1
|
Wang K, Xu J, Guo H, Min Z, Wei Q, Chen P, Sleutel S. Reuse of straw in the form of hydrochar: Balancing the carbon budget and rice production under different irrigation management. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:77-87. [PMID: 39180805 DOI: 10.1016/j.wasman.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/27/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Hydrochar is proposed as a climate-friendly organic fertilizer, but its potential impact on greenhouse gas (GHG) emissions in paddy cultivation is not fully understood. This two-year study compared the impact of exogenous organic carbon (EOC) application (rice straw and hydrochar) on GHG emissions, the net ecosystem carbon budget (NECB), net global warming potential (net GWP), and GHG emission intensity (GHGI) in a rice pot experiment using either flooding irrigation (FI) or controlled irrigation (CI). Compared with FI, CI increased ecosystem respiration by 23 - 44 % and N2O emissions by 85 - 137 % but decreased CH4 emissions by 30 - 58 % (p < 0.05). Since CH4 contributed more to net GWP than N2O, CI reduced net GWP by 16 - 220 %. EOC amendment increased crop yield by 5 - 9 % (p < 0.05). Compared with CK, hydrochar application increased initial GHG emission, net GWP and GHGI in the first year, while in the second year, there was no significant difference in net GWP and GHGI between CI-hydrochar and CK. Compared with straw addition, hydrochar amendment reduced net GWP and GHGI by 20 - 66 % and 21 - 66 %; and exhibited a lower net CO2 emission when considering the energy input during the hydrochar production. These findings suggest that integrated CI-hydrochar practices would be a sustainable and eco-friendly way for organic waste management in rice production as it holds potential to enhance the NECB and SOC sequestration of rice production, while also offsetting the extra carbon emissions from organic inputs.
Collapse
Affiliation(s)
- Kechun Wang
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China; Department of Environment, Ghent University, Ghent 9000, Belgium
| | - Junzeng Xu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China.
| | - Hang Guo
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Zhihui Min
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Qi Wei
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Peng Chen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil - Water Efficient Utilization Carbon Sequestration and Emission Reduction, Hohai University, Nanjing 210098, China
| | - Steven Sleutel
- Department of Environment, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Gebretsadkan AA, Belete YZ, Krounbi L, Gelfand I, Bernstein R, Gross A. Soil application of activated hydrochar derived from sewage sludge enhances plant growth and reduces nitrogen loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174965. [PMID: 39067596 DOI: 10.1016/j.scitotenv.2024.174965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Sewage sludge treatment and disposal is a considerable environmental and economic burden, and is considered a major global challenge. Here, sewage sludge treatment and disposal were studied with a focus on hydrothermal carbonization and the use of hydrochar (HC) as a soil amendment after Fenton-reaction activation. The underlying hypothesis was that enhanced adsorption of nutrients (e.g., ammonium) by activated HC (AHC) increases their availability, thus enhancing plant growth and reducing environmental impacts such as greenhouse gas emission and N leaching relative to conventional soil-amendment techniques. The impact of AHC on lettuce plant growth, N leaching, ammonia volatilization, soil trace-gas emissions, and respiration was studied in a net-house planting experiment. Four treatments were tested in quadruplicate using sandy loam soil with addition of either AHC, urea fertilizer, or AHC plus urea, and a control with no amendment. Activation-induced changes in AHC surface properties (indicated by SEM and XPS analyses) resulted in an NH4+ adsorption capacity 60 % higher than that of untreated HC. The AHC + urea soil treatment yielded the most enhanced plant growth, followed by urea and AHC treatments with comparable growth rates. Least growth occurred in the control with no amendment. Nitrogen loss through gas emissions, per kg of lettuce, was lowest with AHC + urea treatment, although its mean N emission as nitrous oxide (N2O) was notably higher at 2.3 mg N2O-N kg-1 than for other treatments (∼0.4 mg N2O-N kg-1). Dissolved-N leaching was reduced by up to four times with AHC treatment due to its higher NH4+ adsorption capacity, indicating reduced environmental impact of the AHC amendment. AHC application is therefore considered a sustainable soil amendment, enhancing plant growth and reducing N loss and sewage environmental impact.
Collapse
Affiliation(s)
- Angesom Aregawi Gebretsadkan
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker campus, Midreshet Ben Gurion 8499000, Israel
| | - Yonas Zeslase Belete
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker campus, Midreshet Ben Gurion 8499000, Israel
| | - Leilah Krounbi
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker campus, Midreshet Ben Gurion 8499000, Israel
| | - Ilya Gelfand
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, Midreshet Ben Gurion 8499000, Israel.
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker campus, Midreshet Ben Gurion 8499000, Israel
| | - Amit Gross
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker campus, Midreshet Ben Gurion 8499000, Israel.
| |
Collapse
|
3
|
Zhou B, Cheng S, Peng S, Li W, Li C, Wang Q, Wang Y, Guo J. Response of bacterial community structure to different phosphorus additions in a tobacco-growing soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1344733. [PMID: 38516665 PMCID: PMC10954889 DOI: 10.3389/fpls.2024.1344733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Introduction Phosphorus (P), which plays a vital role in plant growth, is continually added to soil to maximize biomass production, leading to excessive P accumulation and water eutrophication. Results In this study, a pot experiment using a subtropical tobacco-growing soil fertilized with four P levels-no P, low P, medium P, and high P-was conducted and rhizosphere and bulk soils were analyzed. Results P addition significantly increased tobacco biomass production (except under low P input) and total soil P and available P content (P<0.05), whereas total nitrogen content decreased in the rhizosphere soils, although this was only significant with medium P application. P fertilization also significantly altered the bacterial communities of rhizosphere soils (P<0.05), but those of bulk soils were unchanged (P>0.05). Moreover, a significant difference was found between rhizosphere soils with low (LR) and high (HR) P inputs (P<0.05). Additionally, compared with rhizosphere soils with no P (CKR), Shannon diversity showed a declining trend, which was significant with LR and HR (P<0.05), whereas an increasing tendency was observed for Chao1 diversity except in LR (P>0.05). Functional prediction revealed that P application significantly decreased the total P and N metabolism of microorganisms in rhizosphere soils (P<0.05). Discussion Collectively, our results indicate that maintaining sustainable agricultural ecosystems under surplus P conditions requires more attention to be directed toward motivating the potential of soil functional microbes in P cycling, rather than just through continual P input.
Collapse
Affiliation(s)
- Beibei Zhou
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiqian Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuang Peng
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenqing Li
- Fujian Tobacco Research Institute, Fuzhou, China
| | - Chunying Li
- Fujian Tobacco Research Institute, Fuzhou, China
| | - Qianqian Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinping Guo
- Fujian Tobacco Research Institute, Fuzhou, China
| |
Collapse
|
4
|
Wang X, Kong Q, Cheng Y, Xie C, Yuan Y, Zheng H, Yu X, Yao H, Quan Y, You X, Zhang C, Li Y. Cattle manure hydrochar posed a higher efficiency in elevating tomato productivity and decreasing greenhouse gas emissions than plant straw hydrochar in a coastal soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168749. [PMID: 38007120 DOI: 10.1016/j.scitotenv.2023.168749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Rehabilitation of degraded soil health using high-performance and sustainable measures are urgently required for restoring soil primary productivity and mitigating greenhouse gas (GHG) emission of coastal ecosystems. However, the effect of livestock manure derived hydrochar on GHG emission and plant productivity in the coastal salt-affected soils, one of blue carbon (C) ecosystems, was poorly understood. Therefore, a cattle manure hydrochar (CHC) produced at 220 °C was prepared to explore its effects and mechanisms on CH4 and N2O emissions and tomato growth and fruit quality in a coastal soil in comparison with corresponding hydrochars derived from plant straws, i.e., sesbania straw hydrochars (SHC) and reed straw hydrochars (RHC) using a 63-day soil column experiment. The results showed that CHC posed a greater efficiency in reducing the global warming potential (GWP, 54.6 % (36.7 g/m2) vs. 45.5-45.6 % (22.2-30.6 g/m2)) than those of RHC and SHC. For the plant growth, three hydrochars at 3 % (w/w) significantly increased dry biomass of tomato shoot and fruit by 12.4-49.5 % and 48.6-165 %, respectively. Moreover, CHC showed the highest promotion effect on shoot and fruit dry biomass of tomato, followed by SHC ≈ RHC. Application of SHC, CHC and RHC significantly elevated the tomato sweetness compared with CK, with the order of CHC (54.4 %) > RHC (35.6 %) > SHC (22.1 %). Structural equation models revealed that CHC-depressed denitrification and methanogen mainly contributed to decreased GHG emissions. Increased soil phosphorus availability due to labile phosphorus supply from CHC dominantly accounted for elevated tomato growth and fruit production. Comparably, SHC-altered soil properties (e.g., decreased pH and increased total carbon content) determined variations of GHG emission and tomato growth. The findings provide the high-performance strategies to enhance soil primary productivity and mitigate GHG emissions in the blue C ecosystems.
Collapse
Affiliation(s)
- Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan Yuan
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Xueyang Yu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yue Quan
- Department of Geography and Marine Sciences, Yanbian University, Hunchun, Jilin 133000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China; Qingdao Key Laboratory of Coastal Saline-alkali Land Resources Mining and Biological Breeding, Qingdao 266101, China.
| |
Collapse
|
5
|
Iboko MP, Dossou-Yovo ER, Obalum SE, Oraegbunam CJ, Diedhiou S, Brümmer C, Témé N. Paddy rice yield and greenhouse gas emissions: Any trade-off due to co-application of biochar and nitrogen fertilizer? A systematic review. Heliyon 2023; 9:e22132. [PMID: 38045115 PMCID: PMC10692810 DOI: 10.1016/j.heliyon.2023.e22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Combined application of biochar and nitrogen (N) fertilizer could offer opportunities to increase rice yield and reduce methane emissions from paddy fields. However, this strategy may increase nitrous oxide (N2O) emissions, hence its interactive effects on GHG emissions, global warming potential (GWP) and GHG intensity (GHGI) remained poorly understood. We conducted a systematic review to i) evaluate the overall effects of combined application of biochar and N fertilizer rates on GHGs emissions, GWP, rice yield, and GHGI, ii) determine the quantities of biochar and N-fertilizer application that increase rice yield and reduce GHGs emissions and GHGI, and iii) examine the effects of biochar and different types of nitrogen fertilizers on rice yield, GHGs, GWP, and GHGI using data from 45 research articles and 183 paired observations. The extracted data were grouped based on biochar and N rates used by researchers as well as N fertiliser types. Accordingly, biochar rates were grouped into low (≤9 tons/ha), medium (>9 and ≤ 20 ton/ha) and high (>20 tons/ha), while N rates were grouped into three categories: low (≤140 kg N/ha), medium (>140 and ≤ 240 kg N/ha), and high (>240 kg N/ha). For fertiliser types, N rates were grouped as: low (≤150 kg N/ha), medium (>150 and ≤250 kg N/ha), and high (>250 kg N/ha) and N types into: urea, NPK, NPK plus urea (NPK_urea) and NPK plus (NH4)2SO4 (NPK_(NH4)2SO4). Results showed that biochar and N fertiliser significantly affected GHGs emissions, GWP, GHGI and rice yield. Compared to control (i.e., sole N application), co-application of high biochar and medium N rates significantly decreased CH4 emission (82 %) while low biochar with low N rates enhanced CH4 emission (114 %). In contrast, high biochar combined with low N decreased N2O emission by 91 % whereas medium biochar and high N rates resulted in 82 % increase in N2O emission relative to control. The highest GWP and GHGI were observed under co-application of medium biochar and low N rates. Highest rice yield was observed under low biochar rate and high N rate. Regardless of N fertiliser type and biochar rates, increasing N rates increased rice yield and N2O emissions. The highest GWP and GHGI were recorded under sole NPK application. Combination of low biochar and medium N produced low GHGs emissions, high grain yield, and the lowest GHGI, and could be recommended to smallholder farmers to increase rice yield and reduce greenhouse gas emissions from paddy rice field. Further studies should be conducted to evaluate the effects of biochar properties on soil characteristics and greenhouse gas emissions.
Collapse
Affiliation(s)
- Maduabuchi P. Iboko
- Graduate Research Program, Climate Change and Agriculture, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
- Graduate Research Program, Climate Change and Agriculture, Institut Polytechnique Rural de Formation et de Recherche Appliquée, Katibougou, Mali
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | | | - Sunday E. Obalum
- Department of Soil Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chidozie J. Oraegbunam
- Global Station for Food, Land & Water Resources, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Siméon Diedhiou
- Graduate Research Program, Climate Change and Agriculture, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
- Graduate Research Program, Climate Change and Agriculture, Institut Polytechnique Rural de Formation et de Recherche Appliquée, Katibougou, Mali
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Christian Brümmer
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, 38116, Braunschweig, Germany
| | - Niaba Témé
- Labo Biotechnologie, Institute D'Economie Rurale, Sotuba, Mali
| |
Collapse
|
6
|
He W, Lu J, Zhang N, Zhou Y, Ding D, Feng Y, Rong S. Surface acidic sites strengthened core-shell HC@MnO 2 for enhanced gaseous ammonia adsorption. CHEMOSPHERE 2023; 338:139507. [PMID: 37453518 DOI: 10.1016/j.chemosphere.2023.139507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
As a common gaseous pollutant in atmospheric environment, ammonia (NH3) not only contributes to the formation of haze, but also disturb the nitrogen balance in ecosystem through atmospheric nitrogen deposition. Therefore, the control of NH3 emission has important environmental significance. Adsorption is the most commonly used technology for NH3 purification in practice, and efficient adsorbents are the key to adsorption method. Herein, a core-shell structured HC@MnO2 adsorbent was constructed by in-situ growth of layered δ-MnO2 on hydrochar (HC) surface, and its surface acidic sites were further strengthened. The enhancement of surface acidic sites significantly improved the adsorption performance of HC@MnO2 for NH3, reaching 34.49 mg NH3/g, which was superior to commercial carbon-based materials (whose adsorption capacity was 8.47 times that of Coal-based activated carbon, 14.25 times that of Coconut shell activated carbon, and 12.77 times that of Bamboo charcoal). Moreover, the operating parameters and adsorption kinetics were detailly investigated. The adsorption of HC@MnO2 on NH3 was in accordance with pseudo-second-order adsorption kinetics model. Large surface area of core-shell structure and abundant surface acidic sites of δ-MnO2 are the decisive reasons for the excellent adsorption performance of HC@MnO2. Importantly, the enhancement of surface stronger Brønsted acidic sites is the key to improve NH3 adsorption performance of HC@MnO2. Finally, the thermal regeneration and recycling performance of HC@MnO2-H were also investigated. This study provides a suggestive for further research on low-cost composite materials with excellent NH3 adsorption performance.
Collapse
Affiliation(s)
- Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Jingling Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Nan Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yu Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Danni Ding
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Shaopeng Rong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
7
|
Sun J, Benavente V, Jansson S, Mašek O. Comparative characterisation and phytotoxicity assessment of biochar and hydrochar derived from municipal wastewater microalgae biomass. BIORESOURCE TECHNOLOGY 2023; 386:129567. [PMID: 37506941 DOI: 10.1016/j.biortech.2023.129567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Microalgae, originating from a tertiary treatment of municipal wastewater, is considered a sustainable feedstock for producing biochar and hydrochar, offering great potential for agricultural use due to nutrient content and carbon storage ability. However, there are risks related to contamination and these need to be carefully assessed to ensure safe use of material from wastewater microalgae. Therefore, this study compared the properties and phototoxicity of biochar and hydrochar produced via pyrolysis and hydrothermal carbonisation (HTC) of microalgae under different temperatures and residence times. While biochar promoted germination and seedling growth by up to 11.0% and 70.0%, respectively, raw hydrochar showed strong phytotoxicity, due to the high content of volatile matter. Two post-treatments, dichloromethane (DCM) washing and further pyrolysis, proved to be effective methods for mitigating phytotoxicity of hydrochar. Additionally, biochar had 35.8-38.6% fixed carbon, resulting in higher carbon sequestration potential compared to hydrochar.
Collapse
Affiliation(s)
- Jiacheng Sun
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| | - Veronica Benavente
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden; RISE Processum AB, SE-89122 Örnsköldsvik, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| |
Collapse
|
8
|
Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, Zhu YG. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11357-11372. [PMID: 37493521 DOI: 10.1021/acs.est.3c02620] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biochar, a carbon (C)-rich material obtained from the thermochemical conversion of biomass under oxygen-limited environments, has been proposed as one of the most promising materials for C sequestration and climate mitigation in soil. The C sequestration contribution of biochar hinges not only on its fused aromatic structure but also on its abiotic and biotic reactions with soil components across its entire life cycle in the environment. For instance, minerals and microorganisms can deeply participate in the mineralization or complexation of the labile (soluble and easily decomposable) and even recalcitrant fractions of biochar, thereby profoundly affecting C cycling and sequestration in soil. Here we identify five key issues closely related to the application of biochar for C sequestration in soil and review its outstanding advances. Specifically, the terms use of biochar, pyrochar, and hydrochar, the stability of biochar in soil, the effect of biochar on the flux and speciation changes of C in soil, the emission of nitrogen-containing greenhouse gases induced by biochar production and soil application, and the application barriers of biochar in soil are expounded. By elaborating on these critical issues, we discuss the challenges and knowledge gaps that hinder our understanding and application of biochar for C sequestration in soil and provide outlooks for future research directions. We suggest that combining the mechanistic understanding of biochar-to-soil interactions and long-term field studies, while considering the influence of multiple factors and processes, is essential to bridge these knowledge gaps. Further, the standards for biochar production and soil application should be widely implemented, and the threshold values of biochar application in soil should be urgently developed. Also needed are comprehensive and prospective life cycle assessments that are not restricted to soil C sequestration and account for the contributions of contamination remediation, soil quality improvement, and vegetation C sequestration to accurately reflect the total benefits of biochar on C sequestration in soil.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jitao Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianran Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Cavali M, Libardi Junior N, de Sena JD, Woiciechowski AL, Soccol CR, Belli Filho P, Bayard R, Benbelkacem H, de Castilhos Junior AB. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159627. [PMID: 36280070 DOI: 10.1016/j.scitotenv.2022.159627] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil.
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Julia Dutra de Sena
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-908 Curitiba, Paraná, Brazil
| | - Paulo Belli Filho
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| | - Rémy Bayard
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Hassen Benbelkacem
- DEEP (Déchets Eaux Environnement Pollutions) Laboratory, National Institute of Applied Sciences of Lyon, 69100 Villeurbanne, France
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
10
|
Joshi A, Breulmann M, Schulz E, Ruser R. Effects of sewage sludge hydrochar on emissions of the climate-relevant trace gases N 2O and CO 2 from loamy sand soil. Heliyon 2022; 8:e10855. [PMID: 36276744 PMCID: PMC9582714 DOI: 10.1016/j.heliyon.2022.e10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
This work explores the effects of amending a loamy sand soil with hydrochars having different physicochemcial characteristics. The effects of different hydrochars on emissions of the greenhouse gases nitrous oxide (N2O) and carbon dioxide (CO2) were investigated together with the relationship between the hydrochar's mineral nitrogen content and the soil microbial biomass. Soil samples were amended with eleven different hydrochars and feedstocks having different carbon and nitrogen contents at application rates of 5 t ha-1 and 25 t ha-1. Microbial immobilization was the main mineral nitrogen sink in soil following hydrochar application. Moreover, the processing conditions applied during hydrochar production (i.e., the pyrolysis temperature and residence time) had significant effects on N2O and CO2 emissions: treatment with incubated hydrochars yielded significantly lower N2O emissions than treatment with non-carbonized feedstocks, particularly at the highest level of hydrochar application (25 t ha-1). Further analysis revealed that increasing the process temperature and residence time during hdyrochar production significantly increased the final product's total organic carbon content but reduced its content of hot water extractable carbon. Hydrochars produced with higher process temperatures and longer residence times therefore yielded lower CO2 emissions during a 44-day incubation experiment than raw feedstocks or hydrochars produced under less severe conditions. Hydrochars formed from sewage sludge at high process temperatures and with long residence times are thus promising soil additives for reducing GHG emissions.
Collapse
Affiliation(s)
- Arpan Joshi
- CDRSP – Politécnico de Leiria, Marinha Grande, Portugal,Institute of Crop Science, Department Fertilization and Soil Matter Dynamics (340i), University Hohenheim, Fruwirthstraße 20, 70599 Stuttgart, Germany,Corresponding author.
| | - Marc Breulmann
- Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Elke Schulz
- Helmholtz Centre for Environmental Research—UFZ, Theodor-Lieser Straße 4, 06120 Halle, Germany
| | - Reiner Ruser
- Institute of Crop Science, Department Fertilization and Soil Matter Dynamics (340i), University Hohenheim, Fruwirthstraße 20, 70599 Stuttgart, Germany
| |
Collapse
|
11
|
Feng Y, Du H, Wulandari T, Poinern GEJ, Jiang ZT, Fawcett D, Hassan N, Xue L, Yang L. Hydrochar amendments stimulate soil nitrous oxide emission by increasing production of hydroxyl radicals and shifting nitrogen functional genes in the short term: A culture experiment. CHEMOSPHERE 2022; 302:134771. [PMID: 35500635 DOI: 10.1016/j.chemosphere.2022.134771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The application of waste biomass-derived hydrochar to soil may cause extremely intensive nitrous oxide (N2O) fluxes that can challenge our current mechanistic understanding of the global nitrogen cycle in the biosphere. In this study, two waste biomasses were used to prepare cyanobacterial biomas-derived hydrochar (CHC) and wheat straw-derived hydrochar (SHC) for short-term incubation experiments to identify their effects and mechanisms of waste biomass-derived hydrochar on soil N2O efflux, with time-series samples collected for N2O efflux and soil analysis. The results showed that CHC and SHC caused short-term bursts of N2O effluxes without nitrogen inputs. Moreover, the enrichment of exogenous organics and nutrients at the hydrochar-soil interface was identified as the key factor for enhancing N2O fluxes, which stimulated microbial nitrification (i.e., increased gene copy number of ammonia oxidizing bacteria) and denitrification (i.e., increased gene copy number of nitrate and N2O reducing bacteria) processes. The concentrations of Fe (II) and hydroxyl radicals (HO•) were 6.49 and 5.63 times higher, respectively, in the hydrochar layer of CHC than SHC amendment. Furthermore, structural equation models demonstrated that HO•, as well as soil microbiomes, played an important role in driving N2O fluxes. Together, our findings provide a deeper insight into the assessment and prognosis of the short-term environmental risk arising from agricultural waste management in integrated agriculture. Further studies under practical field application conditions are warranted to verify the findings.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Haiyan Du
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Triana Wulandari
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Zhong-Tao Jiang
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Derek Fawcett
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Naveed Hassan
- Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
12
|
Sun R, Zheng H, Yin S, Zhang X, You X, Wu H, Suo F, Han K, Cheng Y, Zhang C, Li Y. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155183. [PMID: 35421479 DOI: 10.1016/j.scitotenv.2022.155183] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/09/2022] [Accepted: 04/07/2022] [Indexed: 05/25/2023]
Abstract
Biochar (i.e., pyrochar and hydrochar) application is a promising strategy to improve soil quality and productivity. However, the comparison of biochars with different carbonization methods and feedstocks for the plant growth in the coastal salt-affected soil remains limited. In this study, a 30-day microcosmic experiment was conducted to compare the effects of pyrochars and hydrochars derived from reed straw (RPC and RHC) and cow manure (CPC and CHC) on the peanut (Arachis hypogaea L.) seedling growth in a coastal salt-affected soil of Yellow River Delta, China. The results showed that RPC, CHC and CPC significantly elevated fresh shoot weight by 67.77%-89.37%, whereas the RHC amendment showed little effect. The malondialdehyde contents in peanut seedling leaves were significantly declined by 25.28%-35.51% with pyrochar and hydrochar amendments, which might be associated with the enhanced proline contents and K/Na ratios. The stimulation of certain phytohormones (i.e., indole-3-acetic acid, zeatin riboside, gibberellic acid 3) in peanut seedlings with pyrochar and hydrochar amendments might be attributed to the growth enhancement. RPC, CPC and CHC improved the soil properties and fertility such as cation-exchange capacity (CEC), total nitrogen, and available potassium and water holding capacity (WHC) of the coastal salt-affected soil. However, RHC not only significantly decreased soil CEC and WHC, but also increased soil exchangeable sodium percentage. The abundances of soil beneficial bacteria, such as f_Gemmatimonadacea, Sphingomonas, Blastococcus and Lysobacter were enhanced by RPC, CHC and CPC amendments, which were mainly associated with the increased WHC and CEC. Fungal community was less sensitive to pyrochar and hydrochar amendments than bacterial community according to the relative abundance and diversity, and beneficial fungi, such as Oidiodendron and Sarocladium were enriched in the CHC soil. Overall, the application of RPC, CHC and CPC showed greater potentials for the enhancement of peanut growth in a coastal salt-affected soil.
Collapse
Affiliation(s)
- Ruixue Sun
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hao Zheng
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Shaojing Yin
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Haiyun Wu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyue Suo
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Kunxu Han
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
13
|
Karatas O, Khataee A, Kalderis D. Recent progress on the phytotoxic effects of hydrochars and toxicity reduction approaches. CHEMOSPHERE 2022; 298:134357. [PMID: 35313162 DOI: 10.1016/j.chemosphere.2022.134357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization of wet biomasses has been known to produce added-value materials for a wide range of applications. From catalyst substrates, to biofuels and soil amendments, hydrochars have distinct advantages to offer compared to conventional materials. With respect to the agricultural application of hydrochars, both positive and negative results have been reported. The presence of N, P and K in certain hydrochars is appealing and may contribute to the reduction of chemical fertilizer application. However, regardless of biomass, hydrothermal carbonization results in the production of phytotoxic organic compounds. Additionally, hydrochars from sewage sludge often contain heavy metal concentrations which exceed the regulatory limits set for agricultural use. This review critically discusses the phytotoxic aspects of hydrochar and provides an account of the substances commonly responsible for these. Furthermore, phytotoxicity reduction approaches are proposed and compared with each other, in view of field-scale applications.
Collapse
Affiliation(s)
- Okan Karatas
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Department of Environmental Engineering, Bursa Technical University, Bursa, 16310, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze, 41400, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Dimitrios Kalderis
- Department of Electronics Engineering, Hellenic Mediterranean University, Chania, Crete, 73100, Greece.
| |
Collapse
|
14
|
Bona D, Scrinzi D, Tonon G, Ventura M, Nardin T, Zottele F, Andreis D, Andreottola G, Fiori L, Silvestri S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114894. [PMID: 35334400 DOI: 10.1016/j.jenvman.2022.114894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 °C for 3 h) and co-composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m2; 51.45 mmol N2O/m2; 112 mol NH3/m2) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.
Collapse
Affiliation(s)
- Daniela Bona
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Giustino Tonon
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Fabio Zottele
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Daniele Andreis
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| | - Silvia Silvestri
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| |
Collapse
|
15
|
Xu X, Yuan X, Zhang Q, Wei Q, Liu X, Deng W, Wang J, Yang W, Deng B, Zhang L. Biochar derived from spent mushroom substrate reduced N 2O emissions with lower water content but increased CH 4 emissions under flooded condition from fertilized soils in Camellia oleifera plantations. CHEMOSPHERE 2022; 287:132110. [PMID: 34523433 DOI: 10.1016/j.chemosphere.2021.132110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/10/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Agricultural soils are major sources of greenhouse gases (GHGs) that related with intensive fertilizer input. Biochar is widely used to mitigate GHGs, which may interact with soil water content impacting GHG emissions. Camellia oleifera fruit shell (FS) and spent mushroom substrate (MS) are ideal biochar feedstocks. However, the impact of water content and biochar on soil GHG emissions has not been thoroughly understood. Here, we examined CH4 and N2O emissions from C. oleifera plantation soils as affected by biochar (derived from MS or FS, 1 g 25 g-1 soil), water content (60%, 120%, 240% or 360% water holding capacity, WHC), and fertilization (control or chicken manure, CM 2.5 g 25 g-1 soil). We determined the abundance of related microbial functional genes to obtain the underlining mechanisms. The results showed that higher N2O emissions occurred in soils with 120%WHC, due to increased abundance of AOA, AOB and nirS. MS or FS biochar differed in their effects on soil GHG emissions with different WHC. MS biochar was higher in pH, C/N and specific surface area, and mitigated more N2O emissions from soils with CM and 120%WHC relative to FS biochar (by 92.9% and 34.6%, respectively). MS biochar significantly decreased abundance of nitrification related functional genes (AOA, AOB) in soils with 120%WHC and CM, which explained the decrease in N2O emissions. However, MS biochar increased cumulative CH4 emissions from flooded soils via increase in mcrA abundance. Thereby, biochar feedstocks should be considered in CH4 and N2O mitigations from soils with different water contents.
Collapse
Affiliation(s)
- Xintong Xu
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xi Yuan
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiang Zhang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qixuan Wei
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaojun Liu
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenping Deng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawei Wang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenting Yang
- School of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bangliang Deng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China; College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Ling Zhang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
16
|
Feng Y, He H, Xue L, Liu Y, Sun H, Guo Z, Wang Y, Zheng X. The inhibiting effects of biochar-derived organic materials on rice production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112909. [PMID: 34102501 DOI: 10.1016/j.jenvman.2021.112909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The effects of PBC and HBC on rice production, NUE and corresponding mechanisms were examined. Six treatments, P05, P30, H05, H30 (P: PBC; H: HBC; 05 and 30 represented the application rate of 0.5 and 3.0% w/w), CKU (urea application without char) and CK (no application of char and urea), were set up. Results showed that P05, P30 and H05 increased grain yield by 1.8-7.3% (P > 0.05), whereas H30 reduced grain yield by 60.4% (P < 0.05), compared to CKU. Meanwhile, HI under P05, P30 and H05 increased by 3.4-3.6%, while H30 decreased by 9.1% (P < 0.05). NUE and NAE showed similar trends with rice yield. By investigation, the excessive introduction of BDOM plays a crucial role in the reduction of rice production and NUE under higher HBC application. GC-MS/MS analysis showed that the soluble BDOM of HBC and PBC was quite different, and compounds such as 2,6-dimethoxyphenol might stress rice growth. ESI-FT-ICR-MS analysis showed that the BDOM of HBC contained a certain quantity of aromatic compounds, which may also stress rice growth. Overall, HBC pretreatment should be conducted, and the application rate should be strictly controlled before its agricultural application.
Collapse
Affiliation(s)
- Yanfang Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huayong He
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihong Xue
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haijun Sun
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhi Guo
- Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yueman Wang
- Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
17
|
Feng Y, He H, Li D, He S, Yang B, Xue L, Chu Q. Biowaste hydrothermal carbonization aqueous product application in rice paddy: Focus on rice growth and ammonia volatilization. CHEMOSPHERE 2021; 277:130233. [PMID: 34384170 DOI: 10.1016/j.chemosphere.2021.130233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonization (HTC) is known as a green biomass conversion technology. However, it often suffers from the issue of disposing hydrothermal carbonization aqueous products (HCAP). Based on the characterization and composition of acidic HCAP, a rice paddy soil column experiment was conducted to observe the effects of HCAP on ammonia (NH3) volatilization form paddy soil and rice yield. The experiment was designed with five treatments. HCAPs were produced at 220 °C and (SHC220-L) and 260 °C (SHC260-L) derived from poplar sawdust, HCAP produced at 220 °C (WHC220-L) and 260 °C (WHC260-L) derived from wheat straw, and a control group without HCAP application (termed CKU hereafter). The results showed that HCAP treatments increased the rice yield by 4.30%-26.0% compared to CKU. HACPs prepared at lower temperatures (SHC220-L and WHC220-L) mitigated the cumulative NH3 volatilization by 11.2% and 7.6%, respectively, and mitigated yield-scale NH3 volatilization (cumulative NH3 volatilization/total yield) by 14.2% ∼ 22.4%. HCAP significantly improved the N use efficiency of rice. We found that the NH3 volatilization was related to NH4+-N concentration and pH of surface water, soil TOC and NH4+-N oxidation functional genes. This study implied that HCAP could be potentially used as a liquid fertilizer, which will be a potential substitute for chemical N fertilizers. There is still a long way before HCAP can be applied in full-scale for N fertilizer reduction and waste recycle.
Collapse
Affiliation(s)
- Yanfang Feng
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Huayong He
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Detian Li
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Shiying He
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bei Yang
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Qingnan Chu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
Fan G, Tong F, Zhang W, Shi G, Chen W, Liu L, Li J, Zhang Z, Gao Y. The effect of organic solvent washing on the structure of hydrochar-based dissolved organic matters and its potential environmental toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26584-26594. [PMID: 33484455 DOI: 10.1007/s11356-021-12517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
With the increased interest in the practical use of hydrochar, concerns about the possible environmental biotoxicity of hydrochar and its released dissolved organic matters (DOM) have grown. As a common method for removing bio-oil on the surface of hydrochar, the effect of organic solvent washing on the properties of hydrochar released DOM remains unclear. In this study, we made a comprehensive comparison of hydrochar properties and molecule structure as well as biotoxicity of DOM released from HC (raw hydrochar) and THC (hydrochar washed by tetrahydrofuran). The results indicated that the mass loss of hydrochar was obvious after tetrahydrofuran (THF) washing, and a decline of H/C atomic ratio and increase of N/C and O/C atomic ratios was observed based on Van Krevelen (VK) diagram. This result was further confirmed by FTIR, 13C NMR, and XPS results. Meanwhile, the molecule structure of DOM was shifted to lower molecule weight with higher O-contain compounds after THF extraction due to the demethanation process. However, the biotoxicity experiments indicated that both extracted DOM had no significant impact on germination rate of wheat, and HC-treated sample even exhibited growth superiority. Nevertheless, potential toxicity was observed with the increase of the activity of antioxidant enzymes, and THF washing aggravated the potential oxidative damage through increasing the aromaticity of DOM. Such understanding highlights the importance of evaluating hydrochar and its released DOM before applications, so as to reduce the potential environment biotoxicity.
Collapse
Affiliation(s)
- Guangping Fan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Fei Tong
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Weiguo Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Gaoling Shi
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Wei Chen
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Lizhu Liu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Jiangye Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhenhua Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China.
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China.
| |
Collapse
|
19
|
Chen D, Zhou Y, Xu C, Lu X, Liu Y, Yu S, Feng Y. Water-washed hydrochar in rice paddy soil reduces N 2O and CH 4 emissions: A whole growth period investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116573. [PMID: 33529901 DOI: 10.1016/j.envpol.2021.116573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Hydrochar (HC), an environment-friendly material, enhances soil carbon sequestration and mitigate greenhouse gases (GHGs) emissions in croplands. In this study, the water-washed HC (WW-HC) was applied to paddy soil to investigate effects on nitrous oxide (N2O) and methane (CH4) emissions during rice growth period. Four treatments, namely control (without N fertilizer and WW-HC), N fertilizer (WW-HC00), N fertilizer with 0.5 wt% WW-HC (WW-HC05) and N fertilizer with 1.5 wt% WW-HC (WW-HC15), were established. Results showed the WW-HC addition reduced N2O and CH4 emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) during the growing season. Moreover, the WW-HC application reduced N2O cumulative emission (P < 0.05) (by 28.6% and 23.8% for WW-HC05 and WW-HC15, respectively). It was mainly due to the reduced ratio of (nirK + nirS) to nosZ under WW-HC15 (P < 0.05). Compared with WW-HC00, the WW-HC05 reduced CH4 cumulative emissions by 14.8%, while the WW-HC15 increased by 9.7%. This might be ascribed to the significantly reduced expression of the methanogenic mcrA gene and ratio of mcrA to pmoA by WW-HC (P < 0.05). The WW-HC05 amendment decreased GWP and GHGI by 18.6% and 32.5%, respectively. Furthermore, the WW-HC application greatly improved nitrogen use efficiency by 116-145% compared with the control. Our study indicates the WW-HC application is a promising GHGs mitigation practice in paddy fields.
Collapse
Affiliation(s)
- Danyan Chen
- College of Horticulture, Jinling Institute of Technology, Nanjing, 210038, China
| | - Yibo Zhou
- Nanjing Extension Center for Agricultural Equipment, Nanjing, 210036, China
| | - Cong Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Xinyu Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Shan Yu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
20
|
Hou P, Feng Y, Wang N, Petropoulos E, Li D, Yu S, Xue L, Yang L. Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142457. [PMID: 33113706 DOI: 10.1016/j.scitotenv.2020.142457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
As a good soil synergist, biochar has a wide prospect in improving soil fertility and crop production. Although hydrochar, produced by hydrothermal carbonization process has attracted attention due to production advantages, hydrochar application in low fertility soils as well as its impact to the associated greenhouse gas (GHG) emissions in farmlands is rarely reported. To advance our understanding on the effect of hydrochar addition on grain yield from low fertility soils and the corresponding CH4 and N2O emissions, a soil-column experiment, with two hydrochar types (sawdust-derived hydrochar (SDH), microbial-aged hydrochar (A-SDH)) at two application rates (5‰, 15‰; (w/w)), was conducted. The results showed that hydrochar addition evidently increased rice yield. The N2O emissions were mainly related to the substrate supply of the hydrochar itself and less affected by the denitrifiers (functional genes) present. Hydrochar amendment at low application rate (5‰; SDH05, A-SDH05) significantly decreased the cumulative N2O emissions by 26.32% ~ 36.84%. Additionally, hydrochar amendment could not increase the CH4 emissions due to the substrate limitation; the cumulative emissions were similar with those from the control, ranging between 11.1-12.8 g m-2. Regarding grain yield and global warming potential, greenhouse gas intensity from the soils subjected to hydrochar (SDH05, A-SDH05, A-SDH15) were significantly lower than that of the control, observation attributed to the high yield and low N2O emissions. Overall, hydrochar addition is an effective strategy to ensure grain yield in low fertility soils with relatively low/controlled GHG emissions, especially when the amendment is applied at low application rate.
Collapse
Affiliation(s)
- Pengfu Hou
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Yanfang Feng
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Ning Wang
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | | | - Detian Li
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China
| | - Shan Yu
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China
| | - Lihong Xue
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China.
| | - Linzhang Yang
- Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing 210014, China
| |
Collapse
|
21
|
Application of Hydrochar, Digestate, and Synthetic Fertilizer to a Miscanthus x giganteus Crop: Implications for Biomass and Greenhouse Gas Emissions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Miscanthus x giganteus (miscanthus), a perennial biomass crop, allocates more carbon belowground and typically has lower soil greenhouse gas (GHG) emissions than conventional feedstock crops, but best practices for nutrient management that maximize yield while minimizing soil GHG emissions are still debated. This study evaluated the effects of four different fertilization treatments (digestate from a biodigester, synthetic fertilizer (urea), hydrochar from the hydrothermal carbonization of digestate, and a control) on soil GHG emissions and biomass yield of an established miscanthus stand grown on abandoned agricultural land. Soil GHG fluxes (including CH4, CO2, and N2O) were sampled in all treatments using the static chamber methodology. Average biomass yield varied from 20.2 Mg ha−1 to 23.5 Mg ha−1, but there were no significant differences among the four treatments (p > 0.05). The hydrochar treatment reduced mean CO2 emissions by 34% compared to the control treatment, but this difference was only statistically significant in one of the two sites tested. Applying digestate to miscanthus resulted in a CH4 efflux from the soil in one of two sites, while soils treated with urea and hydrochar acted as CH4 sinks in both sites. Overall, fertilization did not significantly improve biomass yield, but hydrochar as a soil amendment has potential for reducing soil GHG fluxes.
Collapse
|
22
|
He T, Yuan J, Luo J, Lindsey S, Xiang J, Lin Y, Liu D, Chen Z, Ding W. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH 4 emissions in rice field: A three-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140500. [PMID: 32653704 DOI: 10.1016/j.scitotenv.2020.140500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Biochar and inhibitors applications have been proposed for mitigating soil greenhouse gas emissions. However, how biochar, inhibitors and the combination of biochar and inhibitors affect CH4 emissions remains unclear in paddy soils. The objective of this study was to explore the effects of biochar application alone, and in combination with urease (hydroquinone) and nitrification inhibitors (dicyandiamide) on CH4 emissions and yield-scaled CH4 emissions during three rice growing seasons in the Taihu Lake region (Suzhou and Jurong), China. In Suzhou, N fertilization rates of 120-280 kg N ha-1 increased CH4 emissions compared to no N fertilization (Control) (P < 0.05), and the highest emission was observed at 240 kg N ha-1, possibly due to the increase in rice-derived organic carbon (C) substrates for methanogens. Biochar amendment combined with N fertilization reduced CH4 emissions by 13.2-27.1% compared with optimal N (ON, Suzhou) and conventional N application (CN-J, Jurong) (P < 0.05). This was related to the reduction in soil dissolved organic C and the increase in soil redox potential. Addition of urease and nitrification inhibitor (ONI) decreased CH4 emissions by 15.7% compared with ON treatment. Combined application of biochar plus urease, nitrification and double inhibitors further decreased CH4 emissions by 22.2-51.0% compared with ON and CN-J treatment. ON resulted in the highest yield-scaled CH4 emissions, while combined application of biochar alone and in combination with the inhibitors decreased yield-scaled CH4 emissions by 12.7-54.9% compared with ON and CN-J treatment (P < 0.05). The lowest yield-scaled CH4 emissions were observed under combined application of 7.5 t ha-1 biochar with both urease and nitrification inhibitors. These findings suggest that combined application of biochar and inhibitors could mitigate total CH4 and yield-scaled CH4 emissions in paddy fields in this region.
Collapse
Affiliation(s)
- Tiehu He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiafa Luo
- AgResearch Limited, Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Stuart Lindsey
- AgResearch Limited, Ruakura Research Centre, Hamilton 3240, New Zealand
| | - Jian Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxin Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Deyan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengming Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
23
|
Ji M, Zhou L, Zhang S, Luo G, Sang W. Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140725. [PMID: 32679498 DOI: 10.1016/j.scitotenv.2020.140725] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Biochar can be used as a soil amendment. However, it generally possesses unique physicochemical properties and complex organics, which could affect soil methanogenesis. In this study,straw-based biochars obtained at 300 °C (BC300), 500 °C (BC500) and 700 °C (BC700) were added to the paddy soil. Compared with the blank group, BC300 significantly increased paddy soil methane emissions by about 38%. However, this promoting effect gradually disappeared with the increase of pyrolysis temperature, and the inhibition even appeared in the BC700 group with the methane reduction by 18.2%. This might be related to the organics released from biochar. Van Krevelen (VK) diagram showed that the aromaticity of BC700 and BC500 were significantly higher than BC300. Fluorescent analysis further revealed that BC300 increased the amount of degradable fluorescent organics in the soil, which could provide more substrate for methane production. Moreover, as pyrolysis temperature increased, the fluorescent organics released were more likely to be non-biodegradable humus. In addition, it was shown that BC700 could adsorb some inherent organics in the soil, and thus reduced the total organic content and inhibited soil methane emissions. Microbial analysis showed that methanogenesis had a positive correlation with the abundance of syntrophic bacteria (e.g. Desulfobacca and Clostridium) which had ability to further degrade various types of organics and provided substrates to the methanogens. This article provides a deeper understanding regarding for the effects of biochar on methane emission from paddy soil in terms of organics and microbial perspectives.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lei Zhou
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
24
|
Liu X, Cheng Y, Liu Y, Chen D, Chen Y, Wang Y. Hydrochar did not reduce rice paddy NH 3 volatilization compared to pyrochar in a soil column experiment. Sci Rep 2020; 10:19115. [PMID: 33154540 PMCID: PMC7644716 DOI: 10.1038/s41598-020-76213-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pyrochar (PC) is always with high pH value, and improper application might increase rice paddy ammonia volatilization (PAV), which is the main nitrogen loss through air during rice production. Differently, hydrochar (HC) takes the advantages of high productive rate and always with lower pH value compared with PC. However, effect pattern and mechanism of HC on PAV are still unclear. In the present study, soil column experiments were conducted to investigate the effect of PC and HC application on PAV. In total, treatments with four types of biochar (WPC, SPC, WHC and SHC, i.e., PC and HC prepared with wheat straw and sawdust, respectively) and two application rates (0.5% and 1.5%, w/w) were set up and non-biochar application was used as control. Results showed that, application of HC with low pH value could not reduce PAV compared with PC. Total PAV increased significantly as the increase of HC application rate (especially for WHC). The increment of PAV under high rate HC application might be due to the strong buffer capacity of soil, the aging of biochar, the high nitrogen from HC. The results indicated that HC should be pretreatment before utilization in agricultural environment considering PAV reduction.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China.,Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Danyan Chen
- College of Horticulture, Jinling Institute of Technology, Nanjing, 211169, China
| | - Yin Chen
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Yueman Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
25
|
Chu Q, Xu S, Xue L, Liu Y, Feng Y, Yu S, Yang L, Xing B. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137301. [PMID: 32105922 DOI: 10.1016/j.scitotenv.2020.137301] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Clay-hydrochar composites (CHCs) are of great significance in ammonium (NH4+) adsorption and have the potential to be applied to paddy fields to prevent ammonia (NH3) volatilization. In this study, three CHCs were produced by infusing different clays to poplar-sawdust-derived hydrochar, including a bentonite hydrochar composite (BTHC), montmorillonite hydrochar composite (MTHC), and kaolinite hydrochar composite (KTHC). These three CHCs were applied to a paddy soil column system growing rice. The temporal variations in NH3 volatilization and NH4+ loss in floodwater were monitored after three fertilization dates. The results showed that among the three CHCs, only the BTHC significantly reduced cumulative NH3 volatilization (by 41.8%), compared to that of the unamended control (without addition of hydrochar or clay-hydrochar-composite). In the unamended control, NH3 volatilization loss accounted for 31.4% of the applied N fertilizer; with the BTHC amendment, NH3 volatilization loss accounted for 17.4% of the applied N fertilizer. The reduced N loss via the BTHC amendment resulted in an increased N supply and further improved the N use efficiency and yield by 37.36% and 18.8% compared to that of the control, respectively. The inhibited NH3 volatilization was mainly attributed to the increased soil NH4+ retention as a result of BTHC's larger pore volume and specific surface area. In addition, the BTHC treatment significantly reduced the abundance of archaeal amoA genes (AOA), which possibly inhibited nitrification and increased soil NH4+ retention. This study, for the first time, screened BTHC as an excellent material for mitigating NH3 volatilization from paddy fields. The reduced NH3 volatilization loss might contribute to increased soil N retention and plant N use efficiency.
Collapse
Affiliation(s)
- Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sheng Xu
- Nanjing Station of Quality Prtotection in Cultivated Land, Nanjing 210036, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Shan Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Chu Q, Xue L, Cheng Y, Liu Y, Feng Y, Yu S, Meng L, Pan G, Hou P, Duan J, Yang L. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137127. [PMID: 32084683 DOI: 10.1016/j.scitotenv.2020.137127] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Hydrothermal carbonization represents a promising technique for transforming microalgae into the hydrochar with abundant phytoavailable nutrients. However, the effects of microalgae-derived hydrochars on the gaseous nitrogen (N) loss from agricultural field are still unclear. Chlorella vulgaris powder (CVP) and two Chlorella vulgaris-derived hydrochars that employ water (CVHW) or citrate acid solution (CVHCA) as the reaction medium were applied to a soil column system grown with rice. The temporal variations of nitrous oxide (N2O) emissions and ammonia (NH3) volatilization were monitored during the whole rice-growing season. Results showed that CVHW and CVHCA addition significantly increased the grain yield (by 13.5-26.8% and 10.5-23.4%) compared with control and CVP group, while concomitantly increasing the ammonia volatilization (by 53.8% and 72.9%) as well as N2O emissions (by 2.17- and 2.82-fold) from paddy soil compared to control. The microbial functional genes (AOA, AOB, nirk, nirS, nosZ) in soil indicated that CVHW and CVHCA treatment stimulated the nitrification and denitrification, and inhibited the N2O oxidation in soil. Notably, CVHW was recommended in the view of improving yield and controlling NH3 volatilization because no significant difference of the yield-scale NH3 volatilization was detected between control and CVHW treatment. This study for the first time uncovered that Chlorella vulgaris-derived hydrochars have positive effects on rice N utilization and growth but negative effects on the atmospheric environment.
Collapse
Affiliation(s)
- Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Centre of Integrative Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire NG25 0QF, UK
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing 210036, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Shan Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Gang Pan
- Centre of Integrative Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire NG25 0QF, UK
| | - Pengfu Hou
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingjing Duan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
27
|
Ji M, Sang W, Tsang DCW, Usman M, Zhang S, Luo G. Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136769. [PMID: 31982762 DOI: 10.1016/j.scitotenv.2020.136769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Directly returning rice straw to the paddy soil would significantly stimulate methane emission, and hydrochar has potential to be used as soil conditioner. However, the effects of hydrochar on the methane emission from paddy soil and the related mechanisms are still unclear. In the present study, straw-based hydrochar obtained at 200 °C (HC200), 250 °C (HC250) and 300 °C (HC300) and hydrochar after removal of bio-oil at these temperatures (CHC200, CHC250, and CHC300) were prepared and added to the paddy soil. The application of HC200, HC250 and HC300 resulted in the enhanced methane production compared to the control, showing 4.3, 1.6 and 1.5-fold higher methane production, respectively. It was related to the large amount of dissolved organic matter (DOM) released from hydrochar. Excitation-emission matrix fluorescence spectroscopy with parallel factor analysis (EEM-PARAFAC) showed that the hydrochar-derived DOM mainly included humic-like, phenolic and less aromatic structures, and with the increase of hydrothermal temperature, the content of humic-like substances and phenols increased, while biodegradable organics decreased. This was consistent with the maximum methane production by HC200. After incubation, there was no low-aromatic structures observed in the soil leachate, and the residual organics were mainly humus. The EEM-PARAFAC results were supported by compositional characterization of soil leachate by high-resolution mass spectrometry, and the refractory organics released from hydrochar was mainly lignins or (CRAM)-like structures in the range of H/C = 0.8-1.6 and O/C = 0.1-0.5. The organics dissolved from the washed hydrochar was significantly reduced, and some washed hydrochar (CHC250 and CHC300) even inhibited methane emission possibly due to their ability to adsorb organics. Microbial analysis further showed that the increased methane production resulted from hydrochar was associated with the enrichment of Janibacter, Anaeromyxobacter, Anaerolinea and Sporacetigenium. This present study provided a better understanding to the effect of hydrochar on methanogenesis in paddy soil.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
28
|
Chu Q, Xue L, Singh BP, Yu S, Müller K, Wang H, Feng Y, Pan G, Zheng X, Yang L. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization. CHEMOSPHERE 2020; 245:125558. [PMID: 31855761 DOI: 10.1016/j.chemosphere.2019.125558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Hydrothermal carbonization (HTC) is a promising technique for treating sewage sludge. In this study, three sewage sludge-derived hydrochars produced with water (SSHW), 1 wt% magnesium citrate (SSHM) solution, and 1 wt% magnesium citrate mixed with 1 wt% sulfuric acid (SSHMS) solution were applied to columns of packed paddy soil. We evaluated the effects of these differently modified sewage sludge-hydrochars on ammonia volatilization, soil nitrogen (N) retention and rice growth. Results showed that compared to the control, SSHMS reduced the cumulative ammonia volatilization determined after three split application of N-fertilizer. SSHM and SSHMS both reduced the yield-scale ammonia volatilization by 20.3% and 41.2% respectively. Moreover, the addition of three sewage sludge-derived hydrochars increased soil ammonium-N retention after the first supplementary fertilization; however, after the second supplementary fertilization, only SSHMS addition significantly increased soil ammonium-N retention. Of the three hydrochars tested, SSHMS has the strongest effects on soil ammonium-N retention and inhibition of ammonium-N loss in floodwater. This was attributed to increased ammonium sorption driven by SSHMS's lower surface pH and porous diameter, larger adsorption porous volume and higher abundance of carboxyl functional groups. Additionally, the increased soil N retention increased grain N content and yield. Our results provide a novel method to valorize sewage sludge into a valuable fertilizer that if applied to paddy soil it can inhibit ammonia volatilization, N loss in floodwater, and promote N use efficiency by rice, with positive implications for sustainable rice production.
Collapse
Affiliation(s)
- Qingnan Chu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire, NG25 0QF, UK
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Bhupinder Pal Singh
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia; School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Karin Müller
- The New Zealand Institute for Plant & Food Research Limited, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire, NG25 0QF, UK
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
29
|
Sun K, Han L, Yang Y, Xia X, Yang Z, Wu F, Li F, Feng Y, Xing B. Application of Hydrochar Altered Soil Microbial Community Composition and the Molecular Structure of Native Soil Organic Carbon in a Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2715-2725. [PMID: 32003984 DOI: 10.1021/acs.est.9b05864] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The benefits and disadvantages of hydrochar incorporation into soil have been heavily researched. However, the effect of hydrochar application on the soil microbial communities and the molecular structure of native soil organic carbon (SOC) has not been thoroughly elucidated. This study conducted an incubation experiment at 25 °C for 135 days using a soil column with 0.5 and 1.5% hydrochar-amended paddy soil to explore the interconnections between changes in soil properties and microbial communities and shifts in native SOC structure using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) and NMR after hydrochar application. Hydrochar addition decreased the labile SOC fraction by 15.6-33.6% and increased the stable SOC fraction by 10.3-27.0%. These effects were significantly stronger for 1.5% hydrochar-treated soil. Additionally, hydrochar addition induced the native SOC with 1.0-3.0% more carbon and 6.0-13.0% higher molecular weight. The SOC in hydrochar-amended soil contained more aromatic compounds but fewer carbohydrates and lower polarity. This was resulted by a statistically significant reduction in Sphingobacterium, which was active in polycyclic aromatic hydrocarbon degradation, and an increase in Flavobacterium, Anaerolinea, Penicillium, and Acremonium, which were the efficient decomposers of labile SOC. These findings will help elucidate the potential influence of hydrochar on the carbon biogeochemical cycle in the soil.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lanfang Han
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fangbai Li
- Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Hua Y, Zheng X, Xue L, Han L, He S, Mishra T, Feng Y, Yang L, Xing B. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism. BIORESOURCE TECHNOLOGY 2020; 300:122708. [PMID: 31926474 DOI: 10.1016/j.biortech.2019.122708] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Microbially-aged hydrochar were prepared to investigate how aging affected their ability to remove Cd2+ from aqueous solutions. Based on aging time in an anaerobic fermenter, four samples were produced: HC, M20-HC, M40-HC, and M60-HC. Results indicated increases in specific surface area, pH, and negative charge on hydrochar surface with aging process. Also, there were a decrease in O/C and an increase in surface functional groups, such as -COOH. The adsorption experiments confirmed the positive correlation between aging time and adsorption performance. The 60-day-aged M60-HC treatment displayed the maximum adsorption capacity, which was 3.8 times higher than that of HC. The Langmuir and pseudo-second-order kinetic equations fitted well with isothermal and kinetic data, respectively. Thermodynamic study indicated that Cd2+ adsorption is dominated by chemisorption. This study showed that microbial aging process is an effective and promising measure to improve hydrochar adsorption capacity for Cd2+.
Collapse
Affiliation(s)
- Yun Hua
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Lanfang Han
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tripti Mishra
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China.
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Wu B, Yang Q, Yao F, Chen S, He L, Hou K, Pi Z, Yin H, Fu J, Wang D, Li X. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. BIORESOURCE TECHNOLOGY 2019; 294:122235. [PMID: 31610493 DOI: 10.1016/j.biortech.2019.122235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This study compared the effects of sewage sludge-derived pyrochar (PC300, PC500, and PC700) and hydrochar (HC180, HC240, and HC300) on mesophilic anaerobic digestion of waste activated sludge (WAS). It was demonstrated that hydrochar can better promote the methane production compared with pyrochar. The highest accumulative methane yield of 132.04 ± 4.41 mL/g VSadded was obtained with HC180 addition. In contrast, the PC500 and PC700 showed a slightly negative effect on methane production. Sludge-derived HC not only accelerated the solubilization and hydrolysis of sludge floc, but also improved the production of acetic acid and propionate, further resulting in improved methane production. Simultaneously, the syntrophic microbes facilitating direct interspecies electron transfer (DIET) such as Syntrophomonas, Peptococcaceae, Methanosaeta and Methanobacterium bred rapidly with the addition of HCs. These results indicated that the hydrochar is more ideal as the accelerant to promote the methane production from mesophilic anaerobic digestion of WAS than the pyrochar.
Collapse
Affiliation(s)
- Bo Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huanyu Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
32
|
Sial TA, Lan Z, Khan MN, Zhao Y, Kumbhar F, Liu J, Zhang A, Hill RL, Lahori AH, Memon M. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:125-134. [PMID: 31109511 DOI: 10.1016/j.wasman.2019.01.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/28/2018] [Accepted: 01/29/2019] [Indexed: 05/28/2023]
Abstract
The environmentally safe disposal of the large quantity of orange peels waste produced each day causes economic and environmental problems, which after conversion into biochar via pyrolysis technique might be used as an effective soil amendment. In this study, a 90-day incubation experiment was conducted to investigate the effects of orange peel waste and waste-derived biochar amendments on greenhouse gas emissions (GHG), soil biochemical properties, and soil enzyme activities. There were five treatments with different amendment levels: control without an amendment (Control), orange waste 1% (W1), orange waste 2% (W2), orange waste biochar 1% (B1), and orange waste biochar 2% (B2). The results showed that, compared with control, the amendments decreased cumulative N2O emissions by 59.2% (B2), 45.2% (B1), 20.6% (W2) and 10.2% (W1), respectively; and increased cumulative CH4 emissions by 81.7% (W1), 84.4% (W2), 75.8% (B1) and 74.9% (B2), respectively. Cumulative CO2 emissions decreased for the B1 (29.3%) and B2 (43.5%) over the waste treatments. While soil pH, SOC, nitrate nitrogen (NO3--N) and enzyme activities (urease and catalase) were significantly increased with the passage of time from the biochar amendments, ammonium nitrogen (NH4+-N) and invertase activities did not show this trend with time. Our study suggests that orange peel waste conversion to biochar should be a viable alternate method of disposal since land application resulted in reduced GHG and improvements in soil fertility.
Collapse
Affiliation(s)
- Tanveer Ali Sial
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Zhilong Lan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Numan Khan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China.
| | - Farhana Kumbhar
- Department of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Afeng Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Robert Lee Hill
- Department of Environmental Science and Technology, University of Maryland, College Park D 20742, USA
| | - Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mehurnisa Memon
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| |
Collapse
|