1
|
Vilar DS, Correia da Silva HH, Dória AR, Torres NH, Vallim JH, Salgado de Castro VLS, Américo-Pinheiro JHP, Salazar-Banda GR, Barrios Eguiluz KI, Ferreira LFR. Reducing citrus effluent toxicity: Biological-electrochemical treatment with diamond anode. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123688. [PMID: 38431247 DOI: 10.1016/j.envpol.2024.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.
Collapse
Affiliation(s)
- Débora S Vilar
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Hugo H Correia da Silva
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Aline R Dória
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Nádia H Torres
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, 71966-700, Brazil.
| | - José H Vallim
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariuna, São Paulo 13820-000, Brazil
| | | | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo - SP, 08230-030, Brazil
| | - Giancarlo R Salazar-Banda
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil.
| | - Katlin I Barrios Eguiluz
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil; Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju-Sergipe, Brazil
| | - Luiz Fernando R Ferreira
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, 71966-700, Brazil.
| |
Collapse
|
2
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
3
|
Ghani AA, Kim J, Park J, Lee S, Kim B, Lim Y, Hussain M, Manchuri AR, Devarayapalli KC, Kim G, Lee DS. Optimization of electrochemical regeneration of intercalated MXene for the adsorptive removal of ciprofloxacin: Prospective mechanism. CHEMOSPHERE 2024; 346:140544. [PMID: 37907169 DOI: 10.1016/j.chemosphere.2023.140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
2D-Ti3C2Tx MXene nanosheets intercalated with sodium ions (SI-Ti3C2Tx) were synthesized and utilized in simultaneous adsorption and electrochemical regeneration with ciprofloxacin (CPX). The primary focus of this study is to investigate the long-term stability of SI-Ti3C2Tx MXene and to propose the underlying regeneration mechanisms. The successful synthesis of Ti3AlC2, Ti3C2Tx MXene, and SI-Ti3C2Tx MXene was confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. Electrochemical regeneration parameters such as charge passed, regeneration time, current density, and electrolyte composition were optimized with values of 787.5 C g-1, 7.5 min, 10 mA cm-2, and 2.5w/v% sodium chloride, respectively, enabling the complete regeneration of the SI-Ti3C2Tx MXene. In addition, the electrochemical regeneration significantly enhanced CPX removal from the SI-Ti3C2Tx MXene owing to partial amorphization, disorderliness, increased functional groups, delamination, and defect creation in the structure. Thus, the synthesized nano-adsorbent has proven helpful in practical water treatment with optimized electrochemical regeneration processes.
Collapse
Affiliation(s)
- Ahsan Abdul Ghani
- Department of Chemical Engineering, University of Karachi, Main University Road, Karachi, 75270, Sindh, Pakistan
| | - Jinseob Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Juhui Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Seongju Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bolam Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Youngsu Lim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Muzammil Hussain
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Amaranadha Reddy Manchuri
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | | | - Gyuhyeon Kim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Fu R, Zhang PS, Jiang YX, Sun L, Sun XH. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods. CHEMOSPHERE 2023; 311:136993. [PMID: 36309052 DOI: 10.1016/j.chemosphere.2022.136993] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical Advanced Oxidation Process (EAOP) has been applied to the degradation of refractory pollutants in wastewater due to its strong oxidation capacity, high degradation efficiency, simple operation, and mild reaction. Among electrochemical processes, anodic oxidation (AO) is the most widely used and its mechanism is mainly divided into direct oxidation and indirect oxidation. Direct oxidation means that pollutants are oxidized at the anode by direct electron transfer. Indirect oxidation refers to the generation of active species during the electrolytic reaction, which acts on pollutants. The mechanism of AO process is controlled by many factors, including electrode type, electrocatalyst material, wastewater composition, pH, applied current and voltage levels. It is very important to explore the reaction mechanism of electrochemical treatment, which determines the efficiency of the reaction, the products of the reaction, and the extent of reaction. This paper firstly reviews the current research progress on the mechanism of AO process, and summarizes in detail the different mechanisms caused by influencing factors under common AO process. Then, strategies and methods to distinguish direct oxidation and indirect oxidation mechanisms are reviewed, such as intermediate product analysis, electrochemical test analysis, active species detection, theoretical calculation, and the limitations of these methods are analyzed. Finally some suggestions are put forward for the study of the mechanism of electrochemical advanced oxidation.
Collapse
Affiliation(s)
- Rui Fu
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| | - Peng-Shuang Zhang
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| | - Yuan-Xing Jiang
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| | - Lin Sun
- College of Chemistry, Jilin University, ChangChun, 130012, Jilin, PR China.
| | - Xu-Hui Sun
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| |
Collapse
|
5
|
A proof of concept for the electro-refinery: Selective electroproduction of acetic acid from t-CNSL waste by using DSA electrode. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
de Oliveira ÍL, da Silva ALO, Medeiros MC, Magalhães KF, Morais CC, Martínez-Huitle CA, Castro SS. Electrochemical oxidation for treating effluents from cashew nut processing using batch reactors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Dionisio D, Rodrigo MA, Motheo AJ. Electrochemical degradation of a methyl paraben and propylene glycol mixture: Interference effect of competitive oxidation and pH stability. CHEMOSPHERE 2022; 287:132229. [PMID: 34547562 DOI: 10.1016/j.chemosphere.2021.132229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting compounds (EDCs) are one of the many classes of harmful pollutants frequently found in water resources. Even at low concentrations, EDCs might accumulate in the organisms and interfere on numerous processes controlled by hormones. Parabens, for example, are preservatives widely used in pharmaceutical and cosmetic industries, but several studies related them to human breast cancer. It is well-known that electrochemical technologies are an efficient alternative for wastewater treatment, promoting the appropriate destruction of EDCs. However, most studies are applied to single target contaminant solutions, which may neglect the impact from co-exited inorganic/organic pollutants. Based on that, this study aimed to elucidate the interfering effects of two target organic contaminants of very different nature during electrochemical mediated process. For that, methyl paraben (MeP) and propylene glycol (PG) were selected as models of aromatic/phenolic and carboxylate compounds versus low-molecular aliphatic alcohols. These two compounds are often together used in preservative blends and cosmetic/pharmaceutical formulations. PG is not a harmful chemical, but it is present in several types of effluents in relatively high concentrations. Thus, it may interfere on the degradation of numerous pollutants of low concentrations. The electrochemical treatment of a mixture containing 100 mg L-1 MeP +1000 mg L-1 PG showed that both contaminants suffered interfering effects. The presence of MeP negatively interfered on PG degradation; the carboxylate compound is more easily oxidized even at lower molecular concentration. On the other hand, the presence of PG showed an unexpected positive effect on MeP degradation, that was not reflected on its mineralization. The results indicate that in addition to the expected effect of anodic competition, polymerization and copolymerization reactions may also occur in the studied system. The use of an acidic buffer medium increased the removal of both contaminants and favored the oxidation pathway over the polymerization. In this case, the increase in the removal was reflected in the mineralization process, which increased up to 6 times when the mixture was treated in the buffered medium.
Collapse
Affiliation(s)
- Dawany Dionisio
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970, São Carlos, SP, Brazil; Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla - La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla - La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Devda V, Chaudhary K, Varjani S, Pathak B, Patel AK, Singhania RR, Taherzadeh MJ, Ngo HH, Wong JWC, Guo W, Chaturvedi P. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered 2021; 12:4697-4718. [PMID: 34334104 PMCID: PMC8806852 DOI: 10.1080/21655979.2021.1946631] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
In the last two decades, water use has increased at twice the rate of population growth. The freshwater resources are getting polluted by contaminants like heavy metals, pesticides, hydrocarbons, organic waste, pathogens, fertilizers, and emerging pollutants. Globally more than 80% of the wastewater is released into the environment without proper treatment. Rapid industrialization has a dramatic effect on developing countries leading to significant losses to economic and health well-being in terms of toxicological impacts on humans and the environment through air, water, and soil pollution. This article provides an overview of physical, chemical, and biological processes to remove wastewater contaminants. A physical and/or chemical technique alone appears ineffective for recovering useful resources from wastewater containing complex components. There is a requirement for more processes or processes combined with membrane and biological processes to enhance operational efficiency and quality. More processes or those that are combined with biological and membrane-based processes are required to enhance operational efficiencies and quality. This paper intends to provide an exhaustive review of electrochemical technologies including microbial electrochemical technologies. It provides comprehensive information for the recovery of metals, nutrients, sulfur, hydrogen, and heat from industrial effluents. This article aims to give detailed information into the advancements in electrochemical processes to energy use, improve restoration performance, and achieve commercialization. It also covers bottlenecks and perspectives of this research area.
Collapse
Affiliation(s)
- Viralkunvar Devda
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Kashika Chaudhary
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
| | - Bhawana Pathak
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | | | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Jonathan W. C. Wong
- Institute of Bioresource and Agriculture and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Preeti Chaturvedi
- Environmental Toxicology Group, Aquatic Toxicology Laboratory, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Long-chain phenols oxidation using a flow electrochemical reactor assembled with a TiO2-RuO2-IrO2 DSA electrode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Electrochemical Oxidation of Effluents from Food Processing Industries: A Short Review and a Case-Study. WATER 2020. [DOI: 10.3390/w12123546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A short review on the treatment of effluents from food processing industries by electrochemical oxidation (EO) was performed. Olive mill wastewater (OMW) and boron-doped diamond (BDD) are the most reported effluent and anode material, respectively. The addition of NaCl or Na2SO4 as supporting electrolytes is common in these studies, and their influence on the EO performance depends, among other things, on the anode material, since the electrolyte oxidation mechanism is different when active and non-active anode materials are utilized. A case-study on the application of a pilot plant, working in batch mode with recirculation, equipped with a BDD anode, to treat 4 L of OMW, slaughterhouse (SW) and winery (WW) wastewaters, with initial chemical oxygen demands (COD) of 20.5, 3.6 and 0.26 g L−1, respectively, is presented and discussed. In 16 h assays, 94% COD removal was achieved for OMW, and for SW and WW the Portuguese COD legal discharge limit of 150 mg L−1 was accomplished. Process efficiency decreased for lower organic load. NaCl addition increased COD removal in SW and WW, but presented an adverse effect for OMW COD removal, when compared to Na2SO4 addition. Nevertheless, lower specific energy consumptions were attained in chloride medium (48 Wh (g COD)−1).
Collapse
|
11
|
Saha P, Bruning H, Wagner TV, Rijnaarts HHM. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters. CHEMOSPHERE 2020; 259:127491. [PMID: 32650167 DOI: 10.1016/j.chemosphere.2020.127491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The reuse of cooling tower blowdown (CTBD) in the cooling tower itself requires CTBD deionization and a pre-treatment before deionization to remove organic compounds (OCs) that induce membrane fouling. This study assesses the potential of electrochemical oxidation (EO) with a boron-doped diamond (BDD) and a Ti/RuO2 mixed-metal oxide (MMO) anode for CTBD pre-treatment. Also, the influence of the applied current density (j), initial pH, hydrodynamic conditions, and supporting electrolyte on the process performance was evaluated. Results show that COD and TOC removal were 85 and 51%, respectively, with the BDD-anode; however, they were 50 and 12% with MMO-anode at a j-value of 8.7 mA cm-2 and neutral pH. An increased j-value increased the COD and TOC removal; however, different pHs, hydrodynamic conditions, and the addition of supporting electrolytes had a minor impact on the removal with both anodes. Liquid chromatography-organic carbon detection analysis showed that the OC in CTBD mainly consisted of humic substances (HS). EO with the BDD-anode resulted in 35% HS mineralization, while the rest of the HS were partially oxidized into low molecular weight compounds and building blocks. However, HS mineralization was limited with the MMO-anode. The mineralization and oxidation were accompanied by the formation of organic and inorganic chlorinated species. These species increased the toxicity to Vibrio fischeri 20-fold compared to the initially low-toxic CTBD. Thus, EO with a BDD-anode is a promising pre-treatment technology for the removal of OCs before CTBD deionization, but measures to minimize the chlorinated species formation are required before its application.
Collapse
Affiliation(s)
- Pradip Saha
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Harry Bruning
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Thomas V Wagner
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
12
|
Pueyo N, Ormad MP, Miguel N, Kokkinos P, Ioannidi A, Mantzavinos D, Frontistis Z. Electrochemical oxidation of butyl paraben on boron doped diamond in environmental matrices and comparison with sulfate radical-AOP. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110783. [PMID: 32430283 DOI: 10.1016/j.jenvman.2020.110783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The electrochemical oxidation (EO) of butyl paraben (BP) over boron-doped diamond (BDD) anode was studied in this work. Emphasis was put on degradation performance in various actual water matrices, including secondary treated wastewater (WW), bottled water (BW), surface water (SW), ultrapure water (UW), and ultrapure water spiked with humic acid (HA). Experiments were performed utilizing 0.1 M Na2SO4 as the electrolyte. Interestingly, matrix complexity was found to favor BP degradation, i.e. in the order WW ~ BW > SW > UW, thus implying some kind of synergy between the water matrix constituents, the reactive oxygen species (ROS) and the anode surface. The occurrence of chloride in water matrices favors reaction presumably due to the formation of chlorine-based oxidative species, and this can partially offset the need to work at increased current densities in the case of chlorine-free electrolytes. No pH effect in the range 3-8 on degradation was recorded. EO oxidation was also compared with a sulfate radical process using carbon black as activator of sodium persulfate. The matrix effect was, in this case, detrimental (i.e. UW > BW > WW), pinpointing the different behavior of different processes in similar environments.
Collapse
Affiliation(s)
- Noelia Pueyo
- Department of Chemical Engineering & Environmental Technologies, University of Zaragoza, C/María de Luna 3, Zaragoza, 50018, Spain
| | - Maria P Ormad
- Department of Chemical Engineering & Environmental Technologies, University of Zaragoza, C/María de Luna 3, Zaragoza, 50018, Spain
| | - Natividad Miguel
- Department of Chemical Engineering & Environmental Technologies, University of Zaragoza, C/María de Luna 3, Zaragoza, 50018, Spain
| | - Petros Kokkinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Alexandra Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece.
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132, Kozani, Greece
| |
Collapse
|
13
|
Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution. Sci Rep 2020; 10:3343. [PMID: 32094375 PMCID: PMC7039912 DOI: 10.1038/s41598-020-60161-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, cashew nut shells (CNS), waste from a cashew nut processing factory, have been used as an adsorbent for Pb(II) ions in water. Treatments of CNS with 1 M of H2SO4, HNO3, and NaOH solutions were performed to modify their surfaces and improve their adsorption capacities. Characterization of untreated and chemical-treated CNS was carried out using nitrogen adsorption isotherm, elemental (CHN) analysis, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX). In the study of Pb(II) removal, various models of adsorption kinetics and isotherms were evaluated against the experimental data. The results showed that H2SO4-treated CNS exhibited the highest adsorption capacity. The chemical treatment removes impurities, alters the surface functional groups and improves specific surface areas and pore volumes of native CNS significantly. Surface adsorption and intra-particle diffusion steps were found to substantially affect the overall adsorption process of Pb(II) on H2SO4-treated CNS. Owing to its easy preparation and comparable adsorption capacity, H2SO4-treated CNS has the potential to be developed as a low-cost adsorbent for the removal of Pb(II) from contaminated water.
Collapse
|
14
|
Dong J, Zhao W, Zhou S, Zhang C, Fu D. Transformation of bisphenol A by electrochemical oxidation in the presence of nitrite and formation of nitrated aromatic by-products. CHEMOSPHERE 2019; 236:124835. [PMID: 31549673 DOI: 10.1016/j.chemosphere.2019.124835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this contribution, the electrocatalytic abatement of bisphenol A (BPA) with boron-doped diamond (BDD) anode had been conducted in NaNO2 electrolytes. Central composite design was used as statistical multivariate method to optimize the operating parameters adopted (applied current density, flow rate, concentration of NaNO2 and initial pH). The results from response surface analysis indicated that pH was the most influential factor for TOC decay, and a maximum TOC decay of 63.7% was achieved under the optimized operating conditions (9.04 mA cm-2 of applied current density, 400 mL min-1 of flow rate, 10 mM of NaNO2, 4.0 of initial pH and 60 min of electrolysis time). Besides, LC/MS technique was applied to identify the main reaction intermediates, and plenty of nitrated oligomers were detected at the end of the degradation. These by-products were generated via the coaction of coupling reaction of nitrated phenol and electrophilic substitution mediated by nitrogen dioxide radicals. Moreover, our results showed that the degree of nitration depended heavily on the employed initial nitrite concentration. This was one of the very few investigations dealing with nitrophenolic by-products in nitrite medium, and thus the findings exhibited important implications for electrochemical degradation of BPA and its related phenolic pollutants.
Collapse
Affiliation(s)
- Jiayue Dong
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjia Zhao
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sihan Zhou
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
15
|
Liu B, Zhang SG, Chang CC. Emerging pollutants-Part II: Treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1390-1401. [PMID: 31472086 DOI: 10.1002/wer.1233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Recently, emerging pollutants (EPs) have been frequently detected in urban wastewater, surface water, drinking water, and other water bodies. EPs mainly usually include pharmaceuticals and personal care products, endocrine-disrupting chemicals, antibiotic resistance genes, persistent organic pollutants, disinfection by-products, and other industrial chemicals. The potential threat of EPs to ecosystems and human health has attracted worldwide attention. Therefore, how to treat EPs in various water bodies has become one of the research priorities. In this paper, some research results on treatment of EPs published in 2018 were summarized. PRACTITIONER POINTS: At present, more attention has been paid to emerging pollutants (EPs), including pharmaceuticals and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), antibiotic resistance genes, persistent organic pollutants, disinfection by-products, etc. Existing EPs disposal technologies mainly include: engineered wetlands and natural systems, biological treatment, physical and physicochemical separation, chemical oxidation, catalysis, etc. This paper reviews some research results on the treatment technologies of EPs published in 2018.
Collapse
Affiliation(s)
- Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, China
| | - Shen-Gen Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology, Beijing, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, District of Columbia
| |
Collapse
|
16
|
da Costa PR, de A. Costa ECT, Castro SS, Fajardo AS, Martínez-Huitle CA. A sequential process to treat a cashew-nut effluent: Electrocoagulation plus electrochemical oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Cotillas S, Lacasa E, Herraiz M, Sáez C, Cañizares P, Rodrigo MA. The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. ChemElectroChem 2019. [DOI: 10.1002/celc.201801747] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Salvador Cotillas
- Department of Chemical Engineering School of Industrial EngineeringUniversity of Castilla-La Mancha 02071 Albacete Spain
| | - Engracia Lacasa
- Department of Chemical Engineering School of Industrial EngineeringUniversity of Castilla-La Mancha 02071 Albacete Spain
| | - Miguel Herraiz
- Department of Chemical Engineering School of Industrial EngineeringUniversity of Castilla-La Mancha 02071 Albacete Spain
| | - Cristina Sáez
- Department of Chemical Engineering Faculty of Chemical Sciences and TechnologiesUniversity of Castilla-La Mancha 13005 Ciudad Real Spain
| | - Pablo Cañizares
- Department of Chemical Engineering Faculty of Chemical Sciences and TechnologiesUniversity of Castilla-La Mancha 13005 Ciudad Real Spain
| | - Manuel A. Rodrigo
- Department of Chemical Engineering Faculty of Chemical Sciences and TechnologiesUniversity of Castilla-La Mancha 13005 Ciudad Real Spain
| |
Collapse
|