1
|
Bertrand C, Aviron S, Pelosi C, Faburé J, Le Perchec S, Mamy L, Rault M. Effects of plant protection products on ecosystem functions provided by terrestrial invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34534-w. [PMID: 39141266 DOI: 10.1007/s11356-024-34534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.
Collapse
Affiliation(s)
- Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphanie Aviron
- INRAE, Institut Agro Rennes-Angers, ESA, UMR 0980 BAGAP, 35042, Rennes, France
| | - Céline Pelosi
- UMR EMMAH, INRAE, Avignon Université, 84000, Avignon, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, IRD, France.
| |
Collapse
|
2
|
Hu H, Ma Y, Song X, Wang D, Ren X, Wu C, Liu C, Ma X, Shan Y, Meng Y, Ma Y. Tank-Mix Adjuvants Enhance Pesticide Efficacy by Improving Physicochemical Properties and Spraying Characteristics for Application to Cotton with Unmanned Aerial Vehicles. ACS OMEGA 2024; 9:31011-31025. [PMID: 39035928 PMCID: PMC11256106 DOI: 10.1021/acsomega.4c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Tank-mix adjuvants have been used to reduce spray drift and facilitate the efficacy of pesticides applied with unmanned aerial vehicles (UAVs). However, the effects of specific adjuvants on pesticide characteristics and the mechanism of action remain unclear. Herein, we analyzed the effects of three different types of tank-mix adjuvants (plant oil; mineral oil; and mixture of alcohol and ester) on the surface tension (ST), contact angle, wetting, permeation, evaporation, spray performance, and aphid-control effects of two types of pesticides. The mineral oil adjuvant Weichi (WCH) was highly effective in reducing the pesticide solution ST, improving the wetting and penetration ability, increasing droplet size, and promoting droplet deposition. The mixed alcohol and ester adjuvant Quanrun (QR) showed excellent wetting and antievaporation properties and promoted droplet deposition. A plant oil adjuvant (Beidatong) moderately improved wetting and penetration ability and reduced droplet drift. Field tests showed that the control efficiencies (CEs) of two pesticides were increased after the addition of adjuvants, even with 20% reductions in pesticide application. When the UAV was operated at 1.5 m, the CEs of two pesticides were increased from 65.39 and 66.63% to 73.11-76.52% and 77.91-88.31%, respectively. When operated at 2.5 m, the CEs were increased from 51.24 and 68.60% to 65.06-75.70% and 77.57-92.59%, respectively. Especially, the CEs of pesticides with WCH and QR increased obviously. Importantly, neither WCH nor QR inhibited hatching of the critical insect natural enemy ladybird beetle at concentrations used in the field. This study provides a framework for assessment of tank-mix adjuvants in aerial sprays and directly demonstrates the value of specific adjuvants in improving pesticide bioavailability and minimizing associated environmental pollution.
Collapse
Affiliation(s)
- Hongyan Hu
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, School of Agricultural
Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Yajie Ma
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Xianpeng Song
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Dan Wang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Xiangliang Ren
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, School of Agricultural
Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Changcai Wu
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Chunhong Liu
- Institute
of Pepper Research, Anyang Academy of Agricultural
Sciences, Anyang 455000, Henan, China
| | - Xiaoyan Ma
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, School of Agricultural
Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| | - Yongpan Shan
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, School of Agricultural
Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanhua Meng
- School
of Mechanical Engineering, Anyang Institute
of Technology, Anyang 455000, Henan, China
| | - Yan Ma
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, School of Agricultural
Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Western
Agricultural Research Center, Chinese Academy
of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
3
|
Martins GC, de Ferreira Reis FA, Dall'Agnol R, Ramos SJ, Gastauer M, Natal-da-Luz T, Sousa JP, Guilherme LRG. Assessment of the reproduction of six collembolan species in tropical soils naturally rich in potentially toxic elements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25424-25436. [PMID: 38472582 DOI: 10.1007/s11356-024-32847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Laboratory ecotoxicological tests are important tools for the management of environmental changes derived from anthropogenic activities. Folsomia candida is usually the model species used in some procedures. However, this species may not be sufficiently representative of the sensitivity of the other collembolan species. This study aimed to evaluate (i) the effects of soils naturally rich in potentially toxic elements (PTE) and soil characteristics on the reproduction and survival of different collembolan species, (ii) whether the habitat function of these soils is compromised, and (iii) to what extent F. candida is representative of the other collembolan species. For this, reproduction tests with six collembolan species were conducted in 14 different samples of soils. In general, collembolan reproduction was not completely inhibited in none of the natural tested soils. Even soils with high pollution load index values did not negatively affect collembolan reproduction for most of the species. In contrast, the lowest collembolan reproduction rates were found in a visually dense soil (lowest volume/weight ratio), highlighting that soil attributes other than total PTE concentration also interfere in the reproduction of collembolans. Our results support the idea that the F. candida species might not be representative of other collembolan species and that laboratory tests to assess soil contaminations should be conducted using diverse collembolan species.
Collapse
Affiliation(s)
- Gabriel Caixeta Martins
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil.
| | - Filipa Alexandra de Ferreira Reis
- CFE-Centre for Functional Ecology-Science for the People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Roberto Dall'Agnol
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil
| | - Sílvio Junio Ramos
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil
| | - Markus Gastauer
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil
| | - Tiago Natal-da-Luz
- CFE-Centre for Functional Ecology-Science for the People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - José Paulo Sousa
- CFE-Centre for Functional Ecology-Science for the People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | | |
Collapse
|
4
|
Navia Mendoza JM, Rivadeneira Mendoza BF, Cevallos Mendoza J, Balu AM, Luque R, Zambrano Intriago LA, Rodríguez-Díaz JM. MIL-53(Al)@HC nanohybrid for bicomponent adsorption of ibuprofen and metsulfuron-methyl: Application of macro- and microscopic models and competition between contaminants. ENVIRONMENTAL RESEARCH 2024; 240:117492. [PMID: 37944690 DOI: 10.1016/j.envres.2023.117492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
In this work, a hybrid was synthesized by hydrothermal treatment, metal-organic framework functionalized with hydrochar (MIL-53(Al)@HC) for the adsorption of two organic molecules Ibuprofen sodium salt and Metsulfuron-methyl, in binary system. The hybrid is composed of 71 wt% biomass and 29 wt% MOF. TGA, BET, FTIR, XRD and XPS characterization techniques were used to verify the hybridization of MIL-53(Al)@HC. The MIL-53(Al)@HC hybrid showed in situ MIL-53(Al) crystal growth capability. Batch adsorption experiments were carried out to study the effect of pH, adsorbent dosage, adsorbate concentration, contact time and temperature effect. The results obtained under extreme conditions demonstrate that MIL-53(Al)@HC is an adsorbent capable of removing >98% of IBU and MTM in mixture at a concentration of 0.3 mM (68 ppm IBU and 115 ppm MTM). The pseudo-second order model adequately described the adsorption kinetics and equilibrium using the Sips and Freundlich models. The physico-statistical microscopic model (2-layer) corroborated the hypothesis of a multilayer adsorption proposed by the macroscopic Freundlich model. In the competition study between IBU and MTM, both antagonistic and synergistic effects were observed. In the thermodynamic study, positive values of (ΔH°) indicate that adsorption is endothermic in nature and that the dominant mechanism is physisorption. A mechanism of adsorption by hydrogen bridging and non-covalent π*-π adsorbate-adsorbate and adsorbate-adsorbate-adsorbate interactions was proposed. The desorption study shows that in 5 washing cycles MIL-53(Al)@HC is a recoverable material.
Collapse
Affiliation(s)
- Jennifer María Navia Mendoza
- Facultad de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Bryan Fernando Rivadeneira Mendoza
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Jaime Cevallos Mendoza
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Alina M Balu
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Rafael Luque
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation
| | - Luis Angel Zambrano Intriago
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador.
| |
Collapse
|
5
|
Akter S, Hulugalle NR, Jasonsmith J, Strong CL. Changes in soil microbial communities after exposure to neonicotinoids: A systematic review. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:431-444. [PMID: 37574328 PMCID: PMC10667664 DOI: 10.1111/1758-2229.13193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Neonicotinoids are a group of nicotine-related chemicals widely used as insecticides in agriculture. Several studies have shown measurable quantities of neonicotinoids in the environment but little is known regarding their impact on soil microbial populations. The purpose of this systematic review was to clarify the effects of neonicotinoids on soil microbiology and to highlight any knowledge gaps. A formal systematic review was performed following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines using keywords in PubMed, SCOPUS and Web of Science. This resulted in 29 peer-reviewed articles, whose findings diverged widely because of variable methodologies. Field-based studies were few (28%). Imidacloprid was the most widely used (66%) and soil microbial communities were most sensitive to it. Spray formulations were used in 83% of the studies and seed treatments in the rest. Diversity indices were the most frequently reported soil microbial parameter (62%). About 45% of the studies found that neonicotinoids had adverse impacts on soil microbial community structure, composition, diversity, functioning, enzymatic activity and nitrogen transformation. Interactions with soil physicochemical properties were poorly addressed in all studies. The need for more research, particularly field-based research on the effects of neonicotinoids on soil microorganisms was highlighted by this review.
Collapse
Affiliation(s)
- Sharmin Akter
- Fenner School of Environment and Society, College of ScienceAustralian National UniversityCanberraACTAustralia
- Soil Resource Development InstituteMinistry of AgricultureDhakaBangladesh
| | - Nilantha R. Hulugalle
- Fenner School of Environment and Society, College of ScienceAustralian National UniversityCanberraACTAustralia
| | - Julia Jasonsmith
- Fenner School of Environment and Society, College of ScienceAustralian National UniversityCanberraACTAustralia
| | - Craig L. Strong
- Fenner School of Environment and Society, College of ScienceAustralian National UniversityCanberraACTAustralia
| |
Collapse
|
6
|
Yang D, Huo J, Zhang Z, An Z, Dong H, Wang Y, Duan W, Chen L, He M, Gao S, Zhang J. Citric acid modified ultrasmall copper peroxide nanozyme for in situ remediation of environmental sulfonylurea herbicide contamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130265. [PMID: 36327847 DOI: 10.1016/j.jhazmat.2022.130265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Herbicide residues in the environment threaten high-quality agriculture and human health. Consequently, in situ remediation of herbicide contamination is vital. We synthesized a novel self-catalyzed nanozyme, ultrasmall (2-3 nm) copper peroxide nanodots modified by citric acid (CP@CA) for this purpose, which can break down into H2O2 and Cu2+ in water or soil. Ubiquitous glutathione reduces Cu2+ into Cu+, which promotes the decomposition of H2O2 into •OH through a Fenton-like reaction under mild acid conditions created by the presence of citric acid. The generated •OH efficiently degrade nicosulfuron in water and soil, and the maximum degradation efficiency could be achieved at 97.58% in water at 56 min. The possible degradation mechanisms of nicosulfuron were proposed through the 25 intermediates detected. The overall ecotoxicity of the nicosulfuron system was significantly reduced after CP@CA treatment. Furthermore, CP@CA had little impact on active components of soil bacterial community. Moreover, CP@CA nanozyme could effectively remove seven other sulfonylurea herbicides from the water. In this paper, a high-efficiency method for herbicide degradation was proposed, which provides a new reference for the in situ remediation of herbicide pollution.
Collapse
Affiliation(s)
- Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Zhe Zhang
- School of Engineering, Westlake University, Hangzhou 310024, China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haijiao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China
| | - Yanen Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weidi Duan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
7
|
Chowdhary AB, Singh J, Quadar J, Singh S, Singh A, Dutta R, Angmo D, Vig AP. Metsulfuron-methyl induced physiological, behavioural and biochemical changes in exotic (Eisenia fetida) and indigenous (Metaphire posthuma) earthworm species: Toxicity and molecular docking studies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105276. [PMID: 36464335 DOI: 10.1016/j.pestbp.2022.105276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
In modern agricultural practices, Metsulfuron-methyl (sulfonylurea herbicide) is widely employed to inhibit the weeds and grasses. The current study revealed that Metaphire posthuma was more sensitive than Eisenia fetida against Metsulfuron-methyl (MSM). The LC50 values for Eisenia fetida were 2884.08 mgkg-1 and 1871.18 mgkg-1after 7 and 14 days, respectively. Similarly, the LC50 values for Metaphire posthuma were 2449.34 mgkg-1 and 1673.10 mgkg-1for 7 and 14 days, respectively. Reproduction parameters were significantly decreased at 400 (T3), 800 (T4) and 1600 (T5) mgkg-1 MSM in E. fetida whereas at 200 (T2), 400 (T3), 800 (T4), 1600 (T5) mgkg-1 MSM in M. posthuma. EC50 of avoidance response for 20% MSM by E. fetida and M. posthuma was recorded 901.76 mgkg-1and 544.21 mgkg-1 respectively. Malondialdehyde (MDA) content along with guaiacol peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) activities were initially increased up to 21st day by MSM, inducing a slight oxidative stress in earthworms and recovered to control level on 28th day. The GST activities were continuously stimulated throughout the exposure period and enhance the detoxification effect thereby preventing the earthworms from toxins. Molecular docking studies indicated that hydrogen bonding and hydrophobic interactions are key forces in binding between MSM and SOD/CAT/POD/GST. As a result, this is the first study to be reported on physiological, behavioural and biochemical changes in two different earthworm species under the exposure of sulfonyl urea herbicide.
Collapse
Affiliation(s)
- Anu Bala Chowdhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| | - Jaswinder Singh
- Post Graduate Department of Zoology, Khalsa College Amritsar, Punjab 143002, India.
| | - Jahangir Quadar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| |
Collapse
|
8
|
Nélieu S, Delarue G, Amossé J, Bart S, Péry ARR, Pelosi C. Soil dissipation and bioavailability to earthworms of two fungicides under laboratory and field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43044-43055. [PMID: 32725553 DOI: 10.1007/s11356-020-10222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The representativeness of laboratory studies of the fate of pesticides in soil in field conditions is questionable. This study aimed at comparing the dissipation and bioavailability to earthworms of two fungicides, dimoxystrobin (DMX) and epoxiconazole (EPX), over 12 months under laboratory and field conditions. In both approaches, the fungicides were applied to the same loamy soil as a formulated mixture at several concentrations. We determined total DMX and EPX concentrations in the soil using exhaustive extraction, their environmental availability using mild extraction and their bioavailability through internal concentrations in exposed earthworms. The initial fungicide application appeared as much better controlled in terms of dose and homogeneity in the laboratory than in the field. One year after application, a similar dissipation rate was observed between the laboratory and field experiments (ca 80% and 60% for DMX and EPX, respectively). Similarly, the ratio of available/total concentrations in soil displayed the same trend whatever the duration and the conditions (field or lab), EPX being more available than DMX. Finally, the environmental bioavailability of the two fungicides to earthworms was heterogeneous in the field, but, in the laboratory, the bioaccumulation was evidenced to be dose-dependent only for DMX. Our findings suggest that the actual fate of the two considered fungicides in the environment is consistent with the one determined in the laboratory, although the conditions differed (e.g., presence of vegetation, endogeic earthworm species). This study allowed better understanding of the fate of the two considered active substances in the soil and underlined the need for more research dedicated to the link between environmental and toxicological bioavailability.
Collapse
Affiliation(s)
- Sylvie Nélieu
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Bâtiment EGER, Avenue Lucien Brétignières, 78850, Thiverval Grignon, France.
| | - Ghislaine Delarue
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Bâtiment EGER, Avenue Lucien Brétignières, 78850, Thiverval Grignon, France
| | - Joël Amossé
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Sylvain Bart
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Alexandre R R Péry
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Céline Pelosi
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| |
Collapse
|
9
|
Pompermaier A, Kirsten K, Soares SM, Fortuna M, Kalichak F, Idalencio R, Koakoski G, Barreto RE, Barcellos LJG. Waterborne agrichemicals compromise the anti-predatory behavior of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38559-38567. [PMID: 32623676 DOI: 10.1007/s11356-020-09862-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Due to human activities, there is an increasing presence of agrochemicals residues in water bodies, which could be attributed to an increased use of these chemicals, incorrect disposal of packaging materials, and crop leaching. The effects of these residues on prey-predator relationship of aquatic animals are poorly known. Here, we show that fish acutely exposed to glyphosate, 2,4-D, and methylbenzoate-based agrichemicals have their anti-predatory responses impaired. We exposed zebrafish to sub-lethal concentrations of agrichemicals and evaluated their behavioral reaction against a simulated bird predatory strike. We observed that agrichemical-exposed fish spent more time in a risky area, suggesting that the pesticides interfered with their ability of risk perception. Our results highlight the impairment and environmental consequences of agrochemical residues, which can affect aquatic life and crucial elements for life (food web) such as the prey-predator relationship.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Karina Kirsten
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Fabiana Kalichak
- Curso de Medicina Veterinária, Faculdades Integradas do Vale do Iguaçu (Uniguaçu), Rua Padre Saporiti, 717, Rio D'Areia, União da Vitória, PR, 84600-904, Brazil
| | - Renan Idalencio
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rodrigo Egydio Barreto
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, CAUNESP, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
10
|
Choudri BS, Charabi Y, Al-Nasiri N, Al-Awadhi T. Pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1425-1432. [PMID: 32574430 DOI: 10.1002/wer.1380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
This paper highlights a review of scientific papers published in the year 2019 regarding pesticides and herbicides. The scientific review presented in this paper includes the presence and occurrence of pesticides and herbicides in the environment. The entire review divided into different sections, which are grouped into four main sections. Each of these sections provides studies conducted on toxicology, ecological risk assessment, strategies of treatment, policies, modeling, and guidelines regarding pesticides and herbicides management. PRACTITIONERS POINTS: This paper highlights the review of scientific literature published in the year 2019. The review includes the presence and occurrence of pesticides and herbicides in the environment. The review focuses on toxicology, ecological risk assessment, strategies of treatment, policies, modelling and guidelines regarding pesticides and herbicides management. The literature review covers selected papers relevant to the topic.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Noura Al-Nasiri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
- Department of Geography, Sultan Qaboos University, Muscat, Oman
| | - Talal Al-Awadhi
- Department of Geography, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
11
|
Bourdineaud JP. Toxicity of the herbicides used on herbicide-tolerant crops, and societal consequences of their use in France. Drug Chem Toxicol 2020; 45:698-721. [PMID: 32543998 DOI: 10.1080/01480545.2020.1770781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In France, the implementation of mutant herbicide-tolerant crops and the use of the related herbicides - sulfonylureas and imidazolinones - have triggered a strong societal reaction illustrated by the intervening actions of environmentalist groups illegally mowing such crops. Trials are in progress, and therefore should be addressed the questions of the environmental risks and the toxicity of these herbicides for the animals and humans consuming the products derived from these plants. Regulatory authorities have allowed these mutant and herbicide-tolerant plants arguing that the herbicides against which they resist only target an enzyme found in 'weeds' (the acetolactate synthase, ALS), and that therefore all organisms lacking this enzyme would be endowed with immunity to these herbicides. The toxicological literature does not match with this argument: 1) Even in organisms displaying the enzyme ALS, these herbicides impact other molecular targets than ALS; 2) These herbicides are toxic for animals, organisms that do not possess the enzyme ALS, and especially invertebrates, amphibians and fish. In humans, epidemiological studies have shown that the use and handling of these toxins are associated with a significantly increased risk of colon and bladder cancers, and miscarriages. In agricultural soils, these herbicides have a persistence of up to several months, and water samples have concentrations of some of these herbicides above the limit value in drinking water.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, CNRS, University of Bordeaux, Pessac, France.,CRIIGEN, Paris, France
| |
Collapse
|
12
|
Maderthaner M, Weber M, Takács E, Mörtl M, Leisch F, Römbke J, Querner P, Walcher R, Gruber E, Székács A, Zaller JG. Commercial glyphosate-based herbicides effects on springtails (Collembola) differ from those of their respective active ingredients and vary with soil organic matter content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17280-17289. [PMID: 32152864 PMCID: PMC7192858 DOI: 10.1007/s11356-020-08213-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/24/2020] [Indexed: 04/15/2023]
Abstract
Glyphosate-based herbicides (GBH) are currently the most widely used agrochemicals for weed control. Environmental risk assessments (ERA) on nontarget organisms mostly consider the active ingredients (AIs) of these herbicides, while much less is known on effects of commercial GBH formulations that are actually applied in the field. Moreover, it is largely unknown to what extent different soil characteristics alter potential side effects of herbicides. We conducted a greenhouse experiment growing a model weed population of Amaranthus retroflexus in arable field soil with either 3.0 or 4.1% soil organic matter (SOM) content and treated these weeds either with GBHs (Roundup LB Plus, Touchdown Quattro, Roundup PowerFlex) or their respective AIs (isopropylammonium, diammonium or potassium salts of glyphosate) at recommended dosages. Control pots were mechanically weeded. Nontarget effects were assessed on the surface activity of the springtail species Sminthurinus niger (pitfall trapping) and litter decomposition in the soil (teabag approach). Both GBHs and AIs increased the surface activity of springtails compared to control pots; springtail activity was higher under GBHs than under corresponding AIs. Stimulation of springtail activity was much higher in soil with higher SOM content than with low SOM content (significant treatment x SOM interaction). Litter decomposition was unaffected by GBHs, AIs or SOM levels. We suggest that ERAs for pesticides should be performed with actually applied herbicides rather than only on AIs and should also consider influences of different soil properties.
Collapse
Affiliation(s)
- Michael Maderthaner
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Maureen Weber
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Eszter Takács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman O. u. 15, Budapest, H-1022, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman O. u. 15, Budapest, H-1022, Hungary
| | - Friedrich Leisch
- Institute of Statistics, University of Natural Resources and Life Sciences Vienna (BOKU), Peter-Jordan-Straße 82, A-1190, Vienna, Austria
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Böttgerstraße 2, 65439, Flörsheim, Germany
| | - Pascal Querner
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Ronnie Walcher
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - Edith Gruber
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman O. u. 15, Budapest, H-1022, Hungary
| | - Johann G Zaller
- Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, A-1180, Vienna, Austria.
| |
Collapse
|
13
|
Shevaldina EV, Opredelennova KA, Chichvarina OA, Spiridonov YY, Smol'yakov AF, Dorovatovskii PV, Moiseev SK. One‐pot acid‐free ferrocenylalkylation of azoles with α‐ferrocenyl alcohols: ferrocene‐based plant growth regulators and herbicide safeners. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ekaterina V. Shevaldina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia
| | - Ksenia A. Opredelennova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia
- Institute of Fine Chemical TechnologiesMIREA ‐ Russian Technological University 78 Vernadsky Avenue Moscow 119454 Russia
| | - Olga A. Chichvarina
- All‐Russian Research Institute of Phytopatology ul. Institut 5, Bolshie Vyazemy Moscow Region 143050 Russia
| | - Yury Ya. Spiridonov
- All‐Russian Research Institute of Phytopatology ul. Institut 5, Bolshie Vyazemy Moscow Region 143050 Russia
| | - Alexandr F. Smol'yakov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia
- Plekhanov Russian University of Economics Stremyanny per. 36 Moscow 117997 Russia
- Faculty of ScienceRUDN University 6 Miklukho‐Maklaya St Moscow 117198 Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute” Akademika Kurchatova pl. 1 Moscow 123182 Russia
| | - Sergey K. Moiseev
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences ul. Vavilova 28 Moscow 119991 Russia
| |
Collapse
|
14
|
Queirós L, Pereira JL, Gonçalves FJ, Pacheco M, Aschner M, Pereira P. Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a "nobelized worm". Crit Rev Toxicol 2019; 49:411-429. [PMID: 31268799 PMCID: PMC6823147 DOI: 10.1080/10408444.2019.1626801] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
Caenorhabditis elegans has been an invaluable model organism in research fields such as developmental biology and neurobiology. Neurotoxicity is one of the subfields greatly profiting from the C. elegans model within biomedical context, while the corresponding potential of the organism applied to environmental studies is relevant but has been largely underexplored. Within the biomedical scope, the implication of metals and organic chemicals with pesticide activity (hereinafter designated as pesticides) in the etiology of several neurodegenerative diseases has been extensively investigated using this nematode as a primary model organism. Additionally, as a well-known experimental model bearing high sensitivity to different contaminants and representing important functional levels in soil and aquatic ecosystems, C. elegans has high potential to be extensively integrated within Environmental Risk Assessment (ERA) routines. In spite of the recognition of some regulatory agencies, this actual step has yet to be made. The purpose of this review is to discuss the major advantages supporting the inclusion of C. elegans in lower tiers of ERA. Special emphasis was given to its sensitivity to metals and pesticides, which is similar to that of other model organisms commonly used in ERA (e.g. Daphnia magna and Eisenia sp.), and to the large array of endpoints that can be tested with the species, both concerning the aquatic and the soil compartments. The inclusion of C. elegans testing may hence represent a relevant advance in ERA, providing ecologically relevant insights toward improvement of the regulatory capacity for establishing appropriate environmental protection benchmarks.
Collapse
Affiliation(s)
- L. Queirós
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - J. L. Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - F. J.M. Gonçalves
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - M. Pacheco
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - M. Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - P. Pereira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|