1
|
Picone M, Russo M, Marchetto D, Distefano GG, Baccichet M, Scalabrin E, Galvan T, Humar M, Lesar B, Guarneri I, Tagliapietra D, Capodaglio G, Volpi Ghirardini A. An Integrated Testing Strategy (ITS) to assess the environmental compatibility of wood protection techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134484. [PMID: 38723484 DOI: 10.1016/j.jhazmat.2024.134484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/30/2024]
Abstract
To quantify the possible impact of different wood protection techniques on the aquatic environment, we applied a tiered Integrated Testing Strategy (ITS) on leachates obtained from untreated (UTW) Norway spruce (Picea abies), specimens treated with a copper-ethanolamine-based preservative solution, complying with the Use Class 3 (UC3), and specimens thermally modified (TM). Different maturation times in water were tested to verify whether toxicant leaching is time-dependent. Tier I tests, addressing acute effects on Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna, evidenced that TM toxicity was comparable or even lower than in UTW. Conversely, UC3 significantly affected all species compared to UTW, also after 30 days of maturation in water, and was not considered an environmentally acceptable wood preservation solution. Tier II (effects on early-life stages of Lymnea auricularia) and III (chronic effects on D. magna and L. auricularia) performed on UTW and TM confirmed the latter as an environmentally acceptable treatment, with increasing maturation times resulting in decreased adverse effects. The ITS allowed for rapid and reliable identification of potentially harmful effects due to preservation treatments, addressed the choice for a less impacting solution, and can be effective for manufacturers in identifying more environmentally friendly solutions while developing their products.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Martina Russo
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Elisa Scalabrin
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy; National Council for the Research - Institute of Polar Sciences, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Thomas Galvan
- Agri.Te.Co. Società Cooperativa, via via Angelo Toffoli 13, 30175 Venezia-Marghera, Italy
| | - Miha Humar
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bostjan Lesar
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Irene Guarneri
- National Council for the Research - Institute of Marine Sciences, Tesa 104, Arsenale, Castello 2737/F, 30122 Venezia, Italy
| | - Davide Tagliapietra
- National Council for the Research - Institute of Marine Sciences, Tesa 104, Arsenale, Castello 2737/F, 30122 Venezia, Italy
| | - Gabriele Capodaglio
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| |
Collapse
|
2
|
Takkellapati S, Gonzalez MA. Application of read-across methods as a framework for the estimation of emissions from chemical processes. CLEAN TECHNOLOGIES AND RECYCLING 2023; 3:283-300. [PMID: 38357098 PMCID: PMC10866300 DOI: 10.3934/ctr.2023018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The read-across method is a popular data gap filling technique with developed application for multiple purposes, including regulatory. Within the US Environmental Protection Agency's (US EPA) New Chemicals Program under Toxic Substances Control Act (TSCA), read-across has been widely used, as well as within technical guidance published by the Organization for Economic Co-operation and Development, the European Chemicals Agency, and the European Center for Ecotoxicology and Toxicology of Chemicals for filling chemical toxicity data gaps. Under the TSCA New Chemicals Review Program, US EPA is tasked with reviewing proposed new chemical applications prior to commencing commercial manufacturing within or importing into the United States. The primary goal of this review is to identify any unreasonable human health and environmental risks, arising from environmental releases/emissions during manufacturing and the resulting exposure from these environmental releases. The authors propose the application of read-across techniques for the development and use of a framework for estimating the emissions arising during the chemical manufacturing process. This methodology is to utilize available emissions data from a structurally similar analogue chemical or a group of structurally similar chemicals in a chemical family taking into consideration their physicochemical properties under specified chemical process unit operations and conditions. This framework is also designed to apply existing knowledge of read-across principles previously utilized in toxicity estimation for an analogue or category of chemicals and introduced and extended with a concurrent case study.
Collapse
Affiliation(s)
- Sudhakar Takkellapati
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Environmental Decision Analytics Branch, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Michael A. Gonzalez
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Land Remediation and Technology Division, Environmental Decision Analytics Branch, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
3
|
Yang X, Ou W, Zhao S, Wang L, Chen J, Kusko R, Hong H, Liu H. Human transthyretin binding affinity of halogenated thiophenols and halogenated phenols: An in vitro and in silico study. CHEMOSPHERE 2021; 280:130627. [PMID: 33964751 DOI: 10.1016/j.chemosphere.2021.130627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Serious harmful effects have been reported for thiophenols, which are widely used industrial materials. To date, little information is available on whether such chemicals can elicit endocrine-related detrimental effects. Herein the potential binding affinity and underlying mechanism of action between human transthyretin (hTTR) and seven halogenated-thiophenols were examined experimentally and computationally. Experimental results indicated that the halogenated-thiophenols, except for pentafluorothiophenol, were powerful hTTR binders. The differentiated hTTR binding affinity of halogenated-thiophenols and halogenated-phenols were observed. The hTTR binding affinity of mono- and di-halo-thiophenols was higher than that of corresponding phenols; while the opposite relationship was observed for tri- and penta-halo-thiophenols and phenols. Our results also confirmed that the binding interactions were influenced by the degree of ligand dissociation. Molecular modeling results implied that the dominant noncovalent interactions in the molecular recognition processes between hTTR and halogenated-thiophenols were ionic pair, hydrogen bonds and hydrophobic interactions. Finally, a model with acceptable predictive ability was developed, which can be used to computationally predict the potential hTTR binding affinity of other halogenated-thiophenols and phenols. Taken together, our results highlighted that more research is needed to determine their potential endocrine-related harmful effects and appropriate management actions should be taken to promote their sustainable use.
Collapse
Affiliation(s)
- Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wang Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Songshan Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Rebeca Kusko
- Immuneering Corporation, Cambridge, MA, 02142, USA
| | - Huixiao Hong
- National Center for Toxicological Research US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|