1
|
Wang K, Yan D, Chen X, Xu Z, Cao W, Li H. New insight to the enriched microorganisms driven by pollutant concentrations and types for industrial and domestic wastewater via distinguishing the municipal wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124789. [PMID: 39182810 DOI: 10.1016/j.envpol.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Enriched microbial communities and their metabolic function were investigated from the three wastewater treatment plants (WWTPs), which were CWWTP (coking wastewater), MWWTP1 (domestic wastewater), and MWWTP2 (mixed wastewater with domestic wastewater and effluent from various industrial WWTPs that contained the mentioned CWWTP). Pollutant types and concentrations differed among the three WWTPs and the reaction units in each WWTP. CWWTP had a higher TCN and phenol concentrations than the MWWTPs, however, in MWWTP2 no phenol was discovered but 0.72 mg/L TCN was found in its anaerobic unit. RDA results revealed that COD, TN, TP, TCN, NO3--N, and phenol were the main factors influencing the microbial communities (P < 0.05). CPCoA confirmed the microbial community difference driven by pollutant types and concentrations (65.1% of variance, P = 0.006). They provided diverse growth environments and ecological niches for microorganisms, shaping unique bacterial community in each WWTP, as: Thiobacillus, Tepidiphilus, Soehngenia, Diaphorobacter in CWWTP; Saccharibacteria, Acidovorax, Flavobacterium, Gp4 in MWWTP1; and Mesorhizobium, Terrimicrobium, Shinella, Oscillochloris in MWWTP2. Group comparative was analyzed and indicated that these unique bacteria exhibited statistically significant difference (P < 0.01) among the WWTPs, and they were the biomarkers in each WWTP respectively. Co-occurrence and coexclusion patterns of bacteria revealed that the most of dominant bacteria in each WWTP were assigned to different modules respectively, and these microorganisms had a closer positive relationship in each module. Consistent with the functional profile prediction, xenobiotics biodegradation and metabolism were higher in CWWTP (3.86%) than other WWTPs. The distinct functional bacteria metabolized particular xenobiotics via oxidoreductases, isomerases, lyases, transferases, decarboxylase, hydroxylase, and hydrolase in each unit or WWTP. These results provided the evidences to support the idea that the pollutant types and concentration put selection stress on microorganisms in the activated sludge, shaping the distinct microbial community structure and function.
Collapse
Affiliation(s)
- Kedan Wang
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Xiaolei Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zicong Xu
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou, 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Zhu Y, Li Z, Ren Z, Zhang M, Huo Y, Li Z. A novel simultaneous short-course nitrification, denitrification and fermentation process: bio-enhanced phenol degradation and denitrification in a single reactor. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:726. [PMID: 38995468 DOI: 10.1007/s10661-024-12846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.
Collapse
Affiliation(s)
- Yongqiang Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Zhiling Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zichun Ren
- Shanghai Fengxian District Environmental Monitoring Station, Shanghai, China
| | - Minli Zhang
- Shanghai Sustainable Accele-Tech Co., Ltd, Shanghai, China
| | - Yaoqiang Huo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhenxin Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
3
|
Zhao M, Luo Z, Wang Y, Liao H, Yu Z, Zhou S. Phage lysate can regulate the humification process of composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:221-230. [PMID: 38412754 DOI: 10.1016/j.wasman.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Phages play a crucial role in orchestrating top-down control within microbial communities, influencing the dynamics of the composting process. Despite this, the impact of phage-induced thermophilic bacterial lysis on humification remains ambiguous. This study investigates the effects of phage lysate, derived explicitly from Geobacillus subterraneus, on simulated composting, employing ultrahigh-resolution mass spectrometry and 16S rRNA sequencing techniques. The results show the significant role of phage lysate in expediting humus formation over 40 days. Notably, the rapid transformation of protein-like precursors released from phage-induced lysis of the host bacterium resulted in a 14.8 % increase in the proportion of lignins/CRAM-like molecules. Furthermore, the phage lysate orchestrated a succession in bacterial communities, leading to the enrichment of core microbes, exemplified by the prevalence of Geobacillus. Through network analysis, it was revealed that these enriched microbes exhibit a capacity to convert protein and lignin into essential building blocks such as amino acids and phenols. Subsequently, these components were polymerized into humus, aligning with the phenol-protein theory. These findings enhance our understanding of the intricate microbial interactions during composting and provide a scientific foundation for developing engineering-ready composting humification regulation technologies.
Collapse
Affiliation(s)
- Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhibin Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Ali M, Wang Q, Zhang Z, Chen X, Ma M, Tang Z, Li R, Tang B, Li Z, Huang X, Song X. Mechanisms of benzene and benzo[a]pyrene biodegradation in the individually and mixed contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123710. [PMID: 38458518 DOI: 10.1016/j.envpol.2024.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
There is a lack of knowledge on the biodegradation mechanisms of benzene and benzo [a]pyrene (BaP), representative compounds of polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylene (BTEX), under individually and mixed contaminated soils. Therefore, a set of microcosm experiments were conducted to explore the influence of benzene and BaP on biodegradation under individual and mixed contaminated condition, and their subsequent influence on native microbial consortium. The results revealed that the total mass loss of benzene was 56.0% under benzene and BaP mixed contamination, which was less than that of individual benzene contamination (78.3%). On the other hand, the mass loss of BaP was slightly boosted to 17.6% under the condition of benzene mixed contamination with BaP from that of individual BaP contamination (14.4%). The significant differences between the microbial and biocide treatments for both benzene and BaP removal demonstrated that microbial degradation played a crucial role in the mass loss for both contaminants. In addition, the microbial analyses revealed that the contamination of benzene played a major role in the fluctuations of microbial compositions under co-contaminated conditions. Rhodococcus, Nocardioides, Gailla, and norank_c_Gitt-GS-136 performed a major role in benzene biodegradation under individual and mixed contaminated conditions while Rhodococcus, Noviherbaspirillum, and Phenylobacterium were highly involved in BaP biodegradation. Moreover, binary benzene and BaP contamination highly reduced the Rhodococcus abundance, indicating the toxic influence of co-contamination on the functional key genus. Enzymatic activities revealed that catalase, lipase, and dehydrogenase activities proliferated while polyphenol oxidase was reduced with contamination compared to the control treatment. These results provided the fundamental information to facilitate the development of more efficient bioremediation strategies, which can be tailored to specific remediation of different contamination scenarios.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Min Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyuan Li
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Xiangfeng Huang
- China Construction 8th Engineering Division Corp., LTD, Shanghai 200122, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zou X, Su Q, Yi Q, Guo L, Chen D, Wang B, Li Y, Li J. Determining the degradation mechanism and application potential of benzopyrene-degrading bacterium Acinetobacter XS-4 by screening. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131666. [PMID: 37236106 DOI: 10.1016/j.jhazmat.2023.131666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
In industrial wastewater treatment, organic pollutants are usually removed by in-situ microorganisms and exogenous bactericides. Benzo [a] pyrene (BaP) is a typical persistent organic pollutant and difficult to be removed. In this study, a new strain of BaP degrading bacteria Acinetobacter XS-4 was obtained and the degradation rate was optimized by response surface method. The results showed that the degradation rate of BaP was 62.73% when pH= 8, substrate concentration was 10 mg/L, temperature was 25 °C, inoculation amount was 15% and culture rate was 180 r/min. Its degradation rate was better than that of the reported degrading bacteria. XS-4 is active in the degradation of BaP. BaP is degraded into phenanthrene by 3, 4-dioxygenase (α subunit and β subunit) in pathway Ⅰ and rapidly forms aldehydes, esters and alkanes. The pathway Ⅱ is realized by the action of salicylic acid hydroxylase. When sodium alginate and polyvinyl alcohol were added to the actual coking wastewater to immobilize XS-4, the degradation rate of BaP was 72.68% after 7 days, and the removal effect was better than that of single BaP wastewater (62.36%), which has the application potential. This study provides theoretical and technical support for microbial degradation of BaP in industrial wastewater.
Collapse
Affiliation(s)
- Xiaoshuang Zou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qi Su
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qianwen Yi
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ling Guo
- Environmental Testing Department of Guizhou Provincial Testing Technology Research and Application Center, Guiyang 550000, China
| | - Diyong Chen
- Environmental Testing Department of Guizhou Provincial Testing Technology Research and Application Center, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
6
|
Li S, Wang S, Wong MH, Zaynab M, Wang K, Zhong L, Ouyang L. Changes in the composition of bacterial communities and pathogen levels during wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1232-1243. [PMID: 35913690 DOI: 10.1007/s11356-022-21947-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants have been described as a potential source of spreading pathogens to the receiving water. However, few studies are reporting the presence and concentration changes of pathogens in these matrices. High-throughput sequencing provides new insights into understanding the changes of bacterial communities throughout wastewater treatment plants (WWTPs). In this study, the changes in microbial community composition and the levels of representative pathogens of effluents during the wastewater treatment process in two municipal WWTPs (A and B) were analyzed using Illumina NovaSeq sequencing and qPCR. Proteobacteria was the most abundant phylum in all samples, accounting for 45.0-75.2% of the bacterial community, followed by Firmicutes, Bacteroidetes, Actinobacteria, and Nitrospirae. A slight difference was observed between the bacterial community compositions of WWTPs A and B. However, a significant difference in the community compositions of effluent samples at different treatment stages was observed. Nutrients had a more substantial impact on bacterial community composition than physicochemical factors. Most human-associated Bacteroides and Mycobacterium were eliminated during the wastewater treatment process in both WWTPs. The bacterial community richness in WWTP A was significantly higher than that in WWTP B. The results of this study will provide insights into the potential problems that exist in WWTPs. In turn, these insights can enable the efficient and stable operation of WWTPs and help prevent the spread of pathogens.
Collapse
Affiliation(s)
- Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Shilin Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Ming Hung Wong
- Environment, Education and Research (CHEER), Consortium On Health, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Keju Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Liping Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, China
| | - Liao Ouyang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Guo G, Liu C, Tian F, Ding K, Wang H, Zhang C, Yang F, Xu J. Bioaugmentation treatment of polycyclic aromatic hydrocarbon-polluted soil in a slurry bioreactor with a bacterial consortium and hydroxypropyl-β-cyclodextrin. ENVIRONMENTAL TECHNOLOGY 2022; 43:3231-3238. [PMID: 33945429 DOI: 10.1080/09593330.2021.1921042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
The aim of the study was to verify the effect of bioaugmentation by the bacterial consortium YS with hydroxypropyl-β-cyclodextrin (HPCD) in a soil slurry. The bacterial consortium YS was enriched from a petroleum-polluted soil using pyrene as sole carbon resource. After 3 weeks, the degradation rate of phenanthrene in CK increased from 22.58% to 55.23 and 78.21% in bioaugmentation (B) and HPCD + bioaugmentation (MB) respectively. The degradation rate of pyrene in CK increased from 17.33% to 51.10% and 60.32% in B and MB respectively in the slurry. The augmented YS persisted in the slurry as monitored by 16S rRNA gene high-throughput sequencing and outcompeted some indigenous bacteria. Enhanced polycyclic aromatic hydrocarbon (PAH) degradation was observed in the addition of HPCD due to the enhanced bioavailability of phenanthrene and pyrene. Additionally, the amount of PAH-degrading bacteria and enzymatic activity in bioaugmentation with HPCD were higher than that in the CK group. The results indicated that bioaugmentation with a bacterial consortium and HPCD is an environmentally friendly method for the bioremediation of PAH-polluted soil.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing, People's Republic of China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing, People's Republic of China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Zhang B, Deng J, Xie J, Wu H, Wei C, Li Z, Qiu G, Wei C, Zhu S. Microbial community composition and function prediction involved in the hydrolytic bioreactor of coking wastewater treatment process. Arch Microbiol 2022; 204:426. [PMID: 35751757 DOI: 10.1007/s00203-022-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
The hydrolytic acidification process has a strong ability to conduct denitrogenation and increase the biological oxygen demand/chemical oxygen demand ratio in O/H/O coking wastewater treatment system. More than 80% of the total nitrogen (TN) was removed in the hydrolytic bioreactor, and the hydrolytic acidification process contributed to the provision of carbon sources for the subsequent nitrification process. The structure and diversity of microbial communities were elaborated using high-throughput MiSeq of the 16S rRNA genes. The results revealed that the operational taxonomic units (OTUs) belonged to phyla Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria were the dominant taxa involved in the denitrogenation and degradation of refractory contaminants in the hydrolytic bioreactor, with relative abundances of 22.94 ± 3.72, 29.77 ± 2.47, and 18.23 ± 0.26%, respectively. The results of a redundancy analysis showed that the OTUs belonged to the genera Thiobacillus, Rhodoplanes, and Hylemonella in the hydrolytic bioreactor strongly positively correlated with the chemical oxygen demand, TN, and the removal of phenolics, respectively. The results of a microbial co-occurrence network analysis showed that the OTUs belonged to the phylum Bacteroidetes and the genus Rhodoplanes had a significant impact on the efficiency of removal of contaminants that contained nitrogen in the hydrolytic bioreactor. The potential function profiling results indicate the complementarity of nitrogen metabolism, methane metabolism, and sulfur metabolism sub-pathways that were considered to play a significant role in the process of denitrification. These results provide new insights into the further optimization of the performance of the hydrolytic bioreactor in coking wastewater treatment.
Collapse
Affiliation(s)
- Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China.
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
9
|
Yang J, Ma F, Dai C, Wu W, Fan S, Lian S, Qu Y. Indole metabolism by phenol-stimulated activated sludges: Performance, microbial communities and network analysis. ENVIRONMENTAL RESEARCH 2022; 207:112660. [PMID: 34995547 DOI: 10.1016/j.envres.2021.112660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Indole and phenol often coexist in the coking wastewater, while the effects of phenol on microbial communities of indole metabolism were less explored. In this study, the microbial interactions within activated sludge microbial communities stimulated by indole (group A) or by indole and phenol (group B) were systematically investigated in sequencing batch reactors (SBRs). The results showed that the removal of indole was increased by adding phenol. By using high-throughput sequencing technology, it was found that α-diversity was reduced in both groups. According to the relative abundance analysis, the indole-degrading genus Comamonas was the core genus in both groups (33.94% and 61.40%). But another indole-degrading genus Pseudomonas was only enriched in group A with 12.22% relative abundance. Meanwhile, common aromatic degrading genus Dyella and Thermomonas were enriched only in group B. It was found that the relative abundance of cytochrome P450 and styrene degradation enzymes were increased in group B by PICRUSt analysis. Based on the phylogenetic molecular ecological networks (pMENs), module hub OTU_1149 (Burkholderia) was only detected in group B, and the positive interactions between the key functional genus Burkholderia and other bacteria were increased. This study provides new insights into our understanding of indole metabolism communities stimulated by phenol, which would provide useful information for practical coking wastewater treatment.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
10
|
Chen X, Feng L, Zheng W, Chen S, Yang Y, Xie S. Shifts in structure and function of bacterial community in river and fish pond sediments after a phenol spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14987-14998. [PMID: 34622407 DOI: 10.1007/s11356-021-16514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phenol is widely used in industrial processes and has microbial toxicity. However, the effects of a phenol spill on the microbial community are not clear. The present study explored the changes of bacterial communities in river and fish pond sediments after a phenol spill. The bacterial richness and diversity in river sediments were lower on day 30 (36 days after the spill) than on day 0, while they increased in fish pond sediments. The structures and functions of bacterial communities in both river and fish pond sediments were changed, and a more dramatical variation was detected in fish pond sediments. In river sediments, Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Nitrospirae were the major bacterial phyla, and Chloroflexi was enriched. In fish pond sediments, genera Brevibacillus dominated bacterial communities initially, and bacterial composition showed a dramatic change on day 30. Most predicted metabolism functions, as well as genetic information processing functions of translation, replication, and repair, were enhanced in both river and fish pond sediments, while they showed an opposite change trend for xenobiotic degradation function. This work could strengthen our understanding of the effects of phenol spills on sediment bacterial communities in both lotic and lentic ecosystems.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Lishi Feng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Wenli Zheng
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China.
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Minkina T, Vasilyeva G, Popileshko Y, Bauer T, Sushkova S, Fedorenko A, Antonenko E, Pinskii D, Mazarji M, Ferreira CSS. Sorption of benzo[a]pyrene by Chernozem and carbonaceous sorbents: comparison of kinetics and interaction mechanisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:133-148. [PMID: 33909189 DOI: 10.1007/s10653-021-00945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon, highly persistent and toxic and a widespread environmental pollutant. Although various technologies have been developed to remove BaP from the environment, its sorption through solid matrixes has received increasing attention due to cost-effectiveness. The present research compares the adsorption capacity of Haplic Chernozem, granular activated carbon and biochar in relation to BaP from water solution. Laboratory experiments with different initial BaP concentrations in the liquid phase and different ratios of the solid and liquid phases show that Freundlich model describes well the adsorption isotherms of BaP by the soil and both sorbents. Moreover, the BaP isotherm sorption by the Haplic Chernozem is better illustrated by the Freundlich model than the Langmuir equation. The results reveal that the sorption capacity of the carbonaceous adsorbents at a ratio 1:20 (solid to liquid phases) is orders of magnitude higher (13 368 ng mL-1 of activated carbon and 3 578 ng mL-1 of biochar) compared to the soil (57.8 ng mL-1). At the ratio of 0.5:20, the adsorption capacity of the carbonaceous sorbents was 17-45 times higher than that of the soil. This is due to the higher pore volume and specific surface area of the carbonaceous sorbents than soil particles, assessed through scanning electron microscopy. The sorption kinetic of BaP by Chernozem was compared with the adsorption kinetics by the carbonaceous sorbents. Results indicate that the adsorption dynamic involves two steps. The first one is associated with a fast BaP adsorption on the large available surface and inside macro- and meso-pores of the sorbent particles of the granular activated carbon and biochar. Then, the adsorption is followed by a slower process of BaP penetration into the microporous space and/or redistribution into a hydrophobic fraction. The effectiveness of the sorption process depends on both the sorbent properties and the solvent competition. Overall, the granular activated carbon and biochar are highly effective adsorbents for BaP, whereas the Haplic Chernozem has a rather limited capacity to remove BaP from contaminated solutions.
Collapse
Affiliation(s)
- Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Galina Vasilyeva
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - Yana Popileshko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Tatiana Bauer
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Aleksey Fedorenko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Elena Antonenko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - David Pinskii
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russian Federation
| | - Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation.
| | | |
Collapse
|
12
|
Wu ZY, Zhu WP, Liu Y, Zhou LL, Liu PX, Xu J. An integrated biological-electrocatalytic process for highly-efficient treatment of coking wastewater. BIORESOURCE TECHNOLOGY 2021; 339:125584. [PMID: 34303099 DOI: 10.1016/j.biortech.2021.125584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Coking wastewater is typically refractory, mainly due to its biological toxicity and complex composition. In this study, a novel integrated biological-electrocatalytic process consisting of two three-dimensional electrochemical reactors (3DERs), two biological aerated filters (BAFs), and a three-dimensional biofilm electrode reactor (3DBER) is developed for the advanced treatment of coking wastewater. 73.21% of chemical oxygen demand (COD), 38.02% of ammonium nitrogen (NH4+-N) and 91.46% of nitrate nitrogen (NO3--N) are removed by 3DERs. BAFs mainly convert NH4+-N to NO3--N through microbial nitrification. The 3DBER removes the residual NO3--N by bio-electrochemical denitrification. The integrated system can eliminate 74.72-83.27% of COD, 99.38-99.74% of NH4+-N, and 69.64-99.83% of total nitrogen from coking wastewater during the continuous operation, as well as significantly reducing the toxicity of the wastewater. The superiorities of the integrated 3DERs/BAFs/3DBER system recommend the application of such biological-electrocatalytic technology in the treatment of highly toxic wastewater.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wei-Ping Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yang Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lu-Lu Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Peng-Xi Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming (IEC), No. 20 Cuiniao Road, ChenJiazhen, Shanghai 202162, China.
| |
Collapse
|
13
|
Zhu G, Xing F, Tao J, Chen S, Li K, Cao L, Yan N, Zhang Y, Rittmann BE. Synergy of strains that accelerate biodegradation of pyridine and quinoline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112119. [PMID: 33581454 DOI: 10.1016/j.jenvman.2021.112119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Three bacterial strains were isolated from activated sludge acclimated to biodegrade pyridine and quinoline simultaneously. The strains were identified as Bacillus tropicus, Bacillus aquimaris, and Rhodococcus ruber. When the isolated bacteria were used for pyridine and quinoline biodegradation in separate or combined modes, R. ruber had much faster kinetics, and combining R. ruber with one or both of the Bacillus strains increased further the biodegradation kinetics. For example, the time needed for complete biodegradation of 1 mM quinoline and pyridine decreased to 20 h and 6 h, respectively, with the three strains combined, compared to 26 h and 7 h with R. ruber alone. Whereas quinoline was completely mineralized by all three strains, 10-14% of the pyridine persisted as a dead-end product, 2-hydroxypyridine (2HP). The acclimated sludge from which the three bacterial species were isolated was able to transform 2HP, and adding the bacterial strains (especially R. ruber) to the acclimated sludge accelerated the rate of 2HP removal and mineralization through a form of synergy.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Feifei Xing
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jinzhao Tao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ke Li
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Lifeng Cao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; School of Environment, Tsinghua University, 100084, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, USA
| |
Collapse
|
14
|
Zang T, Wu H, Zhang Y, Wei C. The response of polycyclic aromatic hydrocarbon degradation in coking wastewater treatment after bioaugmentation with biosurfactant-producing bacteria Pseudomonas aeruginosa S5. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1017-1027. [PMID: 33724933 DOI: 10.2166/wst.2021.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) that accumulate during the coking wastewater treatment process are hazardous for the surrounding environment. High molecular weight (HMW) PAHs account for more than 85% of the total PAHs in coking wastewater and sludge, respectively. The degradation of total PAHs increased by 18.97% due to the increased bioavailability of PAHs, after the biosurfactant-producing bacteria Pseudomonas aeruginosa S5 was added. The toxicity of total PAHs to humans was reduced by 26.66% after inoculation with S5. The results suggest biosurfactant-producing bacteria Pseudomonas aeruginosa S5 not only increase the biodegradation of PAHs significantly, but also have a better effect on reducing the human toxicity of PAHs. Kinetic analyses show that PAHs biodegradation fits to first-order kinetics. The degradation rate constant (k) value decreases as the number of PAH rings increases, indicating that HMW PAHs are more difficult to be biodegraded than low molecular weight (LMW) PAHs. The results indicate the bioaugmentation with the biosurfactant-producing strain has significant potential and utility in remediation of PAHs-polluted sites.
Collapse
Affiliation(s)
- Tingting Zang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haizhen Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuxiu Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaohai Wei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China E-mail: ; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Zang T, Wu H, Yan B, Zhang Y, Wei C. Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. CHEMOSPHERE 2021; 266:128941. [PMID: 33190915 DOI: 10.1016/j.chemosphere.2020.128941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Accepted: 11/08/2020] [Indexed: 05/27/2023]
Abstract
The poor bioavailability of polycyclic aromatic hydrocarbons (PAHs) is the main limiting factor for their biodegradation in contaminated sites. The addition of biosurfactant is an effective method for enhancing the bioavailability of PAHs. Suitable low molecular weight (LMW) organic matters have been shown to increase the bioavailability of PAHs. Therefore, we investigated the effect of phenol, which often co-exists with PAHs, on the biodegradation of PAHs in biosurfactant solution. The results show that the critical micelle concentration (CMC) of the biosurfactant decreased after phenol was added. The formation of mixed micelles resulted in enhancement of PAHs dissolution. The weight solubilization ratio (WSR) values of biosurfactant for Phe, Pyr and BaP in phenol solution are approximately 1.34, 1.40 and 1.67 times that of the control group, respectively. Phenol, therefore, can assist biosurfactant to increase the availability of PAHs by microbes. The bioavailability of PAHs in sludge increased from 27.7% to 43.1% after the biosurfactant was added, and reached a maximum of 49.2%, following the simultaneous addition of phenol and biosurfactant. Phenol also improved the degradation of PAHs by Stenotrophomonas sp. N5 in biosurfactant solution.
Collapse
Affiliation(s)
- Tingting Zang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Haizhen Wu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Bo Yan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Yuxiu Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chaohai Wei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
16
|
Zhu G, Zhang Y, Chen S, Wang L, Zhang Z, Rittmann BE. How bioaugmentation with Comamonas testosteroni accelerates pyridine mono-oxygenation and mineralization. ENVIRONMENTAL RESEARCH 2021; 193:110553. [PMID: 33271145 DOI: 10.1016/j.envres.2020.110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Pyridine is a common heterocycle found in industrial wastewaters. Its biodegradation begins with a mono-oxygenation reaction, and bioaugmentation with bacteria able to carry out this mono-oxygenation is one strategy to improve pyridine removal and mineralization. Although bioaugmentation has been used to enhance the biodegradation of recalcitrant organic compounds, the specific role played by the bioaugmented bacteria usually has not been addressed. We acclimated activated-sludge biomass for pyridine biodegradation and then isolated a strain -- Comamonas testosteroni -- based on its ability to biodegrade and grow on pyridine alone. Pyridine was removed faster by C. testosteroni, compared to pyridine-acclimated biomass, but pyridine mineralization was slower. Pyridine biodegradation and mineralization rates were accelerated when C. testosteroni was bioaugmented into the acclimated biomass, which increased the amount of C. testosteroni, but otherwise had minimal effects on the microbial community. The key role of C. testosteroni was to accelerate the first step of pyridine biodegradation, mono-oxygenation to 2-hydroxylpyridine (2HP), and the acclimated biomass was better able to complete downstream reactions leading to mineralization. Thus, bioaugmentation increased the rates of pyridine mono-oxygenation and subsequent mineralization through the synergistic roles of C. testosteroni and the main community in the acclimated biomass.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Lu Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Zhichun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
17
|
Nakajima M, Hirano R, Okabe S, Satoh H. Simple assay for colorimetric quantification of unamplified bacterial 16S rRNA in activated sludge using gold nanoprobes. CHEMOSPHERE 2021; 263:128331. [PMID: 33297260 DOI: 10.1016/j.chemosphere.2020.128331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Domestic and industrial wastewater treatment systems are vital in the protection of natural ecosystems and human health. Identification of microbial communities in the systems is essential to stable treatment performance. However, the current tools of microbial community analysis are labor intensive and time consuming, and require expensive equipment. Therefore, we developed a simple assay for colorimetric quantification of bacterial 16S rRNA extracted from environmental samples. The assay is based on RNA extraction with commercial kits, mixing the unamplified RNA sample with Au-nanoprobes and NaCl, and analyzing the absorbance spectra. Our experimental results confirmed that the assay format was valid. By analyzing the synthesized DNA, we optimized the operational parameters affecting the assay. We achieved adequate capture DNA density by setting the capture DNA probe concentration at 10 μM during the functionalization step. The required incubation time after NaCl addition was 30 min. The binding site of the target had negligible effect on DNA detection. Under the optimized condition, a calibration curve was created using 16S rRNA extracted from activated sludge. The curve was linear above 5.0 × 107 copies/μL of bacterial 16S rRNA concentration, and the limit of detection was 1.17 × 108 copies/μL. Using the calibration curve, the bacterial 16S rRNA concentration in activated sludge samples could be quantified with deviations between 48% and 208% against those determined by RT-qPCR. The findings of our study introduce an innovative tool for the quantification of 16S rRNA concentration as the activity of key bacteria in wastewater treatment processes, achieving stable treatment performance.
Collapse
Affiliation(s)
- Meri Nakajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan.
| | - Reiko Hirano
- Cellspect Co., Ltd., 1-10-82 Kitaiioka, Morioka, Iwate, 020-0857, Japan.
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan.
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan.
| |
Collapse
|
18
|
Deng J, Zhang B, Xie J, Wu H, Li Z, Qiu G, Wei C, Zhu S. Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system. PLoS One 2020; 15:e0243748. [PMID: 33301488 PMCID: PMC7728250 DOI: 10.1371/journal.pone.0243748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
The pre-aerobic process of coking wastewater treatment has strong capacity of decarbonization and detoxification, which contribute to the subsequent dinitrogen of non-carbon source/heterotrophic denitrification. The COD removal rate can reach > 90% in the first aerobic bioreactor of the novel O/H/O coking wastewater treatment system during long-term operation. The physico-chemical characteristics of influent and effluent coking wastewater in the first aerobic bioreactor were analyzed to examine how they correlated with bacterial communities. The diversity of the activated sludge microbial community was investigated using a culture-independent molecular approach. The microbial community functional profiling and detailed pathways were predicted from the 16S rRNA gene-sequencing data by the PICRUSt software and the KEGG database. High-throughput MiSeq sequencing results revealed a distinct microbial composition in the activated sludge of the first aerobic bioreactor of the O/H/O system. Proteobacteria, Bacteroidetes, and Chlorobi were the decarbonization and detoxification dominant phyla with the relative abundance of 84.07 ± 5.45, 10.89 ± 6.31, and 2.96 ± 1.12%, respectively. Thiobacillus, Rhodoplanes, Lysobacter, and Leucobacter were the potential major genera involved in the crucial functional pathways related to the degradation of phenols, cyanide, benzoate, and naphthalene. These results indicated that the comprehensive understanding of the structure and function diversity of the microbial community in the bioreactor will be conducive to the optimal coking wastewater treatment.
Collapse
Affiliation(s)
- Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
19
|
Wei C, Wei J, Kong Q, Fan D, Qiu G, Feng C, Li F, Preis S, Wei C. Selection of optimum biological treatment for coking wastewater using analytic hierarchy process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140400. [PMID: 32629247 DOI: 10.1016/j.scitotenv.2020.140400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The design of biological treatment process for the coking wastewater (CW) is complicated since wastewater treatment demand is gradually increasing lacking the systematic strategy in efficiency evaluation and advisable selection. Therefore, this study develops a holistic approach by means of the analytic hierarchy process (AHP) that uses numerical representation to rank the preferences of each participating alternatives for evaluation of the advanced biological technologies in CW treatment. Based on survey results, six types reactor combinations were selected as the alternatives, which were further classified as two group according to COD load. The AHP methodology consists of weighting and ranking procedures considering technical, economic, environmental and administration factors defined as criteria layers. Eighteen indicators were chosen as sub-criteria layers. Inclusively beneficial and sustainable biological processes were assessed and ranked along the AHP implementation. The results placed technical indicators to the top position among the criteria layers in the weighting descending order 'technical indicators > economic indicators > environmental indicators > administrative indicators', whereas the weight of indicators in sub-criteria layers fitted in the range of 0.005 to 0.151. The inclusive priority calculation integrating all weight indices of criteria and sub-criteria layers resulted in the anaerobic-anoxic-oxic (A/A/O) combination rising in the hierarchy of the low load group, whereas the oxic-hydrolytic-oxic (O/H/O) process was prioritized in the high load group. The accuracy and objectivity of AHP application was also supported by sensitivity and variability analyses that examines a range for the weights' values and corresponding to alternative scenarios.
Collapse
Affiliation(s)
- Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingyue Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Qiaoping Kong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Dan Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fusheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sergei Preis
- Department of Materials and Environment Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
20
|
Bai N, Li S, Zhang J, Zhang H, Zhang H, Zheng X, Lv W. Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115112. [PMID: 32634694 DOI: 10.1016/j.envpol.2020.115112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and β-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.
Collapse
Affiliation(s)
- Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
21
|
Ouyang J, Li C, Wei L, Wei D, Zhao M, Zhao Z, Zhang J, Chang CC. Activated sludge and other aerobic suspended culture processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1717-1725. [PMID: 32762078 DOI: 10.1002/wer.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper provides an overview of activated sludge related to suspended growth processes for the year 2019. The review encompasses process modeling of activated sludge, microbiology of activated sludge, process kinetics and mechanism, nitrogen and phosphorus control, design, and operation in the activated sludge field. The fate and effect of xenobiotics in activated sludge, including trace organic contaminant and heavy metal xenobiotics, which had influence on the growth of suspended sludge, are covered in this review. Compared to past reviews, many topics show increase in activity in 2019. These include, biokinetics process of aerobic granular sludge formation, pyrolysis kinetic mechanism of granular sludge. These topics are referred to formation and disintegration of granular sludge. Other sections include activated sludge settling model, toxicity resistant microbial community, nitritation-anammox processes for nitrogen removal, and respirometry used in the operation of real wastewater treatment plant are especially highlighted in this review. PRACTITIONER POINTS: Biokinetics process of aerobic granular sludge formation Toxicity resistant microbial community in activated sludge Nitritation-anammox processes for nitrogen removal in activated sludge.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang Zhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhen Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Jie Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
22
|
Jiang B, Zeng Q, Liu J, Hou Y, Xu J, Li H, Shi S, Ma F. Enhanced treatment performance of phenol wastewater and membrane antifouling by biochar-assisted EMBR. BIORESOURCE TECHNOLOGY 2020; 306:123147. [PMID: 32171174 DOI: 10.1016/j.biortech.2020.123147] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Biochar-assisted EMBR (BC-assisted EMBR) was built to enhance treatment performance of phenol wastewater and membrane antifouling. BC-assisted EMBR significantly increased phenol degradation efficiency, owing to combined effects of biodegradation, adsorption and electro-catalytic degradation. Meanwhile, BC-assisted EMBR obviously mitigated membrane fouling. The coupling effect of BC and voltage led to the lower N-acyl-homoserine lactones (AHLs) and bound extracellular polymeric substances (bound EPS) contents around and on membrane surface. Protein (PN)/polysaccharide (PS) in bound EPS was decreased, led to the increase of negative charge and decrease of hydrophobicity of sludge, which abated bound EPS adsorption on membrane surface. Microbial community analyses revealed that the coupling effect of BC and voltage could enrich phenol-degraders (e.g., Comamonas), electron transfer genus (Phaselicystis), and biopolymer-degraders (Phaselicystis and Tepidisphaera) in BC-assisted EMBR and on its membrane surface, while decrease biofilm-former (e.g., Acinetobacter) and bound EPS-producer (Devosia), which was beneficial to promote phenol treatment and mitigate membrane fouling.
Collapse
Affiliation(s)
- Bei Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jin Xu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Jiang B, Zeng Q, Hou Y, Li H, Liu J, Xu J, Shi S, Ma F. Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137139. [PMID: 32045761 DOI: 10.1016/j.scitotenv.2020.137139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The membrane antifouling and shifts of microbial communities of long-term electric field applied in MBR (EMBR) for treating phenol wastewater was systematically investigated. The increased voltage increased the phenol degradation rate and slowed down the TMP increase rate in EMBR (G1-G4: 1.65 × 10-3-8.40 × 10-4 Mpa/d), indicated the enhancement of phenol treatment and mitigation of membrane fouling. Decrease of protein (PN)/polysaccharide (PS) in EPS increased the negative charge and decreased the hydrophobicity of sludge, thus abated its adsorption on membrane surface. The decrease of AHLs concentration attributed to the electrolysis of AHLs by the electro-generated H2O2. Besides, the AHLs had significantly negative correlation with QQ bacteria Rhodococcus and Stenotrophomonas enrichment and positive correlation with QS bacteria Aeromonas decrease in EMBRs, suggesting that coupling effects of voltage and QQ bacteria degraded AHLs, thus decreased EPS content which was positively correlated with AHLs concentration. Biopolymer-degrading genera (Clostridium sensu strict etc.) increased in EMBR and on membrane surface, while biofilm-forming genera (Pseudomonas etc.) decreased on membrane surface. These resulted in EPS content decrease and membrane antifouling.
Collapse
Affiliation(s)
- Bei Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jin Xu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|