1
|
Toxic Effects on Oxidative Stress, Neurotoxicity, Stress, and Immune Responses in Juvenile Olive Flounder, Paralichthys olivaceus, Exposed to Waterborne Hexavalent Chromium. BIOLOGY 2022; 11:biology11050766. [PMID: 35625494 PMCID: PMC9138328 DOI: 10.3390/biology11050766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary Metals such as chromium can be exposed at high levels in the marine environment, and exposure to these heavy metals can have a direct effect on marine organisms. High levels of chromium exposure can have a direct impact on organisms in a coastal cage and terrestrial aquaculture. Hexavalent chromium exposure of more than 1.0 and 2.0 mg Cr6+/L induced physiological responses such as antioxidant, neurotransmitter, immune, and stress indicators in Paralichthys olivaceus. Therefore, this study will provide a reference indicator for stable aquaculture production through reference indicators for toxicity due to chromium exposure that may exist in the marine environment. Abstract Juvenile Paralichthys olivaceus were exposed to waterborne hexavalent chromium at various concentrations (0, 0.5, 1.0, and 2.0 mg/L) for 10 days. After chromium exposure, the activities of superoxide dismutase and glutathione S-transferase, which are oxidative stress indicators, were significantly increased; however, the glutathione level was significantly reduced. Acetylcholinesterase activity as a neurotoxicity marker was significantly inhibited upon chromium exposure. Other stress indicators, including plasma cortisol and heat shock protein 70, were significantly increased. The immune response markers (lysozyme and immunoglobulin M) were significantly decreased after chromium exposure. These results suggest that exposure to environmental toxicity in the form of waterborne chromium at concentrations higher than 1.0 mg/L causes significant alterations in antioxidant responses, neurotransmitters, stress, and immune responses in juvenile olive flounders. This study will provide a basis for an accurate assessment of the toxic effects of hexavalent chromium on aquatic organisms.
Collapse
|
2
|
Kim JH, Kang YJ, Lee KM. Effects of Nitrite Exposure on the Hematological Properties, Antioxidant and Stress Responses of Juvenile Hybrid Groupers, Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀. Antioxidants (Basel) 2022; 11:antiox11030545. [PMID: 35326195 PMCID: PMC8944636 DOI: 10.3390/antiox11030545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nitrite concentrations can reach high levels in indoor aquaculture systems, thus it is vital to determine the nitrite tolerance of aquaculture fish species. Here, juvenile hybrid groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀, Family: Serranidae) were exposed to waterborne nitrite at 0, 10, 20, 40, and 80 mg NO2−/L for 2 weeks. Nitrite exposure caused significant reductions in hematocrit and hemoglobin levels, significant increases in plasma calcium and plasma ALP levels, but had no significant effects on magnesium and total protein levels. Of the antioxidant responses investigated, SOD activity increased significantly in the liver and gills, but GST activity and GSH levels were significantly inhibited by nitrite exposure. Stress indicators, such as plasma cortisol and HSP 70 levels, were significantly stimulated by nitrite exposure. In brief, nitrite exposure over 20 mg NO2−/L had toxic effects and affected the hematological properties, antioxidant responses, and stress indicators of juvenile hybrid groupers.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan 31460, Korea; or
- Correspondence:
| | - Yue Jai Kang
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan 31460, Korea; or
| | - Kyung Mi Lee
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Incheon 22383, Korea;
| |
Collapse
|
3
|
Moradi S, Javanmardi S, Gholamzadeh P, Tavabe KR. The ameliorative role of ascorbic acid against blood disorder, immunosuppression, and oxidative damage of oxytetracycline in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:201-213. [PMID: 35059978 DOI: 10.1007/s10695-022-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
This experiment was aimed to determine the possible beneficial effects of dietary ascorbic acid (AA) on hematological indices, immune responses, and antioxidative capacity of Oncorhynchus mykiss treated with antibiotic oxytetracycline (OTC). A total of 150 fish were divided evenly among five experimental groups (30 fish of each, in 3 replicates) receiving diets containing OTC (0 and 100 mg per kg fish weight) and AA (100, 200, 400, and 800 mg per kg fish diet) for 28 days. Treatments include group A or control (100 mg AA without OTC), group B (100 mg AA with OTC), group C (200 mg AA with OTC), group D (400 mg AA with OTC), and group E (800 mg AA with OTC). The results obtained showed that the hematological indices (red blood cells, white blood cells, hematocrit, hemoglobin, and neutrophils), immunological parameters (plasma lysozyme, plasma complement, and skin mucus alkaline phosphatase activities), and antioxidant enzymes activities (superoxide dismutase and catalase) were significantly decreased by OTC in O. mykiss fed control diet (P < 0.05). The results also revealed that OTC significantly increased the activity of biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) in the plasma of O. mykiss fed control diet (P < 0.05). However, in comparison to the control diet, feeding fish with higher amounts of AA (400 and 800 mg/kg diet) significantly restored the hematological, immunological, and antioxidative responses in OTC-treated groups (p < 0.05). These findings show that the dietary supplementation of AA at 400 or 800 mg/kg diet is beneficial in relieving O. mykiss from OTC-induced oxidative stress and immunosuppression.
Collapse
Affiliation(s)
- Saeed Moradi
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran
| | - Sina Javanmardi
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran.
| | - Pooria Gholamzadeh
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran
| | - Kamran Rezaei Tavabe
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran
| |
Collapse
|
4
|
Zhang Z, Fu Y, Shen F, Zhang Z, Guo H, Zhang X. Barren environment damages cognitive abilities in fish: Behavioral and transcriptome mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148805. [PMID: 34323774 DOI: 10.1016/j.scitotenv.2021.148805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The surrounding environments that animals inhabit shape their behavioral phenotypes, physiological status and molecular processes. As one of the driving forces for the adaptation and evolution of marine animals, environmental complexity has been shown to affect several behavioral characteristics in fish. However, little is known about the effects of environmental complexity on fish spatial cognition and about the relevant regulatory mechanisms. To address this theoretical gap, black rockfish Sebastes schlegelii, which is a typical rock fish species, were exposed to laboratory-based small-scale contrasting environments (i.e., spatially complex environment vs. spatially barren environment) for seven weeks. Subsequently, the spatial cognitive abilities and behavioral performance during captive period were determined, and transcriptome sequencing and analyses for fish telencephalon were conducted. In general, the fish from barren environment had significantly lower spatial learning and memory abilities compared with the fish from complex environment (i.e., the complex fish exited the maze faster). During the whole captive period, the frequency of aggressive behavior among barren fish was significantly higher than complex fish. And meanwhile, the group dispersion index of barren group was also significantly higher than complex group, which indicated that complex fish tended to distribute in a more homogeneous pattern than barren fish. Through transcriptomic analyses, a series of differentially expressed genes and pathways which may underpin the damaged effects of barren environment on fish spatial cognition were identified, and these genes mainly related to stress response, metabolism, organism systems and neural plasticity. However, no significant differences in growth performance, locomotor activity (indicated by swimming behavior and rotatory behavior) between treatments were detected. Based on these results, mechanisms in the levels of behavior and molecule were proposed to explain the environmental effects on fish cognition. This study may provide fundamental information for deeply understanding the environmental effects on marine animals.
Collapse
Affiliation(s)
- Zonghang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fengyuan Shen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
5
|
Kim JH, Jeong EH, Jeon YH, Kim SK, Hur YB. Salinity-mediated changes in hematological parameters, stress, antioxidant responses, and acetylcholinesterase of juvenile olive flounders (Paralichthys olivaceus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103597. [PMID: 33493675 DOI: 10.1016/j.etap.2021.103597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to confirm the limit of salinity tolerance in juvenile olive flounders (Paralichthys olivaceus) by changes in blood parameters, AChE, antioxidant and stress responses. The P. olivaceus (mean weight 38.8 ± 4.2 g and mean length 16.4 ± 1.2 cm) were exposed to different concentrations of salinity (seawater, 16, 8, 4, 2, and 0 psu) for 2 weeks. Plasma osmotic pressure was significantly decreased in the P. olivaceus at 0 psu. Hematological parameters such as hematocrit and hemoglobin were significantly decreased in the P. olivaceus at low salinity. Plasma components also changed significantly in the low salinity environment. As a stress indicator, cortisol was significantly increased at low salinity. SOD and GST antioxidant responses, were significantly increased. GSH level in the liver was significantly increased, whereas a significant decrease was observed in the gill GSH level. AChE was significantly increased in P. olivaceus at low salinity. The results of this study indicate that exposure to salinities lower than 8 psu leads to changes in hematological parameters, neurotransmitter, antioxidant and stress responses of P. olivaceus.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea; Department of Aquatic Life and Medical Science, Sun Moon University, Asan 31460, Republic of Korea.
| | - Eun-Ha Jeong
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| | - Yu-Hyeon Jeon
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| | - Su Kyoung Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| | - Young Baek Hur
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Development, Taean 32132, Republic of Korea
| |
Collapse
|
6
|
Zhang M, Yin X, Li M, Wang R, Qian Y, Hong M. Effect of nitrite exposure on haematological status, oxidative stress, immune response and apoptosis in yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108867. [PMID: 32791252 DOI: 10.1016/j.cbpc.2020.108867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022]
Abstract
Nitrite can cause fishes poisoning. This study evaluated the effects of nitrite exposure on haematological status, ion concentration, antioxidant enzyme activity, immune response, cytokine release and apoptosis in yellow catfish. In this study, yellow catfish were exposed to three levels of nitrite (0, 3.00 and 30.00 mg L-1) for 96 h. The results showed that nitrite poisoning could lead to blood deterioration (red blood cell and hemoglobin reduced; white blood cell and methemoglobin elevated), ion imbalance (Na+ and Cl- declined; K+ elevated), oxidative stress (total antioxidant capacity, superoxide dismutase, catalase and glutathione peroxidase activities declined; malondialdehyde accumulation), immunosuppression (lysozyme activity, 50% hemolytic complement, immunoglobulin M, respiratory burst and phagocytic index declined) and cytokines release (TNF, IL 1 and IL 8 elevated). In addition, nitrite poisoning could induce up-regulation of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT and GPx), cytokines (TNF, IL 1 and IL 8) and apoptosis (P53, Bax, Cytochrome c, Caspase 3, Caspase 9, ERK and JNK) genes transcription. This study suggesting that the nitrite exposure triggers blood deterioration, disrupts the ionic homeostasis, induces oxidative stress, immunosuppression, inflammation and apoptosis in yellow catfish.
Collapse
Affiliation(s)
- Muzi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan 316000, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
7
|
Kim JH, Sohn S, Kim SK, Hur YB. Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2020; 97:194-203. [PMID: 31830567 DOI: 10.1016/j.fsi.2019.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/21/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Studies on the resistance of fish raised in bio-floc systems against bacterial infection are limited. We aimed to evaluate the changes in hematological parameters, antioxidant and immune responses, stress indicators, and acetylcholinesterase (AChE) in olive flounder, Paralichthys olivaceus, raised in bio-floc and seawater for 10 months and, then, infected with Edwardsiella tarda at concentrations of 0 (control), 6.61 × 104, 6.61 × 105, 6.61 × 106, and 6.61 × 107 CFU/g fish for 7 days. The lethal concentration 50% was 4.32 × 107 in bio-floc and 3.11 × 106 in seawater. Hematological parameters were significantly decreased by E. tarda challenge, and plasma components were significantly changed. The superoxide dismutase, catalase, and glutathione-S-transferase activities, as antioxidant responses, were significantly increased after infection, whereas the reduced glutathione level was significantly decreased. The lysozyme activity was significantly increased and the AChE level was significantly decreased after infection. Cortisol and HSP 70, as stress indicators, were also significantly increased. The results indicate that E. tarda infection affected various physiological factors in P. olivaceus. Additionally, P. olivaceus raised in seawater were more susceptible to E. tarda infection than those raised in bio-floc.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea.
| | - Saebom Sohn
- National Institute of Fisheries Science, East Sea Fisheries Research Institute, Fisheries Research & Devlopment, Gangneung, Gangwon-do, 25435, South Korea
| | - Su Kyoung Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea
| | - Young Baek Hur
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea
| |
Collapse
|
8
|
Gao XQ, Fei F, Huo HH, Huang B, Meng XS, Zhang T, Liu BL. Effect of acute exposure to nitrite on physiological parameters, oxidative stress, and apoptosis in Takifugu rubripes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109878. [PMID: 31704330 DOI: 10.1016/j.ecoenv.2019.109878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we evaluated the effects of nitrite exposure on hematological parameters, oxidative stress, and apoptosis in juvenile Takifugu rubripes. The fish were exposed to nitrite (0, 0.5, 1, 3, and 6 mM) for up to 96 h. In the high nitrite concentration groups (i.e., 3 and 6 mM), the concentrations of methemoglobin (MetHb), cortisol, glucose, heat shock protein (Hsp)-70, Hsp-90, and potassium (K+) were significantly elevated. Whereas, the concentrations of hemoglobin (Hb), triglyceride (TG), total cholesterol (TC), and sodium (Na+) and chloride (Cl-) ions were significantly decreased. Compared with those of the control groups, the concentrations of the antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx), in the gills were considerably elevated at 12 and 24 h after exposure to nitrite (1, 3, and 6 mM), but reduced at 48 and 96 h. The increase in the antioxidant enzymes may contribute to the elimination of reactive oxygen species (ROS) induced by nitrite during early nitrite exposure, when the antioxidant system is not sufficiently effective to eliminate or neutralize excessive ROS. In addition, we found that nitrite exposure could alter the expression patterns of some key apoptosis-related genes (Caspase-3, Caspase-8, Caspase-9, p53, Bax, and Bcl-2). This indicated that the caspase-dependent apoptotic pathway and p53-Bax-Bcl-2 pathway might be involved in apoptosis induced by nitrite exposure. Furthermore, our study provides insights into how acute nitrite exposure affects the physiological responses and potential molecular mechanism of apoptosis in marine fish. The results can help elucidate the mechanisms involved in nitrite-induced aquatic toxicology in marine fish.
Collapse
Affiliation(s)
- Xiao-Qiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Fan Fei
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian, People's Republic of China
| | - Huan Huan Huo
- College of Animal Science and Technology, Jiangxi Agricultural University, NanChang, 330045, People's Republic of China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Xue Song Meng
- Dalian Tianzheng Industrial Co. Ltd., Dalian, 116000, People's Republic of China
| | - Tao Zhang
- Dalian Tianzheng Industrial Co. Ltd., Dalian, 116000, People's Republic of China
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
9
|
Kim JH, Park HJ, Kim DH, Oh CW, Lee JS, Kang JC. Changes in Hematological Parameters and Heat Shock Proteins in Juvenile Sablefish Depending on Water Temperature Stress. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:147-153. [PMID: 30636338 DOI: 10.1002/aah.10061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Juvenile Sablefish Anoplopoma fimbria were used to assess the effects of water temperature (8, 10, 12, 14, 16, 18, and 20°C) on hematological parameters and heat shock proteins 70 and 90 for 4 months. Hematological parameters, including red blood cell count, hematocrit, and hemoglobin, were significantly decreased at 18°C. The inorganic plasma components calcium and magnesium were not altered by water temperature. The organic plasma components glucose and cholesterol were notably elevated at 18°C, whereas total protein was reduced. The enzymatic components, including aspartate aminotransferase, alanine aminotransaminase, and alkaline phosphatase, were notably elevated at 16°C or 18°C. The results of this study indicate that a temperature higher than the proper temperature affects the hematological parameters and heat shock proteins of juvenile Sablefish.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, Korea
| | - Hee-Ju Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Chul Woong Oh
- Department of Marine Biology, Pukyong National University, Busan, Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| |
Collapse
|
10
|
Herrera M, Mancera JM, Costas B. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses. Front Endocrinol (Lausanne) 2019; 10:447. [PMID: 31354625 PMCID: PMC6636386 DOI: 10.3389/fendo.2019.00447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
In the last years, studies on stress attenuation in fish have progressively grown. This is mainly due to the interest of institutions, producers, aquarists and consumers in improving the welfare of farmed fish. In addition to the development of new technologies to improve environmental conditions of cultured fish, the inclusion of beneficial additives in the daily meal in order to mitigate the stress response to typical stressors (netting, overcrowding, handling, etc.) has been an important research topic. Fish are a highly diverse paraphyletic group (over 27,000 species) though teleost infraclass include around 96% of fish species. Since those species are distributed world-wide, a high number of different habitats and vital requirements exist, including a wide range of environmental conditions determining specifically the stress response. Although the generalized endocrine response to stress (based on the release of catecholamines and corticosteroids) is detectable and therefore provides essential information, a high diversity of physiological effects have been described depending on species. Moreover, recent omics techniques have provided a powerful tool for detecting specific differences regarding the stress response. For instance, for transcriptomic approaches, the gene expression of neuropeptides and other proteins acting as hormonal precursors during stress has been assessed in some fish species. The use of different additives in fish diets to mitigate stress responses has been deeply studied. Besides the species factor, the additive type also plays a pivotal role in the differentiation of the stress response. In the literature, several types of feed supplements in different species have been assayed, deriving in a series of physiological responses which have not focused exclusively on the stress system. Immunological, nutritional and metabolic changes have been reported in these experiments, always associated to endocrine processes. The biochemical nature and physiological functionality of those feed additives strongly affect the stress response and, in fact, these can act as neurotransmitters or hormone precursors, energy substrates, cofactors and other essential elements, implying multi-systematic and multi-organic responses. In this review, the different physiological responses among fish species fed stress-attenuating diets based on biomolecules and minerals have been assessed, focusing on the endocrine regulation and its physiological effects.
Collapse
Affiliation(s)
- Marcelino Herrera
- IFAPA Centro Agua del Pino, Huelva, Spain
- *Correspondence: Marcelino Herrera
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI·MAR), Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Cádiz, Spain
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Kim JH, Kim JY, Lim LJ, Kim SK, Choi HS, Hur YB. Effects of waterborne nitrite on hematological parameters and stress indicators in olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater. CHEMOSPHERE 2018; 209:28-34. [PMID: 29913396 DOI: 10.1016/j.chemosphere.2018.06.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Juvenile olive flounders, Paralichthys olivaceus (mean weight 2.69 ± 0.31 g), were raised in bio-floc and seawater for six months, these P. olivaceus (mean weight 280.1 ± 10.5 g, mean length 28.37 ± 2.3 cm) were exposed to different concentrations of waterborne nitrite (0, 25, 50, 100, and 200 mg NO2-/L) for 7 days. None of the P. olivaceus individuals exposed to bio-floc and seawater containing waterborne nitrite concentrations of 200 mg/L for 7 days survived. Hematological parameters (hemoglobin and hematocrit) were significantly reduced by nitrite exposure. Regarding plasma components, the concentrations of glucose, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) increased significantly in response to nitrite exposure, whereas cholesterol concentrations significantly decreased. Stress indicators, including concentrations of plasma glucose, cortisol, and liver and gill concentrations of heat shock protein 70 (HSP70) were significantly increased by nitrite exposure. The results of the study indicate that nitrite exposure affected the hematological parameters and stress indicators of P. olivaceus raised in bio-floc and seawater, and these changes were more prominent in the P. olivaceus raised in seawater than those raised in bio-floc.
Collapse
Affiliation(s)
- Jun-Hwan Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea.
| | - Jin-Young Kim
- Sun Moon University, Department of Aquatic Life and Medical Science, Asan-si, South Korea
| | - Lok-Ji Lim
- Sun Moon University, Department of Aquatic Life and Medical Science, Asan-si, South Korea
| | - Su Kyoung Kim
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea
| | - Hye Sung Choi
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea
| | - Young Baek Hur
- National Institute of Fisheries Science, West Sea Fisheries Research Institute, Fisheries Research & Devlopment, Taean, 32132, South Korea
| |
Collapse
|