136831. [PMID: 32006780 DOI: 10.1016/j.scitotenv.2020.136831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Possible emission sources of PAHs in air and water environments were discussed by a comparison between the data sets of emission sources and environmental fields using five isomer ratios. The similarity of a pair of the datasets of different sources or environment fields for each isomer ratio was evaluated by a newly developed modified effect size d, and the mean of those for the five isomer ratios was applied as an index of similarity. From the analysis, diesel emission and/or biomass burning residues were considered to be major emission sources for almost all the datasets of environments. The pollution loading and path to the PAHs loading of coastal sediments in Hiroshima bay area were examined and it was inferred emission sources was consistently assigned by these newly developed indicators of isomer ratios. Diesel and/or biomass burning were considered to be major sources for the west side area of the bay and the biomass burning was considered to be for the east side area. Further, it was evaluated the west side area, which confronts the Hiroshima city downtown area more directly, was more similar to diesel, and the east side area, which is a bit remoted to the urban central was more similar to the biomass burning. This newly developed method would be a promising alternative application of isomer ratio analysis.
Collapse
Affiliation(s)
- Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan.
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| |
Collapse
|
13
|
Idowu O, Carbery M, O'Connor W, Thavamani P. Speciation and source apportionment of polycyclic aromatic compounds (PACs) in sediments of the largest salt water lake of Australia. CHEMOSPHERE 2020; 246:125779. [PMID: 31927372 DOI: 10.1016/j.chemosphere.2019.125779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Great ecological and human health risks may arise from the presence of polycyclic aromatic hydrocarbons (PAHs) in aquatic environments and particularly in sediments, where they often partition. In spite of the apparent risk, knowledge about PAHs and their polar derivatives in sediments is limited. We, therefore, carried out an assessment of the concentrations of parent PAHs and their derivatives (polar PAHs) in sediments of Lake Macquarie: the largest saltwater lake in the southern hemisphere. A total of 31 sediment samples along the pollution prone western shoreline of the estuary were analysed. Multiple source apportionment methods were used to investigate PAH sources contributing to parent and polar PAH concentrations in the estuarine sediments. Concentration levels were highest for high molecular weight (HMW) PAHs compared to low molecular weight (LMW) PAHs. The highest PAH concentrations were recorded for oxygenated PAHs (oxy-PAHs) compared to parent and other polar PAHs. Polycyclic aromatic hydrocarbon diagnostic ratios and compositional analysis showed that PAHs in Lake Macquarie were predominantly pyrogenic exhibiting strong positive correlation (R2 = 0.972) with total PAH concentrations. Principal Component Analysis (PCA) identified three groupings of PAHs with oxy-PAHs and NPAHs dominating (40.2%). Carbazole, a heterocyclic PAH, was also a prominent contributor to sediment PAH concentrations. Atmospheric deposition, coal combustion and vehicular emissions were implicated as the major contributors to sediment pollution.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Maddison Carbery
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, NSW, 2316, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
14
|
Liang B, Su Z, Tian M, Yang F, Gao M, Chen Y, Zhang L, Xiang L. Sources and Potential Health Risks of PM2.5-Bound PAHs in a Megacity of Southwest China: Importance of Studying from a Health Risk Perspective. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1753218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bo Liang
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
| | - Zhonghua Su
- Materials Quality Supervision & Inspection Research Center, Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
| | - Mi Tian
- School of Environment and Ecology, Chongqing University, Chongqing, China
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| | - Fumo Yang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Min Gao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Liuyi Zhang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, China
| | - Li Xiang
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
15
|
Wu H, Lu L, Chen J, Zhang C, Liu W, Zhuang S. Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2922-2930. [PMID: 32022550 DOI: 10.1021/acs.est.9b07163] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) from the direct atmospheric emission or the degradation of parent PAHs are increasingly recognized because of their potential health risks. Herein, we investigated the effects of four NPAHs/OPAHs (1-NNAP, 9-NANT, 9,10-AQ, and 9-FLU) and their parent PAHs (NAP, ANT, and FLU) on endothelium function with regard to endothelial nitric oxide synthase (eNOS) and endothelium-derived nitric oxide (NO) production in human umbilical vein endothelial cells. The eNOS enzymatic activity and NO production were promoted by NAP, ANT, and FLU; however, eNOS activity was dropped by 52.8, 52.1, 52.5, and 44.5%, and NO production was decreased by 31.1, 50.3, 65.0, and 35.0% after 24 h exposure to 0.01 μM 1-NNAP, 9-NANT, 9,10-AQ, and 9-FLU, respectively. The mRNA expression of eNOS and protein expression of phosphorylated eNOS (Ser1177) were increased by three PAHs but decreased by four NPAHs/OPAHs. The 100 ns molecular dynamics simulations reveal the conformational alteration in the key propionate of heme upon the binding of NPAHs/OPAHs. Our findings provide the first in silico and in vitro evidence for the potential endothelial dysfunction of nitrated and oxygenated PAHs. The health risk implications of NPAHs/OPAHs and corresponding parent PAHs warrant further research.
Collapse
Affiliation(s)
- Hao Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayan Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston 77058, Texas, United States
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Hinton TG, Byrne ME, Webster SC, Love CN, Broggio D, Trompier F, Shamovich D, Horloogin S, Lance SL, Brown J, Dowdall M, Beasley JC. GPS-coupled contaminant monitors on free-ranging Chernobyl wolves challenge a fundamental assumption in exposure assessments. ENVIRONMENT INTERNATIONAL 2019; 133:105152. [PMID: 31518927 DOI: 10.1016/j.envint.2019.105152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Measurements of external contaminant exposures on individual wildlife are rare because of difficulties in using contaminant monitors on free-ranging animals. Most wildlife contaminant exposure data are therefore simulated with computer models. Rarely are empirical exposure data available to verify model simulations, or to test fundamental assumptions inherent in exposure assessments. We used GPS-coupled contaminant monitors to quantify external exposures to individual wolves (Canis lupus) living within the Belarus portion of Chernobyl's 30-km exclusion zone. The study provided data on animal location and contaminant exposure every 35 min for 6 months, resulting in ~6600 individual locations and 137Cs external exposure readings per wolf, representing the most robust external exposure data published to date on free ranging animals. The data provided information on variation in external exposure for each animal over time, as well as variation in external exposure among the eight wolves across the landscape of Chernobyl. The exposure data were then used to test a fundamental assumption in screening-level risk assessments, espoused in guidance documents of the U.S. Environmental Protection Agency and U.S. Department of Energy, - Mean contaminant concentrations conservatively estimate individual external exposures. We tested this assumption by comparing our empirical data to a series of simulations using the ERICA modeling tool. We found that modeled simulations of mean external exposure (10.5 mGy y-1), based on various measures of central tendency, under-predicted mean exposures measured on five of the eight wolves wearing GPS-contaminant monitors (i.e., 12.3, 26.3, 28.0, 28.8 and 35.7 mGy y-1). If under-prediction of exposure occurs for some animals, then arguably the use of averaged contaminant concentrations to predict external exposure is not as conservative as proposed by current risk assessment guidance. Thus, a risk assessor's interpretation of simulated exposures in a screening-level risk analysis might be misguided if contaminant concentrations are based on measures of central tendency. We offer three suggestions for risk assessors to consider in order to reduce the probability of underestimating exposure in a screening-level risk assessment.
Collapse
Affiliation(s)
- Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan.
| | - Michael E Byrne
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Sarah C Webster
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - David Broggio
- Institute of Radiation Protection and Nuclear Safety, PSE-SANTE/SDOS/LEDI, 92262 Fontenay-aux-Roses, France.
| | - Francois Trompier
- Institute of Radiation Protection and Nuclear Safety, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France.
| | | | - Sergay Horloogin
- Polessye State Radioecological Reserve, Choiniki, Gomel Region, Belarus.
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Justin Brown
- Norwegian Radiation and Nuclear Safety Authority, 1361 Østerås, Norway.
| | - Mark Dowdall
- Norwegian Radiation and Nuclear Safety Authority, 1361 Østerås, Norway.
| | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
17
|
Han J, Liang Y, Zhao B, Wang Y, Xing F, Qin L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:312-327. [PMID: 31091495 DOI: 10.1016/j.envpol.2019.05.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
In China, the huge amounts of energy consumption caused severe carcinogenic polycyclic aromatic hydrocarbon (PAHs) concentration in the soil and ambient air. This paper summarized that the references published in 2008-2018 and suggested that biomass, coal and vehicular emissions were categorized as major sources of PAHs in China. In 2016, the emitted PAHs in China due to the incomplete combustion of fuel was about 32720 tonnes, and the contribution of the emission sources was the sequence: biomass combustion > residential coal combustion > vehicle > coke production > refine oil > power plant > natural gas combustion. The total amount of PAHs emission in China at 2016 was significantly decreased due to the decrease of the proportion of crop resides burning (indoor and open burning). The geographical distribution of PAHs concentration demonstrated that PAHs concentration in the urban soil is 0.092-4.733 μg/g. At 2008-2012, the serious PAHs concentration in the urban soil occurred in the eastern China, which was shifted to western China after 2012. The concentration of particulate and gaseous PAHs in China is 1-151 ng/m3 and 1.08-217 ng/m3, respectively. The concentration of particle-bound PAHs in the southwest and eastern region are lower than that in north and central region of China. The incremental lifetime cancer risk (ILCR) analysis demonstrates that ILCR in the soil and ambient air in China is below the acceptable cancer risk level of 10-6 recommended by US Environmental Protection Agency (EPA), which mean that there is a low potential PAHs carcinogenic risk for the soil and ambient air in China.
Collapse
Affiliation(s)
- Jun Han
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China; Hubei Provincial Industrial Safety Engineering Technology Research Center, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Yangshuo Liang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Bo Zhao
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| | - Yu Wang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Futang Xing
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Linbo Qin
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| |
Collapse
|