1
|
Gao Y, Liu Z, Wang S, Zhou A, Lv X, Yue X. Exploring the promoting behavior of weak electric mediation on indole and pyridine biodegradation under anaerobic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175599. [PMID: 39173775 DOI: 10.1016/j.scitotenv.2024.175599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Indole and pyridine, which are highly produced refractory compounds in the industrial wastewater, exhibit poor degradation capabilities in natural environments. In this study, we developed an anaerobic digestion system coupled with weak electric mediation (ED), and investigated the promoting effect of weak electricity on indole and pyridine biodegradation. The degradation characteristics were systematically explored, and the results showed that the degradation rate and mineralization of indole and pyridine were significantly enhanced, the production of CH4 was increased 1.4-fold, and the optimal voltages were 1.0 V and 0.8 V in the ED, respectively. Moreover, simultaneous removal of carbon and nitrogen was achieved. Gas chromatography-mass spectrometry analysis verified the transformation products, and possible pathways were proposed. Several byproducts of indole and pyridine were identified, with oxindole and glutaric dialdehyde being the main metabolites, respectively. Additionally, density functional theory (DFT) analysis was performed to investigated the radical indices and stabilities of the molecules to further confirm the degradation pathway. Microbial structure analysis demonstrated that the electrically mediated enhanced metabolism and activity of functional microbes, led to the promotion of indole and pyridine mineralization. Moreover, such species as degrading bacteria (Alicycliphilus, Shinella) and electroactive bacteria (Achromobacter), anaerobic ammonia-oxidizing bacteria (SM1A02), and denitrifying bacteria (Thiobacillus) coexisted. This study demonstrates that weak electric mediation is a promising methodology for enhancing the removal of indole and pyridine from wastewater under anaerobic conditions.
Collapse
Affiliation(s)
- Yanjuan Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China; Shanxi Construction Investment Group Co., Ltd., Taiyuan, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China
| | - Shaobo Wang
- Shanxi Construction Investment Group Co., Ltd., Taiyuan, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China
| | - Xvfeng Lv
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology (TYUT), Taiyuan, China.
| |
Collapse
|
2
|
Liu ZS, Wang KH, Han Q, Jiang CY, Liu SJ, Li DF. Sphingobium sp. SJ10-10 encodes a not-yet-reported chromate reductase and the classical Rieske dioxygenases to simultaneously degrade PAH and reduce chromate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134889. [PMID: 38878436 DOI: 10.1016/j.jhazmat.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Han
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Siddique A, Al Disi Z, AlGhouti M, Zouari N. Diversity of hydrocarbon-degrading bacteria in mangroves rhizosphere as an indicator of oil-pollution bioremediation in mangrove forests. MARINE POLLUTION BULLETIN 2024; 205:116620. [PMID: 38955089 DOI: 10.1016/j.marpolbul.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Mangrove ecosystems, characterized by high levels of productivity, are susceptible to anthropogenic activities, notably oil pollution arising from diverse origins including spills, transportation, and industrial effluents. Owing to their role in climate regulation and economic significance, there is a growing interest in developing mangrove conservation strategies. In the Arabian Gulf, mangroves stand as the sole naturally occurring green vegetation due to the region's hot and arid climate. However, they have faced persistent oil pollution for decades. This review focuses on global mangrove distribution, with a specific emphasis on Qatar's mangroves. It highlights the ongoing challenges faced by mangroves, particularly in relation to the oil industry, and the impact of oil pollution on these vital ecosystems. It outlines major oil spill incidents worldwide and the diverse hydrocarbon-degrading bacterial communities within polluted areas, elucidating their potential for bioremediation. The use of symbiotic interactions between mangrove plants and bacteria offers a more sustainable, cost-effective and environmentally friendly alternative. However, the success of these bioremediation strategies depends on a deep understanding of the dynamics of bacterial communities, environmental factors and specific nature of the pollutants.
Collapse
Affiliation(s)
- Afrah Siddique
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar; Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad AlGhouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar.
| |
Collapse
|
4
|
D'Incau E, Ouvrard S, Devers-Lamrani M, Jeandel C, Mohamed CE, Henry S. Biodegradation of a complex hydrocarbon mixture and biosurfactant production by Burkholderia thailandensis E264 and an adapted microbial consortium. Biodegradation 2024; 35:719-737. [PMID: 38517619 DOI: 10.1007/s10532-024-10073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/12/2024] [Indexed: 03/24/2024]
Abstract
Bioremediation is considered to be an effective treatment for hydrocarbon removal from polluted soils. However, the effectiveness of this treatment is often limited by the low availability of targeted contaminants. Biosurfactants produced by some microorganisms can increase organic compound solubility and might then overcome this limitation. Two different inocula producers of biosurfactants (Burkholderia thailandensis E264 and SHEMS1 microbial consortium isolated from a hydrocarbon-contaminated soil) were incubated in Bushnell-Haas medium supplemented with hydrocarbons to investigate their biodegradation potential. Experimental results showed their ability to degrade 9.1 and 6.1% of hydrocarbons respectively after 65 days of incubation with an initial total hydrocarbon concentration of 16 g L-1. The biodegradation was more effective for the light and medium fractions (C10 to C36). B. thailandensis and SHEMS1 consortium produced surfactants after 14 days of culture during the stationary phase with hydrocarbons as the sole carbon and energy source. However, biosurfactant production did not appear to directly increase hydrocarbon degradation efficiency. The complexity and recalcitrance of hydrocarbon mixture used in this study appeared to continue to limit its biodegradation even in the presence of biosurfactants. In conclusion, B. thailandensis and SHEMS1 consortium can degrade recalcitrant hydrocarbon compounds and are therefore good candidates for the bioremediation of environments polluted by total hydrocarbons.
Collapse
Affiliation(s)
| | | | - Marion Devers-Lamrani
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | | | | | - Sonia Henry
- Université de Lorraine, INRAE, LSE, 54000, Nancy, France
| |
Collapse
|
5
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
6
|
Zhou N, Guo H, Zhang Z, Wang H. The discrepant metabolic pathways of PAHs by facultative anaerobic bacteria under aerobic and nitrate-reducing conditions. CHEMOSPHERE 2024; 351:141230. [PMID: 38237784 DOI: 10.1016/j.chemosphere.2024.141230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Studies regarding the facultative anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) were still in the initial stage. In this study, a facultative anaerobe which was identified as Bacillus Firmus and named as PheN7 was firstly isolated from the mixed petroleum-polluted soil samples using phenanthrene and nitrate as the solo carbon resource and electron acceptor under anaerobic condition. The degradation rates of PheN7 towards phenanthrene were detected as 33.17 μM/d, 13.81 μM/d and 7.11 μM/d at the initial phenanthrene concentration of 250.17 μM with oxygen, nitrate and sulfate as the electron acceptor, respectively. The metabolic pathways toward phenanthrene by PheN7 were deduced combining the metagenome analysis of PheN7 and intermediate metabolites of phenanthrene under aerobic and nitrate-reducing conditions. Dioxygenation and carboxylation were inferred as the initial activation reactions of phenanthrene degradation in these two pathways. This study highlighted the significance of facultative anaerobic bacteria in natural PAHs biodegradation, revealing the discrepant metabolic fates of PAHs by one solo bacteria under aerobic and anaerobic environments.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Wang Q, Hou J, Huang Y, Liu W, Christie P. Metagenomics reveals mechanism of pyrene degradation by an enriched bacterial consortium from a coking site contaminated with PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166759. [PMID: 37659531 DOI: 10.1016/j.scitotenv.2023.166759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
A bacterial consortium, termed WPB, was obtained from polycyclic aromatic hydrocarbons (PAHs) contaminated soil from a coking site. The consortium effectively degraded 100 mg L-1 pyrene by 94.8 % within 12 days. WPB was also able to degrade phenanthrene (98.3 %) and benzo[a]pyrene (24.6 %) in 12 days, while the individual isolates showed no PAHs degrading ability. Paracoccus sp. dominated the bacterial consortium (65.0-86.2 %) throughout the degradation process. Metagenomic sequencing reveals the proportion of sequences with xenobiotics biodegradation and metabolism increased throughout the degradation process indicating the great potential of WPB to degrade pollutants. The annotation of genes by metagenomic analysis help reconstruct the degradation pathways ("phthalate pathway" and "naphthalene degradation") and reveal how different bacteria contribute to the degradation process. Mycobacterium gilvum was found to carry nidAB genes that catalyze the first step of high-molecular-weight (HMW) PAHs in the degradation process despite Mycobacterium gilvum accounting for only 0.005-0.06 %. In addition, genomes of Paracoccus denitrificans and some other genera affiliated with Devosia, Pusillimonas caeni and Eoetvoesia caeni were successfully recovered and were found to carry genes responsible for the degradation of the intermediates of pyrene. These results enable further understanding of the metabolic patterns of pyrene-degrading consortia and provide direction for further cultivation and discovery of key players in complex microbial consortia.
Collapse
Affiliation(s)
- Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ya Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
8
|
Dong X, Wu S, Rao Z, Xiao Y, Long Y, Xie Z. Insight into the High-Efficiency Benzo(a)pyrene Degradation Ability of Pseudomonas benzopyrenica BaP3 and Its Application in the Complete Bioremediation of Benzo(a)pyrene. Int J Mol Sci 2023; 24:15323. [PMID: 37895002 PMCID: PMC10607497 DOI: 10.3390/ijms242015323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment. The existing research is mostly limited to low-molecular-weight PAHs; there is little understanding of HMW PAHs, particularly benzo(a)pyrene. Research into the biodegradation of HMW PAHs contributes to the development of microbial metabolic mechanisms and also provides new systems for environmental treatments. Pseudomonas benzopyrenica BaP3 is a highly efficient benzo(a)pyrene-degrading strain that is isolated from soil samples, but its mechanism of degradation remains unknown. In this study, we aimed to clarify the high degradation efficiency mechanism of BaP3. The genes encoding Rhd1 and Rhd2 in strain BaP3 were characterized, and the results revealed that rhd1 was the critical factor for high degradation efficiency. Molecular docking and enzyme activity determinations confirmed this conclusion. A recombinant strain that could completely mineralize benzo(a)pyrene was also proposed for the first time. We explained the mechanism of the high-efficiency benzo(a)pyrene degradation ability of BaP3 to improve understanding of the degradation mechanism of highly toxic PAHs and to provide new solutions to practical applications via synthetic biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; (X.D.); (S.W.); (Z.R.); (Y.X.); (Y.L.)
| |
Collapse
|
9
|
Zeng J, Wu R, Peng T, Li Q, Wang Q, Wu Y, Song X, Lin X. Low-temperature thermally enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil: Effects on fate, toxicity and bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122247. [PMID: 37482336 DOI: 10.1016/j.envpol.2023.122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using thermal desorption technology typically requires very high temperatures, necessitating coupled microbial treatment for energy and cost reduction. This study investigated the fate and toxicity of PAHs as well as the responses of microbial communities following thermal treatment within a low temperature range. The optimal temperature for PAH mineralization was 20-28 °C, within the growth range of most mesophilic microorganisms. By contrast, 50 °C treatment almost completely inhibited PAH mineralization but resulted in the greatest detoxification effect particularly for cardiotoxicity and nephrotoxicity. A potential increase in toxicity was observed at 28 °C. Co-metabolism and non-extractable residue formation may play an interdependent role in thermally enhanced bioremediation. Moreover, alterations in bacterial communities were strongly associated with PAH mineralization and zebrafish toxicity, revealing that soil microorganisms play a direct role in PAH mineralization and served as ecological receptors reflecting changes in toxicity. Network analysis revealed that Firmicutes formed specific ecological communities at high temperature, whereas Acidobacteria and Proteobacteria act as primary PAH degraders at moderate temperature. These findings will enable better integration of strategies for thermal and microbial treatments in soil remediation.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Ruini Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Tingting Peng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Qigang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71 Nanjing, 210008, China.
| |
Collapse
|
10
|
Dietz-Vargas C, Valenzuela-Ibaceta F, Carrasco V, Pérez-Donoso JM. Solid medium for the direct isolation of bacterial colonies growing with polycyclic aromatic hydrocarbons or 2,4,6-trinitrotoluene (TNT). Arch Microbiol 2023; 205:271. [PMID: 37358740 DOI: 10.1007/s00203-023-03610-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Isolation of hydrocarbon-degrading bacteria is a key step for the study of microbiological diversity, metabolic pathways, and bioremediation. However current strategies lack simplicity and versatility. We developed an easy method for the screening and isolation of bacterial colonies capable of degrading hydrocarbons, such as diesel or polycyclic aromatic hydrocarbons (PAHs), as well as the pollutant explosive, 2,4,6-trinitrotoluene (TNT). The method uses a two-layer solid medium, with a layer of M9 medium, and a second layer containing the carbon source deposited through the evaporation of ethanol. Using this medium we grew hydrocarbon-degrading strains, as well as TNT-degrading isolates. We were able to isolate PAHs-degrading bacterial colonies directly from diesel-polluted soils. As a proof of concept, we used this method to isolate a phenanthrene-degrading bacteria, identified as Acinetobacter sp. and determined its ability to biodegrade this hydrocarbon.
Collapse
Affiliation(s)
- Claudio Dietz-Vargas
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile
| | - Felipe Valenzuela-Ibaceta
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile
| | - Valentina Carrasco
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile
| | - José M Pérez-Donoso
- Bionanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República #330, Santiago, Chile.
| |
Collapse
|
11
|
Petroleum Hydrocarbon Catabolic Pathways as Targets for Metabolic Engineering Strategies for Enhanced Bioremediation of Crude-Oil-Contaminated Environments. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Anthropogenic activities and industrial effluents are the major sources of petroleum hydrocarbon contamination in different environments. Microbe-based remediation techniques are known to be effective, inexpensive, and environmentally safe. In this review, the metabolic-target-specific pathway engineering processes used for improving the bioremediation of hydrocarbon-contaminated environments have been described. The microbiomes are characterised using environmental genomics approaches that can provide a means to determine the unique structural, functional, and metabolic pathways used by the microbial community for the degradation of contaminants. The bacterial metabolism of aromatic hydrocarbons has been explained via peripheral pathways by the catabolic actions of enzymes, such as dehydrogenases, hydrolases, oxygenases, and isomerases. We proposed that by using microbiome engineering techniques, specific pathways in an environment can be detected and manipulated as targets. Using the combination of metabolic engineering with synthetic biology, systemic biology, and evolutionary engineering approaches, highly efficient microbial strains may be utilised to facilitate the target-dependent bioprocessing and degradation of petroleum hydrocarbons. Moreover, the use of CRISPR-cas and genetic engineering methods for editing metabolic genes and modifying degradation pathways leads to the selection of recombinants that have improved degradation abilities. The idea of growing metabolically engineered microbial communities, which play a crucial role in breaking down a range of pollutants, has also been explained. However, the limitations of the in-situ implementation of genetically modified organisms pose a challenge that needs to be addressed in future research.
Collapse
|
12
|
Sharma M, Salama ES, Usman M, Khan A, Arif M, Li X. Evaluation of aerobic biodegradation of phenanthrene using Pseudomonas turukhanskensis: an optimized study. Biodegradation 2023; 34:21-41. [PMID: 36369603 DOI: 10.1007/s10532-022-10002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
The ability of Pseudomonas turukhanskensis GEEL-01 to degrade the phenanthrene (PHE) was optimized by response surface methodology (RSM). Three factors as independent variables (including temperature, pH, and inoculum) were studied at 600 mg/L PHE where the highest growth of P. turukhanskensis GEEL-01 was observed. The optimum operating conditions were evaluated through the fit summary analysis, model summary statistics, fit statistics, ANOVA analysis, and model graphs. The degradation of PHE was monitored by high-performance liquid chromatography (HPLC) and the metabolites were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that the correlation among independent variables with experimental and predicted responses was significant (p < 0.0001). The optimal temperature, pH, and inoculum were 30 ℃, 8, and 6 mL respectively. The HPLC peaks exhibited a reduction in PHE concentration from 600 mg/L to 4.97 mg/L with 99% degradation efficiency. The GC-MS peaks indicated that the major end products of PHE degradation were 1-Hydroxy-2-naphthoic acid, salicylic acid, phthalic acid, and catechol. This study demonstrated that the optimized parameters by RSM for P. turukhanskensis GEEL-01 could degrade PHE by phthalic and salicylic acid pathways.
Collapse
Affiliation(s)
- Monika Sharma
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.,Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| | - Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.,Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Muhammad Arif
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.,Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
13
|
Teng T, Liang J, Zhu J, Jin P, Zhang D. Altered active pyrene degraders in biosurfactant-assisted bioaugmentation as revealed by RNA stable isotope probing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120192. [PMID: 36126767 DOI: 10.1016/j.envpol.2022.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Bioaugmentation is an effective approach for removing pyrene from contaminated sites, and its performance is enhanced by a biosurfactant. To reveal the mechanisms of biosurfactant-assisted bioaugmentation, we introduced RNA stable isotope probing (RNA-SIP) in the pyrene-contaminated soils and explored the impacts of rhamnolipid on the pyrene degradation process. After 12-day degradation, residual pyrene was the lowest in the bioaugmentation treatment (7.76 ± 1.57%), followed by biosurfactant-assisted bioaugmentation (9.86 ± 2.58%) and enhanced natural attenuation (23.97 ± 1.05%). Thirteen well-known and two novel pyrene-degrading bacteria were confirmed to participate in the pyrene degradation. Pyrene degradation was accelerated in the biosurfactant-assisted bioaugmentation, manifested by the high diversity of active pyrene degraders. Our findings expand the knowledge on pyrene degrading bacteria and the mechanisms of pyrene degradation in a bioaugmentation process.
Collapse
Affiliation(s)
- Tingting Teng
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Jidong Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Jinwei Zhu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China; Shaanxi Electrical Equipment Institute, Xi'an, 710025, PR China
| | - Pengkang Jin
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
14
|
Yan L, Yan N, Gao XY, Liu Y, Liu ZP. Degradation of amoxicillin by newly isolated Bosea sp. Ads-6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154411. [PMID: 35288139 DOI: 10.1016/j.scitotenv.2022.154411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Amoxicillin (AMX), one of the micro-amount hazardous pollutants, was frequently detected in environments, and of great risks to environments and human health. Microbial degradation is a promising method to eliminate pollutants. In this study, an efficient AMX-degrading strain, Ads-6, was isolated and characterized. Strain Ads-6, belonging to the genus Bosea, was also able to grow on AMX as the sole carbon and nitrogen source, with a removal of ~60% TOC. Ads-6 exhibited strong AMX-degrading ability at initial concentrations of 0.5-2 mM and pH 6-8. Addition of yeast extract could significantly enhance its degrading ability. Many degradation intermediates were identified by HPLC-MS, including new ones such as two phosphorylated products which were firstly defined in AMX degradation. A new AMX degradation pathway was proposed accordingly. Moreover, the results of comparative transcriptomes and proteomes revealed that β-lactamase, L, D-transpeptidase or its homologous enzymes were responsible for the initial degradation of AMX. Protocatechuate branch of the beta-ketoadipate pathway was confirmed as the downstream degradation pathway. These results in the study suggested that Ads-6 is great potential in biodegradation of antibiotics as well as in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xi-Yan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
He F, Wan J, Chu S, Li X, Zong W, Liu R. Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153167. [PMID: 35051481 DOI: 10.1016/j.scitotenv.2022.153167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) is a harmful organic contaminant and exists extensively in the soil environment. The accumulation of PHE would potentially threaten soil invertebrates, including earthworms, and the toxicity is also high. Currently, the possible mechanisms underlying apoptotic pathways induced by PHE and its immunotoxicity and genotoxicity in earthworms remain unclear. Thus, Eisenia fetida coelomocytes and immunity protein lysozyme (LYZ) were chosen as targeted receptors to reveal the apoptotic pathways, genotoxicity, and immunotoxicity triggered by PHE and its binding mechanism with LYZ, using cellular, biochemical, and molecular methods. Results indicated that PHE exposure can cause cell membrane damage, increase cell membrane permeability, and ultimately trigger mitochondria-mediated apoptosis. Increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels indicated PHE had triggered DNA oxidative damage in cells after PHE exposure. Occurrence of detrimental effects on the immune system in E. fetida coelomocytes due to decreased phagocytic efficacy and destroyed the lysosomal membrane. The LYZ activity in coelomocytes after PHE exposure was consistent with the molecular results, in which the LYZ activity was inhibited. After PHE binding, the protein structure (secondary structure and protein skeleton) and protein environment (the micro-environment of aromatic amino acids) of LYZ were destroyed, forming a larger particle size of the PHE-LYZ complex, and causing a significant sensitization effect on LYZ fluorescence. Molecular simulation indicated the key residues Glu 35, Asp 52, and Trp 62 for protein function located in the binding pocket, suggesting PHE preferentially binds to the active center of LYZ. Additionally, the primary driving forces for the binding interaction between PHE and LYZ molecule are hydrophobicity forces and hydrogen bonds. Taken together, PHE exposure can induce apoptosis by mitochondria-mediated pathway, destroy the normal immune system, and trigger DNA oxidative damage in earthworms. Besides, this study provides a comprehensive evaluation of phenanthrene toxicity to earthworms on molecular and cellular level.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
16
|
Xu H, Sheng Y, Liu Q, Li C, Tang Q, Li Z, Wang W. In situ fabrication of gold nanoparticles into biocathodes enhance chloramphenicol removal. Bioelectrochemistry 2022; 144:108006. [PMID: 34871846 DOI: 10.1016/j.bioelechem.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
The development of highly conductive biofilms is a key strategy to enhance antibiotic removal in bioelectrochemical systems (BESs) with biocathodes. In this study, Au nanoparticles (Au-NPs) were in situ fabricated in a biocathode (Au biocathode) to enhance the removal of chloramphenicol (CAP) in BESs. The concentration of Au(III) was determined to be 5 mg/L. CAP was effectively removed in the BES containing a Au biocathode with a removal percentage of 94.0% within 48 h; this result was 1.8-fold greater than that obtained using a biocathode without Au-NPs (51.7%). The Au-NPs significantly reduced the charge transfer resistance and promoted the electrochemical activity of the biocathode. In addition, the Au biocathode showed a specifical enrichment of Dokdonella, Bosea, Achromobacter, Bacteroides and Petrimonas, all of which are associated with electron transfer and contaminant degradation. This study provides a new strategy for enhancing CAP removal in BESs through a simple and eco-friendly electrode design.
Collapse
Affiliation(s)
- Hengduo Xu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Tang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoran Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjing Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
17
|
Zhang H, Ma M, Huang T, Miao Y, Li H, Liu K, Yang W, Ma B. Spatial and temporal dynamics of actinobacteria in drinking water reservoirs: Novel insights into abundance, community structure, and co-existence model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152804. [PMID: 34982987 DOI: 10.1016/j.scitotenv.2021.152804] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The control of taste and odor (T&O) in drinking water reservoirs is the main challenge for water supply. T&O is mainly derived from actinobacteria during non-algal blooms. However, few studies have investigated the actinobacterial community in reservoirs, especially the effects of water quality parameters on actinobacteria. This study analyzed the environmental driving force of the actinobacterial community composition and change in time and space through structural equations and network in drinking water reservoirs. The results showed a high abundance of actinobacteria, up to 2.7 × 104 actinobacteria per 1 L, in the hypolimnion of the Lijiahe reservoir in September, which is one order of magnitude greater than that in the Jinpen reservoir. The two drinking water reservoirs had similar dominant genera, mainly Sporichthya sp., and Mycobacterium sp., and difference in the actinobacterial proportions. However, there was a large difference at the dominant species. Rhodococcus fascians (4.02%) was the dominant species in the Lijiahe reservoir, while Mycobacterium chlorophenolicum (6.64%) was the dominant species in the Jinpen reservoir. Network analysis revealed that the structure of the network in the Lijiahe reservoir was more unstable; thus, it was vulnerable to environmental disturbances. In addition, a low abundance of species may play a critical role in the actinobacterial community structure of aquatic ecosystems. Structural equation modeling analysis suggested that water temperature, dissolved oxygen, and nutrition were the dominant factors affecting the abundance and community of actinobacteria. Overall, these findings broaden the understanding of the distribution and co-existence of actinobacterial communities in drinking water reservoirs and provide valuable clues for the biological controls of T&O and reservoir management.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutian Miao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Li Z, Feng Y, Chang L, Long Y, Suo N, Wang Z, Yu Y. Efficient degradation of naproxen in a three dimensional biofilm electrode magnetism reactor (3DBEMR): Removal performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 346:126653. [PMID: 34979277 DOI: 10.1016/j.biortech.2021.126653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
A three-dimensional biofilm electrode magnetism reactor (3DBEMR) was constructed to removal naproxen (NPX). This study evaluated 3DBEMR performance in removal of refractory NPX, while also discussing the effect of the electro-magnetic superposition on microbial community by high throughput sequencing. Results indicated that 3DBEMR's average removal rate for NPX stood at 88.36%, representing an increase by 75.24%, 65.03% and 12.36%, respectively, compared to 3DBR (Three-Dimensional Biofilm Reactor), 3DBMR (Three-Dimensional Biofilm Magnetism Reactor) and 3DBER (Three-Dimensional Biofilm Electrode Reactor). This was attributed to the influence of electro-magnetic adsorption, electro-oxidaton/catalysis, and electro-magnetic biodegradation. Another major contributing factor to NPX removal was the presence in 3DBEMR of high-abundance genera such as Rhodobacter, Porphyrobacter, Methyloversatilis, Sphingopyxis,Bosea, Singulisphaera, Sphingomonas. Therefore, the 3DBEMR was successfully demonstrated to be a flexible and effective technique in NPX degradation, which would help to better understand the effect of superposition of electric and magnetic fields on microbial community.
Collapse
Affiliation(s)
- Zichen Li
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Yan Feng
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China.
| | - Lei Chang
- Shandong Urban Construction Vocational College, Jinan 250022, PR China
| | - Yingying Long
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Ning Suo
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China
| | - Zhongwei Wang
- Everbright Water (Jinan) Co., Ltd, Jinan 250022, PR China
| | - Yanzhen Yu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, PR China; School of Civil Engineering and Architecture, Qilu Institute of Technology, Jinan 250022, PR China
| |
Collapse
|
19
|
Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. BIORESOURCE TECHNOLOGY 2022; 343:126121. [PMID: 34653630 DOI: 10.1016/j.biortech.2021.126121] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
20
|
Xie X, Yuan K, Yao Y, Sun J, Lin L, Huang Y, Lin G, Luan T, Chen B. Identification of suspended particulate matters as the hotspot of polycyclic aromatic hydrocarbon degradation-related bacteria and genes in the Pearl River Estuary using metagenomic approaches. CHEMOSPHERE 2022; 286:131668. [PMID: 34346346 DOI: 10.1016/j.chemosphere.2021.131668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Bacterial degradation is unequivocally considered as an important way for the cleanup of polycyclic aromatic hydrocarbon (PAHs) in the aquatic environment. However, the diversity and distribution of PAH-degrading bacterial communities and PAH degradation-related genes (PAHDGs) in ambient environment need to be investigated. In this study, bacteria in the water of the Pearl River Estuary (PRE) were initially separated as the particle-attached bacteria (PAB) and free-living bacteria (FLB), and were further characterized using metagenomic approaches. Proteobacteria (80.1 %) was identified as the most abundant PAH-degrading phylum in the PRE water, followed by Bacteroidetes, Actinobacteria, and Firmicutes. A substantial difference in the community structure was observed between PAH-degrading PAB and FLB. Both of PAH-degrading bacteria and PAHDGs were enriched on the suspended particulate matters (SPMs), with the range of enrichment factor (EF) from 7.84 × 104 to 6.64 × 106 (PAH-degrading bacteria) and from 1.14 × 103 to 1.76 × 105 (PAHDGs). The levels of PAH-degrading bacteria 16 S rRNA genes and PAHDGs on the SPMs were both significantly correlated with those in the aqueous phase (AP) in the PRE water (p < 0.05), indicating a dynamic distribution of PAH-degrading bacteria between these two phases. The total PAH concentrations on the SPMs of the PRE water were also significantly correlated with the total PAHDG levels in the PAB (p < 0.05). Our results suggested that the SPMs could be the important compartment for the elimination of PAHs from the aquatic environment.
Collapse
Affiliation(s)
- Xiuqin Xie
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China
| | - Yongyi Yao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China
| | - Jingyu Sun
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Lin
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, 510300, China
| | - Ge Lin
- Longse Technology Co., Ltd., Guangzhou, 510700, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, 518000, China
| | - Tiangang Luan
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 510275, China.
| |
Collapse
|
21
|
Ge S, Gu J, Ai W, Dong X. Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Sci Rep 2021; 11:114. [PMID: 33420172 PMCID: PMC7794335 DOI: 10.1038/s41598-020-80053-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023] Open
Abstract
Pyrene and chromium (Cr(VI)) are persistent pollutants and cause serious environmental problems because they are toxic to organisms and difficult to remediate. The toxicity of pyrene and Cr(VI) to three crops (cotton, soybean and maize) was confirmed by the significant decrease in root and shoot biomass during growth in pyrene/Cr(VI) contaminated hydroponic solution. Two bacterial strains capable of simultaneous pyrene biodegradation and Cr(VI) reduction were isolated and identified as Serratia sp. and Arthrobacter sp. A mixture of the isolated strains at a ratio of 1:1 was more efficient for biotreatment of pyrene and Cr(VI) than either strain alone; the mixture effectively carried out bioremediation of contaminated water in a hydroponic system mainly through pyrene biodegradation and Cr(VI) reduction. Application of these isolates shows potential for practical microbial remediation of pyrene and Cr(VI) combined water pollution.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Junxia Gu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Wenjing Ai
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
22
|
Wang J, Liu X, Jiang X, Zhang L, Hou C, Su G, Wang L, Mu Y, Shen J. Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. WATER RESEARCH 2020; 186:116306. [PMID: 32861183 DOI: 10.1016/j.watres.2020.116306] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Due to highly recalcitrant and toxicological nature of N,N-dimethylformamide (DMF), efficient removal of DMF is challenging for biological wastewater treatment. In this study, an anoxic denitrification system was developed and continuously operated for 220 days in order to verify the enhanced DMF biodegradation mechanism. As high as 41.05 mM DMF could be thoroughly removed in the anoxic denitrification reactor at hydraulic residence time (HRT) of 24 h, while the total organic carbon (TOC) and nitrate removal efficiencies were as high as 95.7 ± 2.5% and 98.4 ± 1.1%, respectively. Microbial community analyses indicated that the species related to DMF hydrolysis (Paracoccus, Brevundimonas and Chryseobacterium) and denitrification (Paracoccus, Arenimonas, Hyphomicrobium, Aquamicrobium and Bosea) were effectively enriched in the anoxic denitrification system. Transcriptional analysis coupled with enzymatic activity assay indicated that both hydrolysis and mineralization of DMF were largely enhanced in the anoxic denitrification system. Moreover, the occurrence of microbial denitrification distinctly facilitated carbon source utilization to produce electron and energy, which was rather beneficial for better reactor performance. This study demonstrated that the anoxic denitrification system would be a potential alternative for efficient treatment of wastewater polluted by recalcitrant pollutants such as DMF.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaolin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Libin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
23
|
Gupta B, Puri S, Thakur IS, Kaur J. Comparative evaluation of growth kinetics for pyrene degradation by Acinetobacter pittii NFL and Enterobacter cloacae BT in the presence of biosurfactant. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Li X, Qu C, Bian Y, Gu C, Jiang X, Song Y. New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113312. [PMID: 31610503 DOI: 10.1016/j.envpol.2019.113312] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), some of the most widespread organic contaminants, are highly toxic to soil microorganisms. Whether long-term polluted soils can still respond to the fresh input of pollutants is unknown. In this study, the soil enzyme activity, soil microbial community structure and function and microbial metabolism pathways were examined to systematically investigate the responses of soil microorganisms to fresh PAH stress. Microbial activity as determined by soil dehydrogenase and urease activity was inhibited upon microbe exposure to PAH stress. In addition, the soil microbial community and function were obviously shifted under PAH stress. Both microbial diversity and richness were decreased by PAH stress. Rhizobacter, Sphingobium, Mycobacterium, Massilia, Bacillus and Pseudarthrobacter were significantly affected by PAH stress and can be considered important indicators of PAH contamination in agricultural soils. Moreover, the majority of microbial metabolic function predicted to respond to PAH stress were affected adversely. Finally, soil metabolomics further revealed specific inhibition of soil metabolism pathways associated with fatty acids, carbohydrates and amino acids. Therefore, the soil metabolic composition distinctively changed, reflecting a change in the soil metabolism. In summary, fresh contaminant introduction into long-term polluted soils inhibited microbial activity and metabolism, which might profoundly affect the whole soil quality.
Collapse
Affiliation(s)
- Xiaona Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Changsheng Qu
- Jiangsu Academy of Environmental Sciences, Nanjing, 210036, China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Ben Mefteh F, Bouket AC, Daoud A, Luptakova L, Alenezi FN, Gharsallah N, Belbahri L. Metagenomic Insights and Genomic Analysis of Phosphogypsum and Its Associated Plant Endophytic Microbiomes Reveals Valuable Actors for Waste Bioremediation. Microorganisms 2019; 7:microorganisms7100382. [PMID: 31547633 PMCID: PMC6843645 DOI: 10.3390/microorganisms7100382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
The phosphogypsum (PG) endogenous bacterial community and endophytic bacterial communities of four plants growing in phosphogypsum-contaminated sites, Suaeda fruticosa (SF), Suaeda mollis (SM), Mesembryanthmum nodiflorum (MN) and Arthrocnemum indicum (AI) were investigated by amplicon sequencing. Results highlight a more diverse community of phosphogypsum than plants associated endophytic communities. Additionally, the bacterial culturable communities of phosphogypsum and associated plant endophytes were isolated and their plant-growth promotion capabilities, bioremediation potential and stress tolerance studied. Most of plant endophytes were endowed with plant growth-promoting (PGP) activities and phosphogypsum communities and associated plants endophytes proved highly resistant to salt, metal and antibiotic stress. They also proved very active in bioremediation of phosphogypsum and other organic and inorganic environmental pollutants. Genome sequencing of five members of the phosphogypsum endogenous community showed that they belong to the recently described species Bacillus albus (BA). Genome mining of BA allowed the description of pollutant degradation and stress tolerance mechanisms. Prevalence of this tool box in the core, accessory and unique genome allowed to conclude that accessory and unique genomes are critical for the dynamics of strain acquisition of bioremediation abilities. Additionally, secondary metabolites (SM) active in bioremediation such as petrobactin have been characterized. Taken together, our results reveal hidden untapped valuable bacterial actors for waste remediation.
Collapse
Affiliation(s)
- Fedia Ben Mefteh
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia.
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz 5355179854, Iran.
| | - Amal Daoud
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
| | - Lenka Luptakova
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Department of Biology and Genetics, Institute of Biology, Zoology and Radiobiology, University of Veterinary Medicine and Pharmacy in Košice, 04181 Kosice, Slovakia.
| | | | - Neji Gharsallah
- Faculty of Sciences, University of Sfax, Sfax 3029, Tunisia.
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, Agareb 3030, Tunisia.
- Laboratory of Soil Biodiversity, University of Neuchâtel, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|