1
|
Muhammad S, Ahmed T, Ullah R, Tokatli C, Ahmad A. Spatial distribution of heavy metal contamination and risk indices of surface sediments in high-altitude lakes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1188. [PMID: 39531168 DOI: 10.1007/s10661-024-13361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Lake ecosystems in northern Pakistan are the most critical resources that maintain and regulate water flow for downstream agricultural, domestic, industrial, and ecological processes. One consequence of these processes is that ecosystems deposit heavy metals (HMs), where lake stagnant conditions result in high vulnerability of water resources. For this purpose, the present study examined HMs such as cadmium (Cd), chromium (Cr), cobalt (Co), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) concentrations in high-altitude lakes (HAL) sediments of Mansehra district, northern Pakistan. Sediment samples were collected from the five HAL. This study used HM concentrations in lake sediments for the pollution factors such as contamination factor (Cf), pollution load index (PLI), sediment pollution index (SPI), ecological risk assessment (ERA), and risk index (RI). Among HMs, Fe showed the uppermost levels of 1410 mg/kg in lake sediment, while Cd with lowermost levels of 1.05 mg/kg. Results revealed that most HM concentrations in HAL sediments were within the threshold of sediments quality guidelines (SQGs), except for Cd. Among lakes, the sediments of Siri Lake showed higher contamination of HMs than others. Siri Lake sediments also showed higher Cf, PLI, ERA, and RI values than others. The majority of HMs in HAL sediments showed no contamination, except for Cd (considerable) and Pb (moderate) levels to the exposed aquatic ecosystem. This study revealed that 95% of sediment samples in HAL were noted low to medium-level risks to the exposed aquatic communities. Statistical and geospatial analyses revealed that geogenic sources of contamination are a significant contributor to HM contamination of HAL sediments compared to others.
Collapse
Affiliation(s)
- Said Muhammad
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
| | - Tauseef Ahmed
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Rizwan Ullah
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Brückstra, 3a, 39114, Magdeburg, Germany
| | - Cem Tokatli
- Department of Laboratory Technology, İpsala Vocational School, Evrenos Gazi Campus, Trakya University, İpsala, Edirne, 22030, Turkey
| | - Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University, P.O. Box, 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Liu H, Zeng W, Lai Z, He M, Lin C, Ouyang W, Liu X. Comparison of antimony and arsenic behaviour at the river-lake junction in the middle of the Yangtze River Basin. J Environ Sci (China) 2024; 136:189-200. [PMID: 37923429 DOI: 10.1016/j.jes.2023.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 11/07/2023]
Abstract
As typical metalloid toxic elements widely distributed in environmental media, the geochemical behaviour of antimony (Sb) and arsenic (As) affects environmental safety. We selected the surface waters and sediments at the river-lake junction of Dongting Lake as the research objects, analysed the concentration and chemical partitioning of Sb and As, assessed its contamination and ecological risk levels, and discussed its sources and potential influencing factors. The concentrations of dissolved Sb and As in surface waters were low (< 5.46 µg/L), and the concentrations of Sb and As in surface sediments were 2.49-22.65 mg/kg and 11.10-136.34 mg/kg, respectively. Antimony and As in sediments were mainly enriched in the fraction of residues, but the proportion of As in bioavailability was significantly higher than that of Sb. Although the contamination level of Sb was higher than that of As, the risk assessment code (RAC) showed that the ecological risk level of As was higher than that of Sb. Rainwater erosion and mining activities (in the midstream of Zijiang River) were the main contaminated sources of Sb, while As was affect mainly by rainwater erosion. The contamination and ecological risk of Sb in the inlet of the Zijiang River should receive considerable attention, while those of As in the inlet of the Xiangjiang River should also be seriously considered. This study highlights the need for multi-index-based assessments of contamination and ecological risk and the importance of further studies on the environmental behaviour of metalloids in specific hydrological conditions, such as river-lake junctions.
Collapse
Affiliation(s)
- Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Bravo S, Jiménez-Ballesta R, Amorós JA, Pérez-de-Los-Reyes C, Villena J, García-Navarro FJ. Accumulation, distribution pattern and potential contamination of sulphur in vineyard soils of the Valdepeñas protected denomination origin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166642. [PMID: 37647963 DOI: 10.1016/j.scitotenv.2023.166642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Soil is the basis for almost all global agriculture and the medium in which most terrestrial biological activity occurs. Viticulture represents an important agricultural practice in the Castilla-La Mancha (CLM) community. In this region, there are several protected denominations of origin (PDO), the largest being Valdepeñas. This paper describes the accumulation pattern of sulphur (S) in the vineyard soils of this PDO. Samples were collected from 90 vineyard soil profiles. Sulphur content was determined using an X-ray Fluorescence spectrometer in the solid mode on a powdered aliquot of each sample. The results indicated that the total S in soils varied from 0.54 to 6.90 (g·kg-1) in surface soil (0-30 cm) and from 0.39 to 2.80 (g·kg-1) on the subsurface layer (30-80 cm). When comparing the mean values of surface horizons to the subsurface horizons, S content lowered as soil depth increased. Kurtosis exceeded 45 % in all cases, which indicates a wide variability of concentrations. These findings can be explained by the continuous fertiliser and fungicide applications (and therefore S) in these production systems. Using the geoaccumulation index (Igeo), most soils were included in Class 0 (Igeo <0) and were, thus, S uncontaminated; only a few points can be considered pollutants. The obtained results should contribute to extend the scarce existing database on S in Mediterranean regions like that herein studied.
Collapse
Affiliation(s)
- S Bravo
- University of Castilla-La Mancha, High Technical School Agricultural Engineers of Ciudad Real, Ciudad Real, Spain.
| | | | - J A Amorós
- University of Castilla-La Mancha, High Technical School Agricultural Engineers of Ciudad Real, Ciudad Real, Spain
| | - C Pérez-de-Los-Reyes
- University of Castilla-La Mancha, High Technical School Agricultural Engineers of Ciudad Real, Ciudad Real, Spain
| | - J Villena
- University of Castilla-La Mancha, High Technical School Agricultural Engineers of Ciudad Real, Ciudad Real, Spain
| | - F J García-Navarro
- University of Castilla-La Mancha, High Technical School Agricultural Engineers of Ciudad Real, Ciudad Real, Spain
| |
Collapse
|
4
|
Yu Z, Liu E, Lin Q, Zhang Q, Yuan H, Zhang E, Shen J. Integrating indices based on different chemical extractions and bioaccumulation in Bellamya aeruginosa to assess metal pollution and ecological risk in sediment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113853. [PMID: 35809396 DOI: 10.1016/j.ecoenv.2022.113853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/17/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Various indices based on metal chemical data are used to evaluate pollution and ecological risk, but the consistency of the assessment results is usually unsatisfactory, and it is unclear if the ecological risk from sediment metals is accurately represented in in situ zoobenthos. Herein, the pollution and ecological risk associated with As, Cd, Cr, Cu, Ni, Pb and Zn in the sediments of two adjacent lakes (Datun (DT) and Changqiao (CQ)) were comprehensively evaluated by integrating metal concentrations, chemical forms and bioaccumulation in Bellamya aeruginosa (B. aeruginosa). The metal concentrations and chemical compositions varied widely in the sediments. Over 50% of the Cd, Pb and Zn in the sediments was present in bioavailable forms, followed by 28% of Cu and less than 25% of As, Cr and Ni. According to the enrichment factor (EF) and concentration enrichment ratio (CER) assessments, Cr and Ni were natural in origin, while the other metals were at minor to extremely high pollution levels, with average EFs of 1.5-77.6 and CERs of 1.1-113.4. The pollution levels for Cd, Cu and Pb from the EF and CER assessments were similar, while those for As and Zn were higher according to CER than EF (p = 0.05), likely due to the baseline underestimation associated with the potential diagenetic remobilization of bioavailable metals. The ecological risk index (Er), sediment quality guidelines (SQGs) and risk assessment code (RAC) showed a high eco-risk for Cd, while no similar risk was found for the other metals. By integrating risk indices with the chemical forms and pollution levels of metals, we deduced high eco-risks for As and Pb and moderate eco-risks for Cu and Zn in DT Lake and moderate eco-risks for As, Pb and Zn in CQ Lake. The other metals in the sediments of the two lakes presented low eco-risks. No significant positive correlations (p = 0.05) between metal accumulation in B. aeruginosa and the indices of pollution and eco-risk were observed except for the case of As, implying that measuring the metal concentrations in B. aeruginosa would not accurately characterize the metal pollution and ecological risk of sediments.
Collapse
Affiliation(s)
- Zhenzhen Yu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China.
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinghui Zhang
- College of Geography and Environment, Shandong Normal University, Ji'nan 250358, PR China
| | - Hezhong Yuan
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ji Shen
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
5
|
Yu Z, Liu E, Lin Q, Zhang E, Yang F, Wei C, Shen J. Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116212. [PMID: 33310492 DOI: 10.1016/j.envpol.2020.116212] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Total concentration and chemical partitioning of heavy metals are commonly used in environmental quality assessment; however, their comparability and comprehensive application are far less discussed. Herein, bioavailability, pollution and eco-risk of As, Cd, Cr, Cu, Ni, Pb and Zn in surface sediments of Erhai Lake were evaluated referring to multiple indices following the experimental methods of complete digestion, optimized Community Bureau of Reference (BCR) and 1.0 M HCl extractions. Results of bioavailability for most metals were similar and comparable from BCR and HCl extractions. While bioavailable concentrations of Cd and Pb from HCl extraction were significantly (p < 0.01) lower than those from BCR extraction, indicating BCR extraction is more efficient. Results of enrichment factor (EF) and concentration enrichment ratio (CER) suggested that Cd was the highest polluted element followed by As, Pb and Zn, whereas Cr, Cu and Ni were mainly natural in origin. Similar concentrations of anthropogenic As from EF and CER assessments indicated anthropogenic As mainly existed in bioavailable form. However, anthropogenic Cd, Pb and Zn existed in both bioavailable and residue forms, resulting in the underestimation of anthropogenic metals by the CER assessment. The sediment quality guidelines (SQGs), potential ecological risk index (Er) and risk assessment code (RAC) showed inconsistent eco-risks for each of the metals except Cd. Combining pollution level and chemical partitioning with SQGs, Er and RAC assessments, high eco-risk of Cd, moderate eco-risk of As and Pb, and low eco-risk of Cr, Cu, Ni and Zn were graded. Our study highlights the limitation of single index and the necessity of integrating multiple indices following total concentration and chemical partitioning in metal pollution and eco-risk assessments.
Collapse
Affiliation(s)
- Zhenzhen Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ji Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
6
|
Abdullah MIC, Sah ASRM, Haris H. Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. Trop Life Sci Res 2020; 31:109-125. [PMID: 33214859 PMCID: PMC7652249 DOI: 10.21315/tlsr2020.31.3.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An investigation study was conducted in Bukit Merah Reservoir (BMR) for the assessment of arsenic concentration in the surface sediment in 23 sampling stations. The sediment samples were digested and analysed for arsenic using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Sediment parameters such as pH (4.42 ± 0.71), redox potential (121.77 ± 42.45 mV), conductivity (205.7 ± 64.07 μS cm−1) and organic matter (25.35 ± 9.34%) were also examined. The main objectives of this study are to determine the arsenic distribution and concentration and at the same time to assess the enrichment of arsenic using the geoaccumulation index (Igeo) and enrichment factor (EF). This study shows the total arsenic concentration in the surface sediment of BMR is 4.302 ± 2.43 mg kg−1 and found to be below the threshold value of Canadian Interim Sediment Quality Guidelines (ISQG). High arsenic concentration is recorded near the southern part of the lake where anthropogenic activities are prevalent. Based on Igeo, 13% of sampling stations are categorised as moderately polluted, 52.2% as unpolluted to moderately polluted and the rest is categorised as unpolluted. EF shows 78.3% stations are classified as extremely high enrichment and the rest as very high enrichment. This finding provides important information on the status of arsenic contamination in BMR and creating awareness concerning the conservation and management of the reservoir in the future.
Collapse
Affiliation(s)
| | | | - Hazzeman Haris
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Tong L, He J, Wang F, Wang Y, Wang L, Tsang DCW, Hu Q, Hu B, Tang Y. Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. CHEMOSPHERE 2020; 249:126115. [PMID: 32045756 DOI: 10.1016/j.chemosphere.2020.126115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The BCR sequential extraction scheme (SES), initially developed for soils and sediments, is frequently adopted to evaluate the environmental risks of municipal solid waste incineration (MSWI) fly ash. Within the procedure, metals are liberated from the matrix hosting them relying on the selectivity of the chosen chemical reagents or operation conditions. However, the effect of the high content of alkaline substances in MSWI fly ash on the selectivity of acetic acid to acid-soluble fraction metals was ignored. In this study, the feasibility of the BCR SES for evaluating MSWI fly ash was assessed by adjusting the acetic acid washing times in the acid-soluble extraction step. The metal fractionation, as well as mineralogy, morphology, and surface chemistry of the residues after three successive acid washing processes, were analyzed. The results reveal that only easily soluble salts, but not hydroxides, are entirely extracted after the first acid washing (pH∼12.0). Importantly, carbonates (generally reported as an indicator of the complete release of acid-soluble metals) are mostly decomposed only after the third acid washing (pH∼3.8). The incomplete dissolution of calcium carbonates in a single-step acid washing may convey misleading results of metal fractionation and underestimates the environmental risk of potentially toxic elements. Therefore, complete removal of carbonates should be employed as the endpoint of the acid-soluble fraction extraction step in the evaluation of MSWI fly ash. This work can help in selecting proper strategies for fly ash management and developing proper sequential extraction schemes for similar high-alkalinity hazardous waste risk assessment.
Collapse
Affiliation(s)
- Lizhi Tong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyong He
- Beijing Huan Ding Environmental Data Research Institute, Beijing, 100083, China
| | - Feng Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China
| | - Yan Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, DE-01062, Dresden, Germany
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Beijing Huan Ding Environmental Data Research Institute, Beijing, 100083, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China.
| | - Bin Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China
| | - Yi Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China
| |
Collapse
|
8
|
Liu Q, Sheng Y, Jiang M, Zhao G, Li C. Attempt of basin-scale sediment quality standard establishment for heavy metals in coastal rivers. CHEMOSPHERE 2020; 245:125596. [PMID: 31855750 DOI: 10.1016/j.chemosphere.2019.125596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/01/2019] [Accepted: 12/08/2019] [Indexed: 05/12/2023]
Abstract
Heavy metal sediment quality standards (SQSs) derived from sediment quality guidelines (SQGs) are crucial in risk evaluation and environmental management. However, the establishment of SQSs is quite complex, especially for heavy metals. This study attempted to establish basin-scale SQSs for Cd, Cu, Pb and Zn based on SQGs combined with water quality standards in two coastal rivers in North China, named Jiaolai River (JL) and Jiahe River (JR), respectively. The spatial distribution, fraction, partition coefficients and environmental risk of heavy metals in sediments-porewater were investigated. The results showed that most heavy metals in sediments in JH were higher than those in JL, however, in the porewater, it exhibited an opposite trend. The geochemical fraction showed that most heavy metals in sediments were dominated by residual fraction. The partition of heavy metals between sediment and porewater were mainly affected by both sediment and porewater properties, and exogenous input of heavy metals. Contamination factors showed that Cd in sediment posed high pollution degree; the interstitial water criteria toxicity units and Nemerow Indexes suggested that heavy metal toxicities in porewater were low. The basin-scale heavy metal SQGs were calculated based on porewater quality derived from surface water quality standards using the modified equilibrium partitioning approach. The basin-scale heavy metal SQGs was classified with different grades to deduce the SQSs. Evaluated results of heavy metals in sediments based on SQSs showed lower potential bio-toxic effects in two rivers. In total, basin-scale SQGs for heavy metals were feasible for basin-scale SQSs establishment in coastal rivers.
Collapse
Affiliation(s)
- Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Ming Jiang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhao
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Portet-Koltalo F, Gardes T, Debret M, Copard Y, Marcotte S, Morin C, Laperdrix Q. Bioaccessibility of polycyclic aromatic compounds (PAHs, PCBs) and trace elements: Influencing factors and determination in a river sediment core. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121499. [PMID: 31685316 DOI: 10.1016/j.jhazmat.2019.121499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Organic matter (OM), clays, sand or time are factors possibly influencing the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments. An experimental design was performed to monitor and quantify this process. The bioaccessible fraction, linked to the rapidly-desorbing fraction (Frap) of contaminants, was assessed through a non-exhaustive extraction using a carboxymethyl-β-cyclodextrin polymer. OM content was the most influential factor as regards Frap. Clay percentage was a slightly influential factor for PAHs while the interaction sand × OM was a slightly influential factor for PCBs. Frap was also determined in a sediment core collected from Martot's Pond (France). The higher the PAH/PCB concentration in this sediment, the higher the bioaccessible fraction. The relationship between a lower bioaccessibility and a higher number of PAHs cycles or PCB chlorines was linear. OM content impacted on Frap only for PAHs. Sequential extractions of some trace elements were also performed to evaluate their mobility. Cu, Cr, Pb, Ni were the less bioaccessible. A great part of As, Cd and Zn was found in the most bioaccessible sediment fractions. The 40-65 cm section might be considered as the most negatively impacting on the aquatic fauna, due to Cd and Zn high bioaccessible concentrations.
Collapse
Affiliation(s)
- F Portet-Koltalo
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| | - T Gardes
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France; Normandie University, UNIROUEN, M2C Laboratory UMR 6143, FR CNRS 3730 SCALE, Bâtiment Blondel, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | - M Debret
- Normandie University, UNIROUEN, M2C Laboratory UMR 6143, FR CNRS 3730 SCALE, Bâtiment Blondel, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | - Y Copard
- Normandie University, UNIROUEN, M2C Laboratory UMR 6143, FR CNRS 3730 SCALE, Bâtiment Blondel, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | - S Marcotte
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| | - C Morin
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| | - Q Laperdrix
- Normandie University, UNIROUEN, COBRA Laboratory UMR CNRS 6014, 55 rue Saint Germain, 27000 Evreux, France.
| |
Collapse
|
10
|
Pourret O, Bollinger JC, van Hullebusch ED. On the difficulties of being rigorous in environmental geochemistry studies: some recommendations for designing an impactful paper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1267-1275. [PMID: 31745782 DOI: 10.1007/s11356-019-06835-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/21/2019] [Indexed: 04/16/2023]
Abstract
There have been numerous environmental geochemistry studies using chemical, geological, ecological, and toxicological methods but each of these fields requires more subject specialist rigour than has generally been applied so far. Field-specific terminology has been misused and the resulting interpretations rendered inaccurate. In this paper, we propose a series of suggestions, based on our experience as teachers, researchers, reviewers, and editorial board members, to help authors to avoid pitfalls. Many scientific inaccuracies continue to be unchecked and are repeatedly republished by the scientific community. These recommendations should help our colleagues and editorial board members, as well as reviewers, to avoid the numerous inaccuracies and misconceptions currently in circulation and establish a trend towards greater rigour in scientific writing.
Collapse
Affiliation(s)
- Olivier Pourret
- UniLaSalle, AGHYLE, 19 rue Pierre Waguet, 60026, Beauvais cedex, France.
| | - Jean-Claude Bollinger
- Université de Limoges, PEREINE, Faculté des Sciences et Techniques, 123 avenue Albert-Thomas, 87060, Limoges, France
| | - Eric D van Hullebusch
- IHE Delft, Institute for Water Education, Westvest 7, 2611, AX, Delft, The Netherlands
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|