1
|
Lee E, Banik A, Lee KB, Sim SM, Kil AH, Hwang BJ, Kee Y. Assessment of the Novel Anti-Seizure Potential of Validamycin A Using Zebrafish Epilepsy Model. Molecules 2024; 29:2572. [PMID: 38893448 PMCID: PMC11173475 DOI: 10.3390/molecules29112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. Validamycin A (VA) is an antibiotic fungicide that inhibits trehalase activity and is widely used for crop protection in agriculture. In this study, we identified a novel function of VA as a potential anti-seizure medication in a zebrafish epilepsy model. Electroencephalogram (EEG) analysis demonstrated that VA reduced pentylenetetrazol (PTZ)-induced seizures in the brains of larval and adult zebrafish. Moreover, VA reduced PTZ-induced irregular movement in a behavioral assessment of adult zebrafish. The developmental toxicity test showed no observable anatomical alteration when the zebrafish larvae were treated with VA up to 10 µM within the effective range. The median lethal dose of VA in adult zebrafish was > 14,000 mg/kg. These results imply that VA does not demonstrate observable toxicity in zebrafish at concentrations effective for generating anti-seizure activity in the EEG and alleviating abnormal behavior in the PTZ-induced epileptic model. Furthermore, the effectiveness of VA was comparable to that of valproic acid. These results indicate that VA may have a potentially safer anti-seizure profile than valproic acid, thus offering promising prospects for its application in agriculture and medicine.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.L.); (S.M.S.)
| | - Amit Banik
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | | | - Seung Min Sim
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (E.L.); (S.M.S.)
| | - Ah Hyun Kil
- Department of Molecular Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Byung Joon Hwang
- Department of Molecular Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yun Kee
- Department of Molecular Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
2
|
Banik A, Eum J, Hwang BJ, Kee Y. Differential Neuroprotective Effects of N-Acetylcysteine against Dithianon Toxicity in Glutamatergic, Dopaminergic, and GABAergic Neurons: Assessment Using Zebrafish. Antioxidants (Basel) 2023; 12:1920. [PMID: 38001773 PMCID: PMC10668936 DOI: 10.3390/antiox12111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the widespread agricultural use of dithianon as an antifungal agent, its neurotoxic implications for humans and wildlife have not been comprehensively explored. Using zebrafish embryonic development as our model, we found that dithianon treatment induced behavioral alterations in zebrafish larvae that appeared normal. Detailed quantitative analyses showed that dithianon at ≥0.0001 µgmL-1 induced cytoplasmic and mitochondrial antioxidant responses sequentially, followed by the disruption of mitochondrial and cellular homeostasis. Additionally, dithianon at 0.01 and 0.1 µgmL-1 downregulated the expressions of glutamatergic (slc17a6b), GABAergic (gad1b), and dopaminergic (th) neuronal markers. Contrarily, dithianon upregulated the expression of the oligodendrocyte marker (olig2) at concentrations of 0.001 and 0.01 µgmL-1, concurrently suppressing the gene expression of the glucose transporter slc2a1a/glut1. Particularly, dithianon-induced increase in reactive oxygen species (ROS) production was reduced by both N-acetylcysteine (NAC) and betaine; however, only NAC prevented dithianon-induced mortality of zebrafish embryos. Moreover, NAC specifically prevented dithianon-induced alterations in glutamatergic and dopaminergic neurons while leaving GABAergic neurons unaffected, demonstrating that the major neurotransmission systems in the central nervous system differentially respond to the protective effects. Our findings contribute to a better understanding of the neurotoxic potential of dithianon and to developing preventive strategies.
Collapse
Affiliation(s)
- Amit Banik
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (A.B.); (J.E.)
| | - Juneyong Eum
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (A.B.); (J.E.)
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Saleh Hodin NA, Chong SG, Bakar NA, Fahmi MSAM, Ramlan NF, Hamid NNAZZ, Fadzar MSIM, Zulkifli AR, Norazhar AI, Mastuki SN, Faudzi SMM, Ibrahim WNW, Azmai MNA. Toxicity and teratogenicity effects of valproic acid on zebrafish (Danio rerio) embryos in relation to autism spectrum disorder. Birth Defects Res 2023; 115:1475-1485. [PMID: 37507847 DOI: 10.1002/bdr2.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Valproic acid (VPA) is a widely prescribed antiepileptic drug with various medicinal efficacies. Accumulated evidence implied that prenatal exposure to VPA is highly associated with autism spectrum disorder (ASD). In this study, the zebrafish were exposed to a set of VPA concentrations (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 μM) at 5 h post fertilization (hpf) to 120 hpf. The adverse effects of VPA were extensively studied through the evaluations on the mortality, heartbeats, spontaneous tail coiling, and hatching rate. Morphological observations were conducted at 120 hpf, following the exposure termination. Basic locomotor responses and anxiety-like behavioral alterations evaluated for behavioral impairments are the hallmark feature of ASD. The exposure to VPA at teratogenic concentrations reduced the aforementioned parameters in a dose-dependent manner (p ≤ .05). At the selected non-teratogenic concentrations of VPA, the treated larvae demonstrated profound alterations of basic locomotor responses. No significant changes of anxiety and thigmotactic behaviors were observed on the VPA-treated fish compared to the control (p ≥ .005). This study depicted that embryonic zebrafish exposure to VPA produced significant toxicity and teratogenicity effects as well as the alterations of basic behavioral responses. Overall, this study provides a fundamental insight of the toxicity effects at morphological and behavioral levels to facilitate the understanding of ASD mechanisms at different molecular levels.
Collapse
Affiliation(s)
- Nur Atikah Saleh Hodin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siok Geok Chong
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Nurul Farhana Ramlan
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | - Abdul Rahman Zulkifli
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Anis Irfan Norazhar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Nurulhuda Mastuki
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Lee G, Banik A, Eum J, Hwang BJ, Kwon SH, Kee Y. Ipconazole Disrupts Mitochondrial Homeostasis and Alters GABAergic Neuronal Development in Zebrafish. Int J Mol Sci 2022; 24:496. [PMID: 36613936 PMCID: PMC9820214 DOI: 10.3390/ijms24010496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Ipconazole, a demethylation inhibitor of fungal ergosterol biosynthesis, is widely used in modern agriculture for foliar and seed treatment, and is authorized for use in livestock feed. Waste from ipconazole treatment enters rivers and groundwater through disposal and rain, posing potential toxicity to humans and other organisms. Its metabolites remain stable under standard hydrolysis conditions; however, their neurodevelopmental toxicity is unknown. We investigated the potential neurodevelopmental toxicity of ipconazole pesticides in zebrafish (Danio rerio). Our behavioral monitoring demonstrated that the locomotive activity of ipconazole-exposed zebrafish larvae was reduced during early development, even when morphological abnormalities were undetected. Molecular profiling demonstrated that the mitochondrial-specific antioxidants, superoxide dismutases 1 and 2, and the genes essential for mitochondrial genome maintenance and functions were specifically reduced in ipconazole-treated (0.02 μg/mL) embryos, suggesting underlying ipconazole-driven oxidative stress. Consistently, ipconazole treatment substantially reduced hsp70 expression and increased ERK1/2 phosphorylation in a dose-dependent manner. Interrupted gad1b expression confirmed that GABAergic inhibitory neurons were dysregulated at 0.02 μg/mL ipconazole, whereas glutamatergic excitatory and dopaminergic neurons remained unaffected, resulting in an uncoordinated neural network. Additionally, ipconazole-treated (2 μg/mL) embryos exhibited caspase-independent cell death. This suggests that ipconazole has the potential to alter neurodevelopment by dysregulating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Giyoung Lee
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Amit Banik
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Juneyong Eum
- Interdisciplinary Graduate Program in Environmental and Biomedical Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute Seoul Center, Seoul 02841, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
5
|
Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Hongtao Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.
| |
Collapse
|
6
|
TNNT1 myopathy with novel compound heterozygous mutations. Neuromuscul Disord 2021; 32:176-184. [DOI: 10.1016/j.nmd.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023]
|
7
|
Meng Y, Zhong K, Chen S, Huang Y, Wei Y, Wu J, Liu J, Xu Z, Guo J, Liu F, Lu H. Cardiac toxicity assessment of pendimethalin in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112514. [PMID: 34280841 DOI: 10.1016/j.ecoenv.2021.112514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Pendimethalin (PND) is one of the best sellers of selective herbicide in the world and has been frequently detected in the water. However, little is known about its effects on cardiac development. In this study, we used zebrafish to investigate the developmental and cardiac toxicity of PND. We exposed the zebrafish embryos with a serial of concentrations at 3, 4, and 5 mg/L at 5.5-72 h post-fertilization (hpf). We found that PND exposure can reduce the heart rate, survival rate, and body length of zebrafish embryos. Furthermore, we identified many malformations including pericardial and yolk sac edema, spinal deformity, and cardiac looping abnormality. In addition, PND increased the expression of reactive oxygen species and malondialdehyde and reduced the activity of superoxide dismutase (Antioxidant enzymes); We examined the expression of cardiac development-related genes and the apoptosis markers, and found changes of the following marker: vmhc, nppa, tbx5a, nkx2.5, gata4, tbx2b and FoxO1, bax, bcl-2, p53, casp-9, casp-3. Our data showed that activation of Wnt pathway can rescue the cardiac abnormalities caused by PND. Our results provided new evidence for the toxicity of PND and suggested that the PND residual should be treated as a hazard in the environment.
Collapse
Affiliation(s)
- Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Suping Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Juan Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Juan Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Jing Guo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of life sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China.
| |
Collapse
|
8
|
Chowdhury MAU, Raslan AA, Lee E, Eum J, Hwang BJ, Kwon SH, Kee Y. Histopathological assessment of laterality defects in zebrafish development. Anim Cells Syst (Seoul) 2021; 25:136-145. [PMID: 34262656 PMCID: PMC8253201 DOI: 10.1080/19768354.2021.1931443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations.
Collapse
Affiliation(s)
- Md Ashraf Uddin Chowdhury
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea.,Department of Pharmacy, International Islamic University Chittagong, Chattogram, Bangladesh
| | - Ahmed A Raslan
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eunhye Lee
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Juneyong Eum
- Department of Biomedical Science, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
9
|
Wang L, Chen G, Xiao G, Han L, Wang Q, Hu T. Cylindrospermopsin induces abnormal vascular development through impairing cytoskeleton and promoting vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway. ENVIRONMENTAL RESEARCH 2020; 183:109236. [PMID: 32062183 DOI: 10.1016/j.envres.2020.109236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/08/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Cylindrospermopsin (CYN) is a widely distributed cyanobacterial toxin in water bodies and is considered to pose growing threats to human and environmental health. Although its potential toxicity has been reported, its effects on the vascular system are poorly understood. In this study, we examined the toxic effects of CYN on vascular development and the possible mechanism of vascular toxicity induced by CYN using zebrafish embryos and human umbilical vein endothelial cells (HUVECs). CYN exposure induced abnormal vascular development and led to an increase in the growth of common cardinal vein (CCV), in which CCV remodeling was delayed as reflected by the larger CCV area and wider ventral diameter. CYN decreased HUVECs viability, inhibited HUVECs migration, promoted HUVECs apoptosis, destroyed cytoskeleton, and increased intracellular ROS levels. Additionally, CYN could promote the expression of Bax, Bcl-2, and MLC-1 and inhibit the expression of ITGB1, Rho, ROCK, and VIM-1. Taken together, CYN may induce cytoskeleton damage and promote vascular endothelial cell apoptosis by the Rho/ROCK signaling pathway, leading to abnormal vascular development. The current results provide potential insight into the mechanism of CYN toxicity in angiocardiopathy and are beneficial for understanding the environmental risks of CYN for aquatic organisms and human health.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guosheng Xiao
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Lin Han
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Qilong Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Is an "Epigenetic Diet" for Migraines Justified? The Case of Folate and DNA Methylation. Nutrients 2019; 11:E2763. [PMID: 31739474 PMCID: PMC6893742 DOI: 10.3390/nu11112763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Migraines are a common disease with limited treatment options and some dietary factors are recognized to trigger headaches. Although migraine pathogenesis is not completely known, aberrant DNA methylation has been reported to be associated with its occurrence. Folate, an essential micronutrient involved in one-carbon metabolism and DNA methylation, was shown to have beneficial effects on migraines. Moreover, the variability of the methylenetetrahydrofolate reductase gene, important in both folate metabolism and migraine pathogenesis, modulates the beneficial effects of folate for migraines. Therefore, migraine could be targeted by a folate-rich, DNA methylation-directed diet, but there are no data showing that beneficial effects of folate consumption result from its epigenetic action. Furthermore, contrary to epigenetic drugs, epigenetic diets contain many compounds, some yet unidentified, with poorly known or completely unknown potential to interfere with the epigenetic action of the main dietary components. The application of epigenetic diets for migraines and other diseases requires its personalization to the epigenetic profile of a patient, which is largely unknown. Results obtained so far do not warrant the recommendation of any epigenetic diet as effective in migraine prevention and therapy. Further studies including a folate-rich diet fortified with valproic acid, another modifier of epigenetic profile effective in migraine prophylaxis, may help to clarify this issue.
Collapse
Affiliation(s)
- Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|