1
|
Vespasiano G, Cianflone G, Marini L, De Rosa R, Polemio M, Walraevens K, Vaselli O, Pizzino L, Cinti D, Capecchiacci F, Barca D, Dominici R, Apollaro C. Hydrogeochemical and isotopic characterization of the Gioia Tauro coastal Plain (Calabria - southern Italy): A multidisciplinary approach for a focused management of vulnerable strategic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160694. [PMID: 36481154 DOI: 10.1016/j.scitotenv.2022.160694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This work pursues the hydro-geochemical and isotopic characterization of the complex groundwater system of the Gioia Tauro Plain, one of the most important industrialized and agricultural coastal areas of southern Italy. The anthropic pressure exposes the water resources at risk of depletion and quality degradation making the plain groundwater a system of high scientific and social interest. The plain is characterized by a shallow aquifer, mostly recharged by local rains and a deep aquifer apparently less influenced by local precipitation. Both aquifers are mainly Ca-HCO3 waters except for localized sectors where Na-HCO3, Na-Cl and Ca-SO4 waters are present. In deep aquifer, both prolonged interaction with sedimentary rocks, mainly deriving from the erosion of crystalline rocks, and direct cation exchange represent the primary factors controlling the formation of Na-HCO3 waters. Mixing processes between these waters and either connate brine and/or deep thermal waters contribute to the formation of isolated high salinity Na-Cl-rich waters. In shallow aquifer, inputs of N-rich sewage and agriculture-related contaminants, and SOx emissions in proximity of the harbor are responsible of the increasing nitrate and sulphate concentrations, respectively. The Cl/Br and NO3/Cl ratios highlight contamination mainly linked to agricultural activities and contribution of wastewater. Along the northern boundary, the warmest groundwater (Na-Cl[SO4]) were found close to a bend of the main strike-slip fault system, locally favouring the rising of B- and Li-rich deep waters, testifying the influence of geological-structural features on deep water circulation. Despite the high-water demand, a direct marine intrusion is localized in a very restricted area, where we observed an incipient groundwater-seawater mixing (seawater contribution ≤7 %). The qualitative and quantitative conditions of the shallow aquifer still have acceptable levels because of the relatively high recharge inflow. A reliable hydrogeochemical conceptual model, able to explain the compositional variability of the studied waters, is proposed.
Collapse
Affiliation(s)
- G Vespasiano
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Ponte Bucci 4, Cubo 15B, 87036 Rende, Italy; E3 (Earth, Environment, Engineering) Soc. Coop. and Spin-Off of University of Calabria, Via Ponte Bucci, Cubo 15B, 87036 Rende, Italy
| | - G Cianflone
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Ponte Bucci 4, Cubo 15B, 87036 Rende, Italy; E3 (Earth, Environment, Engineering) Soc. Coop. and Spin-Off of University of Calabria, Via Ponte Bucci, Cubo 15B, 87036 Rende, Italy.
| | - L Marini
- Steam Srl, Via Ponte a Piglieri 8, I-56121 Pisa, Italy
| | - R De Rosa
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Ponte Bucci 4, Cubo 15B, 87036 Rende, Italy
| | - M Polemio
- CNR-IRPI, National Research Council, Research Institute for Hydrogeological Protection, Via Amendola 122 I, 70126 Bari, Italy
| | - K Walraevens
- Laboratory for Applied Geology and Hydrogeology, Department of Geology, Ghent University, 9000 Ghent, Belgium
| | - O Vaselli
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Firenze, Italy
| | - L Pizzino
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma 1, Via di Vigna Murata 605, 00143 Rome, Italy
| | - D Cinti
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma 1, Via di Vigna Murata 605, 00143 Rome, Italy
| | - F Capecchiacci
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121 Firenze, Italy; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli, Osservatorio Vesuviano, Via Diocleziano, 328, 80125 Napoli, NA
| | - D Barca
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Ponte Bucci 4, Cubo 15B, 87036 Rende, Italy
| | - R Dominici
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Ponte Bucci 4, Cubo 15B, 87036 Rende, Italy; E3 (Earth, Environment, Engineering) Soc. Coop. and Spin-Off of University of Calabria, Via Ponte Bucci, Cubo 15B, 87036 Rende, Italy
| | - C Apollaro
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Via Ponte Bucci 4, Cubo 15B, 87036 Rende, Italy
| |
Collapse
|
2
|
Moreno-Merino L, Aguilera H, de la Losa Román A. Are bottled mineral waters and groundwater for human supply different? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155554. [PMID: 35489491 DOI: 10.1016/j.scitotenv.2022.155554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Increasingly, bottled natural mineral water (NMW) is proposed as a healthy and safe alternative to supply water. However, tap supply water often comes from aquifers (TGW), even from the same aquifers as NMW, sharing the exact formation mechanisms and mineralization processes. Therefore, it is hypothesized that NMW and TGW cannot be distinguished. The chemical composition of TGW and NMW samples in Spain has been compared using five criteria: expert judgment, hydrochemistry, legal regulations, statistical analysis, and machine learning (ML). Hydrochemical criteria included all the NMW samples in the TGW group, as did the legal criterion, whereas classical statistical analysis could not find significant differences between the two groups. Although experts could correctly differentiate a small subsample of both types of water with an accuracy of 0.67, ML-based classification with Extreme Gradient Boosting yielded a balanced accuracy of 0.92 on an extremely imbalanced data set. Shapley Additive Explanations (SHAP) analysis identified pH, SiO2, E, K+, Ca2+, K+/Na+ and NO3- as the most relevant variables for water type discrimination. The overall consistency and generalization ability of the ML classifier has been proven by the spatial distribution of hits and misses, where the few cases of indistinguishable waters seem to be related to proximity to nature reserves (i.e., land use) more than to geological characteristics. Therefore, it can be concluded that NMW and TGW are indeed different and that only ML could find the hidden structure in the chemical data that determines the differences. This structure originates in how the market and consumers decide which water is ultimately bottled. The results can help on future choices of TGW and NMW in a context of water scarcity.
Collapse
Affiliation(s)
- L Moreno-Merino
- Instituto Geologico y Minero de España (IGME), CSIC, Ríos Rosas, 23, 28003 Madrid, Spain.
| | - H Aguilera
- Instituto Geologico y Minero de España (IGME), CSIC, Ríos Rosas, 23, 28003 Madrid, Spain.
| | - A de la Losa Román
- Instituto Geologico y Minero de España (IGME), CSIC, Ríos Rosas, 23, 28003 Madrid, Spain.
| |
Collapse
|
3
|
Classification and hierarchical cluster analysis of principal Romanian bottled mineral waters. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Geochemical, Geological and Groundwater Quality Characterization of a Complex Geological Framework: The Case Study of the Coreca Area (Calabria, South Italy). GEOSCIENCES 2021. [DOI: 10.3390/geosciences11030121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogeochemical characterization and statistical methods were used to investigate the groundwater quality and the origin of constituents (anthropic or natural) in groundwater of the Coreca area (Calabria, South Italy). Coreca is characterized by an articulated geological setting where the three main geological complexes that distinguish the Northern Calabria Peloritan Orogen (CPO) outcrop. This complex asset affects the quality of groundwater mainly exploited for irrigation use. In particular, the presence of ultramafic rocks (e.g., serpentinite and metabasite) promotes the release of harmful elements such as Cr and Ni. In the studied area, two groups of waters were identified: Ca-HCO3 waters strongly controlled by the interaction with Ca-rich phases (e.g., limestone), and Mg-HCO3 waters related to the interaction of meteoric water with the metamorphic units. Statistical elaboration allowed to detect, in the Mg-HCO3 group, a good correlation between Cr and Ni (not observed in Ca waters) and a negative correlation between Cr, Ca and Al, in agreement with direct interaction with ultramafic rocks characterized by low concentrations of CaO and Al2O3. The concentration of major and trace elements has been compared with the Italian law limit values and the drinking water guidelines provided by the World Health Organization (WHO). Only three samples showed Mn and Ni concentration higher than the Italian law threshold. Furthermore, the assessment of groundwater quality was carried out using salinity and metal indexes. The groundwater quality assessment for irrigation allowed to classify the resource as “excellent to good” and “good to permissible”; nevertheless, a salinity problem and a magnesium hazard were found. Lastly, a metal index (MI) calculation revealed values <1 for almost all samples, pointing to good overall quality. Only a few samples showed a value extremely higher than 1, attributable to prolonged interaction with ultramafic rocks and/or localized anthropogenic pollution. From a general point of view, groundwater showed a generally good quality except for limited areas (and limited to the set of constituents analyzed) and a mild exceedance of the maximum salinity thresholds that must be monitored over time. Through a multidisciplinary approach, it was possible to ascertain the main anomalies attributable to the interaction with the hosting rocks and not (with few exceptions) to anthropic processes.
Collapse
|
5
|
Dippong T, Hoaghia MA, Mihali C, Cical E, Calugaru M. Human health risk assessment of some bottled waters from Romania. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115409. [PMID: 33254694 DOI: 10.1016/j.envpol.2020.115409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
The paper presents the quality status of 14 brands of bottled water, with sources of groundwaters from different mountain areas alongside the Carpathian Mountains from Romania. A number of 12 physico-chemical parameters (ammonium, bicarbonate, electrical conductivity, carbonate, chemical oxygen demand, chloride, nitrate, nitrite, pH, sulphate, total hardness, turbidity), 9 metals and metalloids (Li, B, Na, Mg, Al, K, Ca, Sr, Ba) and 17 heavy metals (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Mo, Ag, Cd, In, Tl, Pb, Bi) were determined and studied. The quality status, the potential contamination and the health risk assessment of bottled waters were assessed, by using the drinking water quality index, the heavy metal pollution index, the heavy metal evaluation index, the degree of contamination and the human health risk indices. Hierarchical cluster analysis was applied, indicating similarities among the studied bottled waters based on their metal content. The Piper diagram reveals that the majority of bottled water samples fall into the Ca, Mg, Na, K, Cl-, SO42-, CO32-, HCO3- categories. The quality of bottled waters based on the indices results indicated marginal, poor and very-poor quality status of the studied water samples, while the health risk assessment indices presented potential risks at aluminium, chloride and nitrate for the inhabitants who used those water samples with the purpose of drinking. The pollution indices with respect to metals generally reflected a low pollution status. This study represents the first attempt in assessing the overall quality of some bottled water collected from the mountain area, Romania, likewise assessing the comprehensive human health risk due to several chemical elements determined in water in amounts around and exceeding the maximum allowable concentrations. This research can be useful for development of potential strategies for risk control and management in the field of drinking water.
Collapse
Affiliation(s)
- Thomas Dippong
- Technical University of Cluj-Napoca, North University Centre at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122, BaiaMare, Romania.
| | - Maria-Alexandra Hoaghia
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Cristina Mihali
- Technical University of Cluj-Napoca, North University Centre at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122, BaiaMare, Romania
| | - Elena Cical
- Technical University of Cluj-Napoca, North University Centre at Baia Mare, Faculty of Science, 76 Victoriei Street, 430122, BaiaMare, Romania
| | - Mihai Calugaru
- Research Centre for Instrumental Analysis, 1 Petre Ispirescu Street, Tâncăbeşti, 077167, Ilfov, Romania
| |
Collapse
|
6
|
|
7
|
Khadra WM. Authenticity of bottled water chemical composition inferred from brand labels: example of the Lebanese market. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Trophic Magnification of Legacy (PCB, DDT and Hg) and Emerging Pollutants (PFAS) in the Fish Community of a Small Protected Southern Alpine Lake (Lake Mergozzo, Northern Italy). WATER 2020. [DOI: 10.3390/w12061591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The biomagnification of mercury, polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs) and perfluoroalkyl acids substances (PFASs) was evaluated in the trophic web of Lake Mergozzo, a small and deep Italian subalpine lake, which has been chosen because it is a protected environment, and discharges into the lake are mostly avoided. Carbon source and relative trophic levels were calculated by using 13C and 15N stable isotopes, respectively, and trophic magnification factors (TMFs) were derived. Zooplankton and thirteen species of fish were collected and analyzed, and the results showed the elevated level of biota contamination from both legacy and emerging pollutants, even if direct discharges were avoided. Concentrations in biota, expressed as sums of compounds, ranged from 0.4 to 60 µg kg−1 wet weight (ww) for PFASs, from 16 to 1.3 104 µg kg−1 lipid content (lw) for DDTs, from 17 to 1.5 104 µg kg−1 lw for PCBs and from 20.0 to 501 µg kg−1 ww for mercury (Hg). TMFs of this deep, cold lake, with a prevalent pelagic trophic chain, were high and clearly indicated fish biomagnification, except for PFAS. The biomagnification capability of PFAS in a fish-only food web was discussed by using the biomagnification of Hg as a benchmark for assessing their bioaccumulation potential.
Collapse
|
9
|
Liu S, Huang X, Hu K, Jin Q, Zhu G. Development of a Multiresidue Method for Endocrine-Disrupting Pesticides by Solid Phase Extraction and Determination by UHPLC-MS/MS from Drinking Water Samples. J Chromatogr Sci 2019; 58:195-202. [DOI: 10.1093/chromsci/bmz089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023]
Abstract
Abstract
A rapid and efficient method based on solid phase extraction and liquid chromatography–tandem mass spectrometry was validated, allowing the determination of the endocrine-disrupting herbicides (acetochlor, alachlor, amitrole and atrazine), fungicides (carbendazim, triadimefon, penconazole and propiconazole), and insecticides (carbaryl and carbofuran) in drinking water. Low method detection limits (0.01–0.64 ng/L) and method quantification limits (0.03–2.13 ng/L) were obtained with satisfactory recoveries and precision for the endocrine-disrupting pesticides. The method was applied for real drinking water samples collected in the area of the city of Hangzhou (Zhejiang, China); the results showed that carbendazim, atrazine and acetochlor were detected in the drinking water samples and acetochlor was the most detected analyte.
Collapse
Affiliation(s)
- Shaoying Liu
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Xihui Huang
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Kejun Hu
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Quan Jin
- Laboratory of Chemistry and Physics, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|