1
|
Okeke ES, Olisah C, Malloum A, Adegoke KA, Ighalo JO, Conradie J, Ohoro CR, Amaku JF, Oyedotun KO, Maxakato NW, Akpomie KG. Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: Harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. ENVIRONMENTAL RESEARCH 2024; 243:117870. [PMID: 38072111 DOI: 10.1016/j.envres.2023.117870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The class of insecticides known as neonicotinoid insecticides has gained extensive application worldwide. Two characteristics of neonicotinoid pesticides are excellent insecticidal activity and a wide insecticidal spectrum for problematic insects. Neonicotinoid pesticides can also successfully manage pest insects that have developed resistance to other insecticide classes. Due to its powerful insecticidal properties and rapid plant absorption and translocation, dinotefuran, the most recent generation of neonicotinoid insecticides, has been widely used against biting and sucking insects. Dinotefuran has a wide range of potential applications and is often used globally. However, there is growing evidence that they negatively impact the biodiversity of organisms in agricultural settings as well as non-target organisms. The objective of this review is to present an updated summary of current understanding regarding the non-target effects of dinotefuran; we also enumerated nano- and bio-based mitigation and management strategies to reduce the impact of dinotefuran on non-target organisms and to pinpoint knowledge gaps. Finally, future study directions are suggested based on the limitations of the existing studies, with the goal of providing a scientific basis for risk assessment and the prudent use of these insecticides.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha, 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00, Brno, Czech Republic
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria; Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11, Hoffman St, Potchefstroom, 2520, South Africa
| | - James F Amaku
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Kabir O Oyedotun
- College of Science, Engineering and Technology (CSET), University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Nobanathi W Maxakato
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhang Y, Tan Z, Qin K, Liu C. Effect of Cd/Cu on the toxicity and stereoselective environmental behavior of dinotefuran in earthworms Eisenia foetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115022. [PMID: 37207576 DOI: 10.1016/j.ecoenv.2023.115022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Pesticides and heavy metals commonly coexist in soil. In this study, the influence of Cd and Cu on the toxicity of rac-dinotefuran and the enantioselective behavior of dinotefuran enantiomers in soil-earthworm microcosms were investigated. The acute toxic tests showed that S-dinotefuran has higher toxic than that of R-dinotefuran. The rac-dinotefuran and Cd has an antagonistic effect on earthworms, and the Cu and rac-dinotefuran has a synergistic effect. Earthworms maybe promoted the enantioselective behavior of dinotefuran in soil. Co-exposure to Cd or Cu inhibited the dissipation of dinotefuran enantiomers (S-dinotefuran and R-enantiomers), and slightly reduced the enantioselectivity in soil. The earthworms were found to be preferentially enriched with S-dinotefuran. However, Cd or Cu attenuated the accumulation of dinotefuran enantiomers in earthworms and decreased the enantioselectivity. The effect of Cd and Cu on the environmental behaviors of dinotefuran enantiomers were correlated positively with the dose of Cd/Cu. These results showed that Cd and Cu alter the environmental behaviors and the toxicity of dinotefuran enantiomers in soil-earthworm microcosms. Thus, the influence of coexistent heavy metals on the ecological risk assessment of chiral pesticides should be considered.
Collapse
Affiliation(s)
- Yirong Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Zhenchao Tan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
4
|
Fuentes E, Gaffard A, Rodrigues A, Millet M, Bretagnolle V, Moreau J, Monceau K. Neonicotinoids: Still present in farmland birds despite their ban. CHEMOSPHERE 2023; 321:138091. [PMID: 36775034 DOI: 10.1016/j.chemosphere.2023.138091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoids (neonics) are the most widely used insecticides worldwide and are considered to be of low risk to non-target organisms such as vertebrates. Further, they are reported to be rapidly excreted and metabolized, reducing their potential toxicity. Nevertheless, growing evidence of adverse effects of neonics on farmland bird species raise questions about the purported harmless nature of these pesticides. We attempted to search for pesticide residues in species of different trophic levels and at different life stages, by using multiple bird monitoring programs on a Long-Term Socio-Ecological Research (LTSER) platform. Three passerine birds-the blackbird (Turdus merula), cirl bunting (Emberiza cirlus), and common nightingale (Luscinia megarhynchos)-that feed on seeds and invertebrates were monitored during their reproductive period, and the grey partridge (Perdix perdix) that feeds on seeds was monitored during its wintering period. We also monitored chicks of an apex predator-the Montagu's harrier (Circus pygargus)-that preys mostly upon common voles but also upon insects. We found that the birds' blood samples showed presence of residues of five neonics: three banned since 2018 in France-clothianidin, thiacloprid, and thiamethoxam-and two-dinotefuran and nitenpyram-used for veterinary purposes only. While none of these neonics was detected in blackbirds, all were present in grey partridges. Clothianidin was detected in all species, except blackbirds. Concentrations of the three banned neonics were similar or higher than concentrations found in birds monitored elsewhere before the ban. These findings raise questions about the persistence of neonics within the environment and the mode of exposure to wild fauna. Future investigations on the sublethal effects of these neonics on life-history traits of these farmland birds may help in providing a better understanding of the effects of exposure of bird populations to these insecticides, and also to the consequent effect on human health.
Collapse
Affiliation(s)
- Elva Fuentes
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Agathe Gaffard
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France
| | - Anaïs Rodrigues
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Maurice Millet
- Université de Strasbourg, CNRS-UMR 7515, ICPEES, 67087 Strasbourg cedex 2, France
| | - Vincent Bretagnolle
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360 Villiers-en-Bois, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Équipe Écologie Évolutive, Université de Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France.
| |
Collapse
|
5
|
Zhou X, Yang Y, Ming R, Chen H, Hu D, Lu P. Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF-MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70833-70841. [PMID: 35589890 DOI: 10.1007/s11356-022-20424-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Dinotefuran is a chiral insecticide widely used to control Nilaparvata lugens in agriculture. However, little is known about the toxic effects of dinotefuran enantiomers on aquatic organisms. In this study, zebrafish were exposed to 1.00 and 10.00 mg/L dinotefuran enantiomers for 96 h, after which multivariate pattern recognition, metabolite identification, and pathway analysis were performed. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were then conducted to reveal the metabolic perturbations caused by dinotefuran enantiomers. Metabolic pathway analysis revealed the perturbation of five main pathways, including phenylalanine, tyrosine and tryptophan biosynthesis; phenylalanine metabolism; retinol metabolism; arginine and proline metabolism; and glycerophospholipid metabolism. These disturbed metabolic pathways were strongly correlated with energy, amino acid metabolism, and lipid metabolism. Pathway analysis also indicated that the metabolic pathway changes induced by the same level of R and S-dinotefuran were enantioselective. Our research may provide better insight into the risk of chiral dinotefuran in aquatic organisms in the environment.
Collapse
Affiliation(s)
- Xia Zhou
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ya Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Hong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ping Lu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Xu S, Hao Z, Li Y, Zhou Y, Shao R, Chen R, Zheng M, Xu Y, Wang H. Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119562. [PMID: 35659910 DOI: 10.1016/j.envpol.2022.119562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Collapse
Affiliation(s)
- Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruixi Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Identification of Constituents and Exploring the Mechanism for Toutongning Capsule in the Treatment of Migraine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5528845. [PMID: 35075364 PMCID: PMC8783712 DOI: 10.1155/2022/5528845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Toutongning capsule (TTNC) is an effective and safe traditional Chinese medicine used in the treatment of migraine. In this present study, a multiscale strategy was used to systematically investigate the mechanism of TTNC in treating migraine, which contained UPLC-UESI-Q Exactive Focus network pharmacology and experimental verification. First, 88 compounds were identified by the UPLC-UESI-Q Exactive Focus method for TTNC. Then, the target fishing for these compounds was performed by means of an efficient drug similarity search tool. Third, a series of network pharmacology experiments were performed to predict the key compounds, targets, and pathways. They were protein-protein interaction (PPI), KEGG pathway enrichment analysis, and herbs-compounds-targets-pathways (H-C-T-P) network construction. As a result, 18 potential key compounds, 20 potential key targets, and 6 potential signaling pathways were obtained for TTNC in treatment with migraine. Finally, molecular docking and experimental were carried out to verify the key targets. In short, the results showed that TTNC is able to treat migraine through multiple components, multiple targets, and multiple pathways. This work may provide a theoretical basis for further research on the molecular mechanism of TTNC in the treatment of migraine.
Collapse
|
8
|
Xie Y, Hou X. Molecular Assessment of the Toxic Mechanism of the Latest Neonicotinoid Dinotefuran with Glutathione Peroxidase 6 from Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:638-645. [PMID: 33398988 DOI: 10.1021/acs.jafc.0c05948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With widespread applications of the latest neonicotinoid in agriculture, dinotefuran has gradually become a hazardous contaminant for plants through the generation of excessive reactive oxygen species. However, the potential toxic mechanisms of oxidative damages to plants induced by dinotefuran are still unknown. As a core component of the glutathione antioxidant enzyme system, glutathione peroxidases have been used as biomarkers to reflect excessive oxidative stress. In this study, the hazardous effects of dinotefuran on AtGPX6 were investigated at the molecular level. The intrinsic fluorescence intensity of AtGPX6 was quenched using the static quenching mechanism upon binding with dinotefuran. Moreover, a single binding site was predicted for AtGPX6 toward dinotefuran, and the complex formation was presumed to be driven by hydrogen bonds or van der Waals forces, which conformed with the molecular docking results. In addition, AtGPX6 exhibited moderate binding affinity with dinotefuran based on the bio-layer interferometry assay. In addition, the loosening and unfolding of the protein skeleton of AtGPX6 with the addition of dinotefuran were explored along with the increase of hydrophobicity around tryptophan residues. Lastly, the toxic effects of dinotefuran on the root growth of Arabidopsis seedlings were also examined. The exploration of the binding mechanism of dinotefuran with AtGPX6 at the molecular level would provide the toxicity assessment of dinotefuran on plants.
Collapse
Affiliation(s)
- Yanhua Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Di S, Qi P, Wu S, Wang Z, Zhao H, Zhao X, Wang X, Xu H, Wang X. Low-dose cadmium stress increases the bioaccumulation and toxicity of dinotefuran enantiomers in zebrafish (Danio rerio)? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116191. [PMID: 33316505 DOI: 10.1016/j.envpol.2020.116191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Co-occurrence of pesticides and heavy metals has attracted extensive attention. The enantioselective behaviors of dinotefuran to aquatic organisms have not been reported, and the effects of cadmium (Cd) was absent, which were investigated in this study at environmentally relevant concentrations. The enantioselective accumulation and elimination of dinotefuran enantiomers were observed in zebrafish, and it had tissue specificity. The S-dinotefuran concentrations were higher than R-dinotefuran in heads and viscera, but it was opposite in muscles. There existed competition between S-dinotefuran and R-dinotefuran, and the existence of S-dinotefuran might decrease the accumulation and elimination of the R-dinotefuran in zebrafish. When co-exposure to Cd and dinotefuran, the accumulation concentrations of dinotefuran enantiomers increased in zebrafish at the initial stage, which were opposite latterly. The accumulation concentrations of R-dinotefuran in R + Cd treatment in fish were 3.4 times higher than those in R-dinotefuran treatment, and the enantiomer fraction (EF) values changed from 0.484 to 0.195. The oxidative stress of S-dinotefuran on zebrafish was highest, followed by rac- and R-dinotefuran. Co-exposure to Cd led to toxicity increase for R-dinotefuran, the malonaldehyde (MDA) content decreased significantly in R + Cd treatment during 7-28 days, while obvious declination of MDA contents was found on the 28th day in R-dinotefuran treatment. Furthermore, compared to R-dinotefuran treatment, Cd increased the relative expression of cz-sod (3.4 times), cas3 (1.6 times) and p53 (5.7 times) in R + Cd treatment. The co-exposure of Cd might alter the environmental behaviors and toxicity effects of dinotefuran enantiomers in zebrafish, including the enantioselectivity. The effects of Cd on accumulation and toxicity of R-dinotefuran were greater than those on S-dinotefuran. Thus, it is necessary to consider the effects of coexistent metals to chiral pesticides in ecological risk. SUMMARIZES: The enantioselective accumulation and elimination of dinotefuran enantiomers had tissue specificity. Cd increased the accumulation and toxicity of R-dinotefuran in zebrafish.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China.
| |
Collapse
|
10
|
Song S, Zhang T, Huang Y, Zhang B, Guo Y, He Y, Huang X, Bai X, Kannan K. Urinary Metabolites of Neonicotinoid Insecticides: Levels and Recommendations for Future Biomonitoring Studies in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8210-8220. [PMID: 32388996 DOI: 10.1021/acs.est.0c01227] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neonicotinoids (NEOs) are insecticides that are widely used around the world. Following exposure, NEOs get metabolized in human bodies. The biomarkers to assess human NEO exposure are not well described because of the lack of information on the metabolites of NEOs (m-NEOs). In this study, five m-NEOs including N-desmethyl-acetamiprid (N-dm-ACE), 5-hydroxy-imidacloprid (5-OH-IMI), olefin-imidacloprid (Of-IMI), 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine (DIN-G), and 1-methyl-3-(tetrahydro-3-furylmethyl) (DIN-U) were measured in 275 urine samples collected from 10 cities in China. All of the m-NEOs were frequently detected in urine samples with the median concentrations ranging from 0.42 (DIN-G) to 1.02 (5-OH-IMI) ng/mL. The urinary concentrations of N-dm-ACE and 5-OH-IMI measured in China were higher than those reported from Japan and the USA. In comparison to the parent NEO (i.e., acetamiprid, ACE; imidacloprid, IMI; and dinotefuran, DIN) concentrations reported in the same set of samples by our research group, the median ratios of m-NEO to the corresponding parent NEO (m-NEO/NEO) ranged from 4.95 (DIN-G/DIN) to 37.7 (N-dm-ACE/ACE), indicating that NEOs are mainly present as metabolites rather than the parent forms. Furthermore, the ratio of Σm-NEOs/ΣNEOs was significantly (p < 0.01) higher in females than in males, suggesting that NEOs are more readily metabolized in females or females are more highly exposed to m-NEOs. To our knowledge, this is the first study to measure Of-IMI, DIN-G, and DIN-U levels in urine samples from China. We recommend biomonitoring studies to include N-dm-ACE, 5-OH-IMI, and DIN-U (and DIN-G) for clear understanding of human exposure to ACE, IMI, and DIN, respectively.
Collapse
Affiliation(s)
- Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingyan Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuankai Guo
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Yuan He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xueyuan Bai
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, United States
| |
Collapse
|
11
|
Wang Y, Zhang Y, Zeng T, Li W, Yang L, Guo B. Accumulation and toxicity of thiamethoxam and its metabolite clothianidin to the gonads of Eremias argus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:586-593. [PMID: 30833257 DOI: 10.1016/j.scitotenv.2019.02.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The endocrine disrupting effect of pesticides is considered to be an important factor in the decline of reptile populations. The large-scale application of neonicotinoids in the environment poses a potential threat to small farmland lizards Eremias argus. In this study, we evaluated the disruption effects of thiamethoxam and its metabolite clothianidin on the endocrine disruption of Eremias argus during 28 d exposure. Thiamethoxam and clothianidin could accumulate in the testis and ovary. Adequate blood exchange was the main cause of thiamethoxam and clothianidin accumulation in the gonads. The production of clothianidin aggravated the effect of endocrine disruption to lizards. Thiamethoxam/clothianidin exhibited two distinct ways of interfering with the endocrine disruption of the male and female lizards. Thiamethoxam/clothianidin significantly up-regulated the expression of cyp17 and cyp19 genes in the testis, which ultimately led to a significant decrease in testosterone levels and a significant increase in the 17-estradiol concentrations in plasma. The expression of the estrogen receptor gene in the liver was also significantly increased in male lizards. The significant declines in testosterone and prostaglandin D2 levels in the plasma indicated that thiamethoxam and clothianidin could cause androgen deficiency in male lizards. Meanwhile, in female lizards, thiamethoxam/clothianidin increased the expression of hsd17β gene in the ovary, causing an increase in testosterone levels in the plasma and an up-regulation of androgen receptor expression in the liver. The effects of thiamethoxam and clothianidin on male lizards were more pronounced. This study verified the possible endocrine disrupting effects of neonicotinoids and provided a new perspective for the study of global recession of reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yang Zhang
- Benxi Institute for Drug Control, No.31 Shengli Road, Mingshan District, Benxi 117000, PR China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| |
Collapse
|
12
|
Wang Y, Zhang Y, Li W, Yang L, Guo B. Distribution, metabolism and hepatotoxicity of neonicotinoids in small farmland lizard and their effects on GH/IGF axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:834-841. [PMID: 30795479 DOI: 10.1016/j.scitotenv.2019.01.277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The potential endocrine disruption of neonicotinoids poses a significant threat to the survival of small farmland lizards. We systematically evaluated the distribution, metabolism, and toxicity of three neonicotinoids (dinotefuran, thiamethoxam, and imidacloprid) in the Eremias argus during a 35-day oral administration exposure. Lizards could quickly transfer and store neonicotinoids into the scale and eliminated through molting. Dinotefuran was most prone to accumulation in lizard tissues, followed by thiamethoxam, and imidacloprid was generally present in the form of its terminal metabolite 6-chloropyridinyl acid. Exposure to dinotefuran resulted in hepatic oxidative stress damage, decreased plasma growth hormone concentration, and down-regulation of ghr, igf1 and igfbp2 gene expression. These indicated that dinotefuran might have potential growth inhibition toxicity to lizards. Although imidacloprid caused severe liver oxidative stress damage, the effect of imidacloprid on GH/IGF axis was not obvious. Compared to dinotefuran and imidacloprid, thiamethoxam had the least damage to liver and minimal impact on GH/IGF axis. This study verified the possible damage of neonicotinoids to lizard liver and the interference of GH/IGF axis for the first time.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yang Zhang
- Benxi Institute for Drug Control, No.31 Shengli Road, Mingshan District, Benxi 117000, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| |
Collapse
|