1
|
Plata-Calzado C, Prieto AI, Cameán AM, Jos A. Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake. Toxins (Basel) 2024; 16:541. [PMID: 39728799 DOI: 10.3390/toxins16120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems. Thus, the aim of this study was to establish, as a first tier in its toxicological evaluation, its cytotoxicity in a wide range of cell lines representative of potential target organs (N2a, SH-SY5Y, HepG2, Caco2, L5178Y Tk+/-, THP-1 and Jurkat). As limited effects were observed after exposure to up to 200 µg/mL of ATX-a for 24 h (only Jurkat and THP-1 cells showed reduced cell viability), cell uptake experiments were performed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The results showed that the immune system cells had the highest percentage of ATX-a in the intracellular fraction, followed by neuronal cells and finally Caco-2 and HepG2 cells. Moreover, the expression of genes related to cell death mechanisms in THP-1 cells was also analyzed by polymerase chain reaction (PCR) and showed no changes under the conditions tested. Further research is required on ATX-a's toxic effects and toxicokinetics to contribute to its risk assessment.
Collapse
Affiliation(s)
- Cristina Plata-Calzado
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
2
|
Rajput S, Jain S, Dash D, Gupta N, Rajpoot R, Upadhyaya CP, Khan ML, Koiri RK. Role of cyanotoxins in the development and promotion of cancer. Toxicol Rep 2024; 13:101798. [PMID: 39606777 PMCID: PMC11600067 DOI: 10.1016/j.toxrep.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Cyanotoxins are primarily produced by different species of cyanobacteria, also known as blue-green algae, and have appeared to be environmental poisons that have various toxic effects on animal health, including humans. Cyanotoxins have been linked to the development and promotion of multiple cancers in recent studies. Important cyanotoxins, such as microcystins, nodularins, and cylindrospermopsin, have been found to play significant roles in developing and promoting various cancers. These toxins are generally responsible for oxidative stress, DNA damage, and disrupt cellular signaling pathways thus the development of cancers in various cells. Cancer is a multistep process caused by multiple mutations in normal cells. Microcystin-LR inhibits protein phosphatases (PP1 and PP2A), which leads to abnormal cell proliferation and tumor development. Similar inhibition of PP1 and PP2A is shown by nodularin, and in fact, their mechanism of carcinogenesis is the same as that of microcystins to some extent. Cylindrospermopsin inhibits protein synthesis and thus has genotoxic effects and may promote the development of cancer. Anatoxin-a and saxitoxins are well-known neurotoxins but, are thought to have indirect carcinogenic effects based on the fact that they can induce oxidative stress and DNA damage in cells by producing reactive oxygen species, thus further studies are needed to fully elucidate their role in the development and promotion of cancer. This review provides a detailed account of how different cyanotoxins play a role in the development and promotion of cancer.
Collapse
Affiliation(s)
- Siddharth Rajput
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Shruti Jain
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Debabrata Dash
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Nidhi Gupta
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Roshni Rajpoot
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Chandrama Prakash Upadhyaya
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Mohammed Latif Khan
- Department of Botany, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
3
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Casas-Rodríguez A, Šentjurc T, Diez-Quijada L, Pichardo S, Žegura B, Jos A, Cameán AM. Invitro evaluation of interactions between cylindrospermopsin and water contaminants, arsenic and cadmium, in two human immune cell lines. CHEMOSPHERE 2024; 368:143727. [PMID: 39532252 DOI: 10.1016/j.chemosphere.2024.143727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin with worldwide distribution, is gaining increased attention due to its bioaccumulation potential and toxicological effects. Previous research suggests that CYN may interact with other environmental contaminants, potentially amplifying its toxicity. To address this concern, the present study investigated the combined effects of CYN with arsenic (As) and cadmium (Cd) on human immune cell lines, Jurkat and THP-1. Cytotoxicity tests showed that As and Cd significantly decreased the viability of both cell lines after 24 and 48 h of exposure. The EC50 (24 h) values for Jurkat cells were 13.15 ± 1.97 (As) and 36.92 ± 3.77 μM (Cd), respectively, while for THP-1, the EC50 (24 h) values were 46.48 ± 0.17 for As and 55.09 ± 4.98 μM for Cd. Furthermore, individual contaminants and their mixtures with CYN impaired monocyte differentiation into macrophages. The effect on mRNA expression of some cytokines (TNF-α, INF-γ, IL-2, IL-6 and IL-8) was also assessed. In the Jurkat cell line, As upregulated IL-8 expression while Cd increased the expression of all interleukins. Exposure to binary combinations (CYN + As, and CYN + Cd) increased IL-2 and INF-γ expression. In THP-1 cells, As elevated IL-8 and INF-γ expression, whereas Cd caused an increase in TNF-α and INF-γ expression. Exposure to CYN + As up-regulated IL-8 and INF-γ expression, while the CYN + Cd combination down-regulated TNF-α expression. These findings highlight the complex interactions between contaminants, emphasizing the need for evaluating combined effects in risk assessments.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Tjaša Šentjurc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Professor García González n°2, 41012, Sevilla, Spain
| |
Collapse
|
5
|
Spencer PS, Valdes Angues R, Palmer VS. Nodding syndrome: A role for environmental biotoxins that dysregulate MECP2 expression? J Neurol Sci 2024; 462:123077. [PMID: 38850769 DOI: 10.1016/j.jns.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Nodding syndrome is an epileptic encephalopathy associated with neuroinflammation and tauopathy. This initially pediatric brain disease, which has some clinical overlap with Methyl-CpG-binding protein 2 (MECP2) Duplication Syndrome, has impacted certain impoverished East African communities coincident with local civil conflict and internal displacement, conditions that forced dependence on contaminated food and water. A potential role in Nodding syndrome for certain biotoxins (freshwater cyanotoxins plus/minus mycotoxins) with neuroinflammatory, excitotoxic, tauopathic, and MECP2-dysregulating properties, is considered here for the first time.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Gulu University School of Medicine, Gulu, Uganda.
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Valerie S Palmer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Gulu University School of Medicine, Gulu, Uganda
| |
Collapse
|
6
|
Johansson Y, Andreassen M, Hartsch M, Wagner S, Forsby A. Attenuated neuronal differentiation caused by acrylamide is not related to oxidative stress in differentiated human neuroblastoma SH-SY5Y cells. Food Chem Toxicol 2024; 187:114623. [PMID: 38554842 DOI: 10.1016/j.fct.2024.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Acrylamide (ACR) is a known neurotoxicant and developmental neurotoxicant. As a soft electrophile, ACR reacts with thiol groups in cysteine. One hypothesis of ACR induced neurotoxicity and developmental neurotoxicity (DNT) is conjugation with reduced glutathione (GSH) leading to GSH depletion, increased reactive oxygen species (ROS) production and further oxidative stress and cellular damage. In this regard, we have investigated the effect of ACR on neuronal differentiation, glutathione levels and ROS production in the human neuroblastoma SH-SY5Y cell model. After 9 days of differentiation and exposure, ACR significantly impaired area neurites per cell at non-cytotoxic concentrations (0.33 μM and 10 μM). Furthermore, 10 μM ACR dysregulated 9 mRNA markers important for neuronal development, 5 of them being associated with cytoskeleton organization and axonal guidance. At the non-cytotoxic concentrations that significantly attenuate neuronal differentiation, ACR did neither decrease the level of GSH or total glutathione levels, nor increased ROS production. In addition, the expression of 5 mRNA markers for cellular stress was assessed with no significant altered regulation after ACR exposure up to 320 μM. Thus, ACR-induced DNT is not due to GSH depletion and increased ROS production, neither at non-cytotoxic nor cytotoxic concentrations, in the SH-SH5Y model during differentiation.
Collapse
Affiliation(s)
- Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Muriel Hartsch
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Stella Wagner
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
7
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Hinojosa MG, Johansson Y, Jos A, Cameán AM, Forsby A. Effects of cylindrospermopsin, chlorpyrifos and their combination in a SH-SY5Y cell model concerning developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115804. [PMID: 38091671 DOI: 10.1016/j.ecoenv.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The cyanotoxin cylindrospermopsin (CYN) has been postulated to cause neurotoxicity, although the studies in this concern are very few. In addition, some studies in vitro indicate its possible effects on development. Furthermore, pesticides can be present in the same environmental samples as cyanotoxins. Therefore, chlorpyrifos (CPF) has been one of the most common pesticides used worldwide. The aim of this report was to study the effects of CYN, isolated and in combination with CPF, in a developmental neurotoxicity in vitro model. The human neuroblastoma SH-SY5Y cell line was exposed during 6 days of differentiation to both toxics to study their effects on cell viability and neurite outgrowth. To further evaluate effects of both toxicants on cholinergic signaling, their agonistic and antagonistic activities on the α7 homomeric nicotinic acetylcholine receptor (nAChR) were studied upon acute exposure. Moreover, a transcriptomic analysis by qPCR was performed after 6 days of CYN-exposure during differentiation. The results showed a concentration-dependent decrease on both cell viability and neurite outgrowth for both toxics isolated, leading to effective concentration 20 (EC20) values of 0.35 µM and 0.097 µM for CYN on cell viability and neurite outgrowth, respectively, and 100 µM and 58 µM for CPF, while the combination demonstrated no significant variations. In addition, 95 µM and 285 µM CPF demonstrated to act as an antagonist to nicotine on the nAChR, although CYN up to 2.4 µM had no effect on the efficacy of these receptors. Additionally, the EC20 for CYN (0.097 µM) on neurite outgrowth downregulated expression of the 5 genes NTNG2 (netrin G2), KCNJ11 (potassium channel), SLC18A3 (vesicular acetylcholine transporter), APOE (apolipoprotein E), and SEMA6B (semaphorin 6B), that are all important for neuronal development. Thus, this study points out the importance of studying the effects of CYN in terms of neurotoxicity and developmental neurotoxicity.
Collapse
Affiliation(s)
- M G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - Y Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.
| | - A Jos
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - A M Cameán
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine. Faculty of Pharmacy, University of Seville, C/ Profesor García González 2, 41012 Seville, Spain
| | - A Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Zhang H, Xie P. The mechanisms of microcystin-LR-induced genotoxicity and neurotoxicity in fish and mammals: Bibliometric analysis and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167018. [PMID: 37709090 DOI: 10.1016/j.scitotenv.2023.167018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a typical cyanobacterial toxin, and the threat of this toxin is increasing among organisms. Despite extensive toxicological studies on MC-LR, there is no comprehensive analysis based on previously published data. Therefore, we conducted bibliometric analysis and meta-analysis to identify research hotspots and to elucidate the key mechanism of the relationship between MC-LR and genotoxicity and neurotoxicity among fish and mammals. One of the hotspots is toxic mechanisms (indicated by the frequent appearance of oxidative stress, DNA damage, apoptosis, neurotoxicity, genotoxicity, ROS, comet assay, signalling pathway, and gene expression indicate as keywords). The density visualization shows a high frequency of "microcystin-LR" and "toxicology," and the overlay visualization emphasizes the prominence of "neurotoxicity" in recent years. These findings confirm the importance of studying MC-LR toxicity. Meta-analysis indicated that in both fish and mammals, MC-LR exposure increased ROS levels by 294 % and increased DNA damage biomarkers by 174 % but decreased neurotoxicity biomarkers by 9 %. Intergroup comparisons revealed that the exposure concentration of MC-LR was significantly correlated with genotoxicity and neurotoxicity levels in both fish and mammals (p < 0.05). Furthermore, the random forest (RF) model revealed that exposure concentration was the primary determinant associated with the induction of ROS, genotoxicity, and neurotoxicity induced by MC-LR. This is likely the dominant mechanism by which excessive ROS production induced by MC-LR causes oxidative stress, ultimately leading to genotoxicity and neurotoxicity in both fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
10
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
11
|
Hinojosa MG, Cascajosa-Lira A, Prieto AI, Gutiérrez-Praena D, Vasconcelos V, Jos A, Cameán AM. Cytotoxic Effects and Oxidative Stress Produced by a Cyanobacterial Cylindrospermopsin Producer Extract versus a Cylindrospermopsin Non-Producing Extract on the Neuroblastoma SH-SY5Y Cell Line. Toxins (Basel) 2023; 15:toxins15050320. [PMID: 37235355 DOI: 10.3390/toxins15050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence and interest of cyanobacteria are increasing nowadays because they are able to produce some toxic secondary metabolites known as cyanotoxins. Among them, the presence of cylindrospermopsin (CYN) is especially relevant, as it seems to cause damage at different levels in the organisms: the nervous system being the one most recently reported. Usually, the effects of the cyanotoxins are studied, but not those exerted by cyanobacterial biomass. The aim of the present study was to assess the cytotoxicity and oxidative stress generation of one cyanobacterial extract of R. raciborskii non-containing CYN (CYN-), and compare its effects with those exerted by a cyanobacterial extract of C. ovalisporum containing CYN (CYN+) in the human neuroblastoma SH-SY5Y cell line. Moreover, the analytical characterization of potential cyanotoxins and their metabolites that are present in both extracts of these cultures was also carried out using Ultrahigh Performance Liquid Chromatography-Mass Spectrometry, in tandem (UHPLC-MS/MS). The results show a reduction of cell viability concentration- and time-dependently after 24 and 48 h of exposure with CYN+ being five times more toxic than CYN-. Furthermore, the reactive oxygen species (ROS) increased with time (0-24 h) and CYN concentration (0-1.11 µg/mL). However, this rise was only obtained after the highest concentrations and times of exposure to CYN-, while this extract also caused a decrease in reduced glutathione (GSH) levels, which might be an indication of the compensation of the oxidative stress response. This study is the first one performed in vitro comparing the effects of CYN+ and CYN-, which highlights the importance of studying toxic features in their natural scenario.
Collapse
Affiliation(s)
- María G Hinojosa
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Antonio Cascajosa-Lira
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Ana I Prieto
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-159 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Angeles Jos
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Ana M Cameán
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
12
|
Hinojosa MG, Gutiérrez-Praena D, López S, Prieto AI, Moreno FJ, Jos Á, Cameán AM. Toxic effects of the cylindrospermopsin and chlorpyrifos combination on the differentiated SH-SY5Y human neuroblastoma cell line. Toxicon 2023; 227:107091. [PMID: 36965714 DOI: 10.1016/j.toxicon.2023.107091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Due to climate change and anthropogenic activities, the levels of pollution of aquatic and terrestrial environments have increased in the last decades. In this sense, the rise of cyanobacterial blooms, which release secondary metabolites with toxic properties, and the global use of pesticides for agricultural purposes have a negative impact on ecosystems. Thus, it would be interesting to study the concomitance of both types of toxicants in the same sample, since it is possible that they appear together. The aim of the present work was to state the effects of the interaction between the cyanotoxin cylindrospermopsin and the pesticide chlorpyrifos in differentiated SH-SY5Y neuronal cells to assess how they could affect the nervous system. To this end, cytotoxicity, morphological, and acetylcholinesterase activity studies were performed during 24 and 48 h. The results revealed a concentration-dependent decrease in viability and interaction between both toxicants, together with clear signs of apoptosis and necrosis induction. In this sense, different stages on the differentiation process would lead to differences in the toxicity exerted by the compounds both isolated as in combination, which it is not observed in non-differentiated cells. Additionally, the acetylcholinesterase activity appeared not to be affected, which is a clear difference compared to non-differentiated cells. These results show the importance of studying not only the toxicants themselves, but also in combination, to assess their possible effects in a more realistic scenario.
Collapse
Affiliation(s)
- María G Hinojosa
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | - Daniel Gutiérrez-Praena
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain.
| | - Sergio López
- Área de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes S/n, 41012, Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, 41012, Sevilla, Spain
| | - Ana I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | - Francisco J Moreno
- Área de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes S/n, 41012, Sevilla, Spain
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| |
Collapse
|
13
|
Bownik A, Adamczuk M, Pawlik-Skowrońska B. Behavioral disturbances induced by cyanobacterial oligopeptides microginin-FR1, anabaenopeptin-A and microcystin-LR are associated with neuromotoric and cytotoxic changes in Brachionus calyciflorus. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129472. [PMID: 35785735 DOI: 10.1016/j.jhazmat.2022.129472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Aquatic animals are exposed to various cyanobacterial products released concomitantly to the environment by decaying blooms. Although there exist results on the toxicity of cyanobacterial extracts little is known on the influence of pure oligopeptides or their mixtures and elucidated mechanisms of behavioral toxicity in zooplanktonic organisms. Therefore, the aim of the present study was to assess the effects of single and mixed pure cyanobacterial oligopeptides: microginin FR-1 (MG-FR1), anabaenopeptin-A (ANA-A) and microcystin-LR (MC-LR) at various concentrations on the swimming behavior and catecholamine neurotransmitter activity, muscular F-actin structure, DNA nuclear content and cell viability of a model rotifer Brachionus calyciflorus. Swimming behavior was analyzed with the use of video digital analysis. Fluorescent microscopy imaging was used to analyze neuromotoric biomarkers in the whole organisms: neuromediator release (by staining with EC517 probe), muscle F-actin filaments (by staining with blue phalloidin dye). DNA content and cytotoxicity was also determined by Hoechst 34580 and propidium iodide double staining, respectively. The results showed that single oligopeptides inhibited all the tested endpoints. The binary mixtures induced synergistic interaction on swimming speed except for MG-FR1 +MC-LR which was nearly additive. Both binary and ternary mixtures also synergistically degraded F-actin and triggered cytotoxic effects visible in the whole organisms. Antagonistic inhibitory effects of all the binary mixtures were found on catecholamine neurotransmitter activity, however the ternary mixture induced additive toxicity. Antagonistic effects of both binary and ternary mixtures were also noted on nuclear DNA content. The results of the study suggest that both depression of neurotransmission and impairment of muscle F-actin structure in muscles may contribute to mechanisms of Brachionus swimming speed inhibition by the tested single cyanobacterial oligopeptides and their mixtures. The study also showed that natural exposure of rotifers to mixtures of these cyanobacterial metabolites may result in different level of interactive toxicity with antagonistic, additive synergistic effects depending on the variants and concentrations present in the environment.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland.
| | - Małgorzata Adamczuk
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
14
|
In Vitro Toxicity Evaluation of Cyanotoxins Cylindrospermopsin and Microcystin-LR on Human Kidney HEK293 Cells. Toxins (Basel) 2022; 14:toxins14070429. [PMID: 35878167 PMCID: PMC9316492 DOI: 10.3390/toxins14070429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Cyanotoxins are secondary metabolites produced by different types of cyanobacteria. Among them, Cylindrospermopsin (CYN) and Microcystins (MCs) stand out due to their wide geographical distribution and toxicity in various organs, including the kidney, which is involved in their distribution and elimination. However, the renal toxicity caused by CYN and MCs has hardly been studied. The aim of this work was to assess the cytotoxicity effects caused by CYN and MC-LR in the renal cell line HEK293, and for the first time, the influence of CYN on the gene expression of selected genes in these cells by quantitative real-time PCR (qRT-PCR). CYN caused an upregulation in the gene expression after exposure to the highest concentration (5 µg/mL) and the longest time of exposure (24 h). Moreover, shotgun proteomic analysis was used to assess the molecular responses of HEK293 cells after exposure to the individuals and combinations of CYN + MC-LR. The simultaneous exposure to both cyanotoxins caused a greater number of alterations in protein expression compared to single toxins, causing changes in the cellular, lipid and protein metabolism and in protein synthesis and transport. Further studies are needed to complete the toxicity molecular mechanisms of both CYN and MC-LR at the renal level.
Collapse
|
15
|
Pompei CME, Campos LC, Vieira EM, Tucci A. The impact of micropollutants on native algae and cyanobacteria communities in ecological filters during drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153401. [PMID: 35114242 DOI: 10.1016/j.scitotenv.2022.153401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
An attractive alternative for drinking water production is ecological filtration. Previous studies have reported high removal levels of pharmaceutical and personal care products (PPCPs) by this technology. Algae and cyanobacteria play an important role in the biological activity of ecological filters. The aim of this study was to characterize and identify the community of algae and cyanobacteria in relation to its composition, density and biovolume from 22 ecological filters that received spikings of 2 μg L-1 PPCPs. For algae and cyanobacteria species, triplicate samples were collected before and 96 h after each spiking from the interface between the top sand layer of the ecological filters and the supernatant water. Results show that Chlorophyceae and Cyanobacteria were present in high numbers of taxa and abundance. The specie Lepocinclis cf. ovum (Euglenophyceae) had the highest percentage occurrence/abundance and frequency into the filters, indicating a possible tolerance by Lepocinclis cf. ovum to the concentration of selected PPCPs. Although the concentration of PPCPs did not affect the treated water quality, they did affect the algae and cyanobacteria community. No differences were detected between filters that received a single PPCP and filters that received a mixture of the six compounds. Also, changes in the composition of algae and cyanobacteria communities were observed before and 96 h after the spikings.
Collapse
Affiliation(s)
- Caroline M Erba Pompei
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil; Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom; São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Eny Maria Vieira
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | - Andréa Tucci
- Nucleus of Phycology, Institute of Botany, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Cytotoxicity and Effects on the Synapsis Induced by Pure Cylindrospermopsin in an E17 Embryonic Murine Primary Neuronal Culture in a Concentration- and Time-Dependent Manner. Toxins (Basel) 2022; 14:toxins14030175. [PMID: 35324672 PMCID: PMC8950865 DOI: 10.3390/toxins14030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin whose incidence has been increasing in the last decades. Due to its capacity to exert damage at different levels of the organism, it is considered a cytotoxin. Although the main target organ is the liver, recent studies indicate that CYN has potential toxic effects on the nervous system, both in vitro and in vivo. Thus, the aim of the present work was to study the effects of this cyanotoxin on neuronal viability and synaptic integrity in murine primary cultures of neurons exposed to environmentally relevant concentrations (0–1 µg/mL CYN) for 12, 24, and 48 h. The results demonstrate a concentration- and time-dependent decrease in cell viability; no cytotoxicity was detected after exposure to the cyanotoxin for 12 h, while all of the concentrations assayed decreased this parameter after 48 h. Furthermore, CYN was also demonstrated to exert damage at the synaptic level in a murine primary neuronal culture in a concentration- and time-dependent manner. These data highlight the importance of studying the neurotoxic properties of this cyanotoxin in different experimental models.
Collapse
|
17
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
18
|
Zhou Y, Xue M, Jiang Y, Zhang M, Wang C, Wang X, Yu G, Tang Z. Beneficial Effects of Quercetin on Microcystin-LR Induced Tight Junction Defects. Front Pharmacol 2021; 12:733993. [PMID: 34566654 PMCID: PMC8462518 DOI: 10.3389/fphar.2021.733993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Quercetin has numerous functions including antioxidant and anti-inflammatory effects. The beneficial effect of quercetin against microcystin-LR (MC-LR)-induced testicular tight junctions (TJs) defects in vitro and in vivo were investigated. Significant reductions in transepithelial electrical resistance, occludin, and zonula occludens-1(ZO-1) levels were detected in the MC-LR-treated TM4 cells, and quercetin attenuated these effects. Interestingly, quercetin suppressed MC-LR-induced phosphorylation of protein kinase B (AKT). It effectively inhibited the accumulation of reactive oxygen species (ROS) in cells stimulated by MC-LR. In addition, ROS inhibitors blocked the TJ damage that is dependent on the AKT signaling pathway induced by MC-LR. In conclusion, our results suggest that alleviates MC-LR-impaired TJs by suppressing the ROS-regulated activation of the AKT pathway.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Xue
- College of Traditional Chinese Medicine·College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfei Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Miaomiao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changming Wang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Guang Yu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zongxiang Tang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Zhu J, Liu K, Pei L, Hu X, Cai Y, Ding J, Li D, Han X, Wu J. The mechanisms of mitochondrial dysfunction and glucose intake decrease induced by Microcystin-LR in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111931. [PMID: 33508714 DOI: 10.1016/j.ecoenv.2021.111931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a cyclic heptapeptide; it is an intracellular toxin released by cyanobacteria that exhibits strong reproductive toxicity. Previous studies have demonstrated that MC-LR induces oxidative stress in granulosa cells by damaging the mitochondria, which eventually leads to follicle atresia and female subfertility. In the present study, granulosa cells were exposed to 0, 0.01, 0.1 and 1 μM MC-LR. After 24 h, we observed changes in mitochondrial cristae morphology and dynamics by analyzing the results of mitochondrial transmission electron microscopy and detecting the expression of DRP1. We also evaluated glucose intake using biochemical assays and expression of glucose transport related proteins. MC-LR exposure resulted in mitochondrial fragmentation and glucose intake decrease in granulosa cells, as shown by increasing mitochondrial fission via dynamin-related protein 1 (DRP1) upregulation and decreasing glucose transporter 1 and 4 (GLUT1 and GLUT4). Furthermore, the expression levels of forkhead box protein M1 (FOXM1) significantly increased due to the overproduction of reactive oxygen species (ROS) after MC-LR exposure. Our results proved that MC-LR exposure causes mitochondrial fragmentation and glucose intake decrease in granulosa cells, which provides new insights to study the molecular mechanism of female reproductive toxicity induced by MC-LR.
Collapse
Affiliation(s)
- Jinling Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Kunyang Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ligang Pei
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, China
| | - Xinyue Hu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuchen Cai
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
20
|
Genotoxic Effects of Cylindrospermopsin, Microcystin-LR and Their Binary Mixture in Human Hepatocellular Carcinoma (HepG2) Cell Line. Toxins (Basel) 2020; 12:toxins12120778. [PMID: 33302339 PMCID: PMC7762347 DOI: 10.3390/toxins12120778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/12/2023] Open
Abstract
Simultaneous occurrence of cylindrospermopsin (CYN) and microcystin-LR (MCLR) has been reported in the aquatic environment and thus human exposure to such mixtures is possible. As data on the combined effects of CYN/MCLR are scarce, we aimed to investigate the adverse effects related to genotoxic activities induced by CYN (0.125, 0.25 and 0.5 µg/mL) and MCLR (1 µg/mL) as single compounds and their combinations in HepG2 cells after 24 and 72 h exposure. CYN and CYN/MCLR induced DNA double-strand breaks after 72 h exposure, while cell cycle analysis revealed that CYN and CYN/MCLR arrested HepG2 cells in G0/G1 phase. Moreover, CYN and the combination with MCLR upregulated CYP1A1 and target genes involved in DNA-damage response (CDKN1A, GADD45A). Altogether, the results showed that after 72 h exposure genotoxic activity of CYN/MCLR mixture was comparable to the one of pure CYN. On the contrary, MCLR (1 µg/mL) had no effect on the viability of cells and had no influence on cell division. It did not induce DNA damage and did not deregulate studied genes after prolonged exposure. The outcomes of the study confirm the importance of investigating the combined effects of several toxins as the effects can differ from those induced by single compounds.
Collapse
|
21
|
Díez-Quijada L, Medrano-Padial C, Llana-Ruiz-Cabello M, Cătunescu GM, Moyano R, Risalde MA, Cameán AM, Jos Á. Cylindrospermopsin-Microcystin-LR Combinations May Induce Genotoxic and Histopathological Damage in Rats. Toxins (Basel) 2020; 12:E348. [PMID: 32466519 PMCID: PMC7354441 DOI: 10.3390/toxins12060348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/28/2022] Open
Abstract
Cylindrospermopsin (CYN) and microcystins (MC) are cyanotoxins that can occur simultaneously in contaminated water and food. CYN/MC-LR mixtures previously investigated in vitro showed an induction of micronucleus (MN) formation only in the presence of the metabolic fraction S9. When this is the case, the European Food Safety Authority recommends a follow up to in vivo testing. Thus, rats were orally exposed to 7.5 + 75, 23.7 + 237, and 75 + 750 μg CYN/MC-LR/kg body weight (b.w.). The MN test in bone marrow was performed, and the standard and modified comet assays were carried out to measure DNA strand breaks or oxidative DNA damage in stomach, liver, and blood cells. The results revealed an increase in MN formation in bone marrow, at all the assayed doses. However, no DNA strand breaks nor oxidative DNA damage were induced, as shown in the comet assays. The histopathological study indicated alterations only in the highest dose group. Liver was the target organ showing fatty degeneration and necrotic hepatocytes in centrilobular areas, as well as a light mononuclear inflammatory periportal infiltrate. Additionally, the stomach had flaking epithelium and mild necrosis of epithelial cells. Therefore, the combined exposure to cyanotoxins may induce genotoxic and histopathological damage in vivo.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Giorgiana M. Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Rosario Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, Faculty of Veterinary Medicine, University of Córdoba, Campus de Rabanales, 14014 Córdoba, Spain;
| | - Maria A. Risalde
- Animal Pathology Department. Faculty of Veterinary Medicine, University of Córdoba, Campus Universitario de Rabanales s/n, 14014 Cordoba, Spain;
- Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC)-Hospital Universitario Reina Sofía de Córdoba-Universidad de Córdoba, Avenida Menendez Pidal s/n, 14006 Cordoba, Spain
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González n2, 41012 Sevilla, Spain; (L.D.-Q.); (C.M.-P.); (M.L.-R.-C.); (Á.J.)
| |
Collapse
|
22
|
Prieto AI, Guzmán-Guillén R, Jos Á, Cameán AM, de la Rosa JM, González-Pérez JA. Detection of cylindrospermopsin and its decomposition products in raw and cooked fish (Oreochromis niloticus) by analytical pyrolysis (Py-GC/MS). CHEMOSPHERE 2020; 244:125469. [PMID: 31790987 DOI: 10.1016/j.chemosphere.2019.125469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
The presence of the toxin cylindrospermopsin is increasingly frequent in samples from different ecosystems and it is a serious problem both at environmental level and for animal and human health. To be able to prevent CYN exposure risk, it is important to have suitable analytical methods, but also quick and economical ones. Analytical pyrolysis coupled to GC/MS (Py-GC/MS) represents an important alternative for the rapid detection, characterization or "fingerprinting" of different materials. However, it has been less studied with cyanotoxins up to date. The present work aims to investigate: 1) the suitability of Py-GC/MS for detection of CYN and its decomposition products in raw and cooked fish samples before consumption and 2) the influence of the different cooking methods on the presence of different CYN degradation products detected by Py-GC/MS. For first time, these results present that Py-GC/MS could be a rapid and economical alternative for the detection and monitoring of CYN and its degradation products (DP. m/z 290.1, 169.1 and 336.2) in raw or cooked fish. Moreover, the changes induced in CYN and DP by cooking could be amenable and detected by Py-GC/MS.
Collapse
Affiliation(s)
- Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| | - José Ma de la Rosa
- MOSS Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes, 10, 4012, Sevilla, Spain
| | - José A González-Pérez
- MOSS Group, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes, 10, 4012, Sevilla, Spain.
| |
Collapse
|
23
|
Wang L, Chen G, Xiao G, Han L, Wang Q, Hu T. Cylindrospermopsin induces abnormal vascular development through impairing cytoskeleton and promoting vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway. ENVIRONMENTAL RESEARCH 2020; 183:109236. [PMID: 32062183 DOI: 10.1016/j.envres.2020.109236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/08/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Cylindrospermopsin (CYN) is a widely distributed cyanobacterial toxin in water bodies and is considered to pose growing threats to human and environmental health. Although its potential toxicity has been reported, its effects on the vascular system are poorly understood. In this study, we examined the toxic effects of CYN on vascular development and the possible mechanism of vascular toxicity induced by CYN using zebrafish embryos and human umbilical vein endothelial cells (HUVECs). CYN exposure induced abnormal vascular development and led to an increase in the growth of common cardinal vein (CCV), in which CCV remodeling was delayed as reflected by the larger CCV area and wider ventral diameter. CYN decreased HUVECs viability, inhibited HUVECs migration, promoted HUVECs apoptosis, destroyed cytoskeleton, and increased intracellular ROS levels. Additionally, CYN could promote the expression of Bax, Bcl-2, and MLC-1 and inhibit the expression of ITGB1, Rho, ROCK, and VIM-1. Taken together, CYN may induce cytoskeleton damage and promote vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway, leading to abnormal vascular development. The current results provide potential insight into the mechanism of CYN toxicity in angiocardiopathy and are beneficial for understanding the environmental risks of CYN for aquatic organisms and human health.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guosheng Xiao
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Lin Han
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Qilong Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
24
|
Hinojosa MG, Prieto AI, Gutiérrez-Praena D, Moreno FJ, Cameán AM, Jos A. In vitro assessment of the combination of cylindrospermopsin and the organophosphate chlorpyrifos on the human neuroblastoma SH-SY5Y cell line. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110222. [PMID: 31982683 DOI: 10.1016/j.ecoenv.2020.110222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Cylindrospermopsin (CYN) is a cyanotoxicant which occurrence is increasing due to climate change. Cylindrospermopsin is able to exert damage in the organism at several levels, among them, in the nervous system. Moreover, it is important to take into account that it is not usually present isolated in nature, but in combination with some other pollutants, being the case of the pesticide chlorpyrifos (CPF). Thus, the aim of the present work was to assess the effects of the interaction of CYN in combination with CPF in the human neuroblastoma cell line SH-SY5Y by evaluating cytotoxicity and mechanistic endpoints. The mixtures 0.25 + 21, 0.5 + 42, 1 + 84 μg/mL of CYN + CPF based on cytotoxicity results, were evaluated, and the isobologram method detected an antagonistic effect after 24 and 48 h of exposure. Moreover, although no alterations of reactive oxygen species were detected, a significant decrease of glutathione levels was observed after exposure to both, CPF alone and the combination, at all the concentrations and times of exposure assayed. In addition, CYN + CPF caused a marked decrease in the acetylcholinesterase activity, providing similar values to CPF alone. However, these effects were less severe than expected. All these findings, together with the morphological study results, point out that it is important to take into account the interaction of CYN with other pollutants. Further research is required to contribute to the risk assessment of CYN and other contaminants considering more realistic exposure scenarios.
Collapse
Affiliation(s)
- M G Hinojosa
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - A I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - D Gutiérrez-Praena
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain.
| | - F J Moreno
- Área de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - A M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - A Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| |
Collapse
|
25
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|
26
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|