1
|
Rashidi S, Soleiman-Beigi M, Kohzadi H. Rapid and efficient removal of water-soluble dyes via natural asphalt oxide as a new carbonaceous super adsorbent; NA-oxide synthesis and characterization. Sci Rep 2024; 14:24384. [PMID: 39420048 PMCID: PMC11487275 DOI: 10.1038/s41598-024-75106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
In this study, natural asphalt was oxidized to synthesize a new nano-structure adsorbent for dye removal. The functionalization of natural asphalt by oxidation introduced new properties that influenced its activity. The process of oxidizing natural asphalt with potassium permanganate resulted in a low-cost adsorbent, which can potentially be a more affordable option compared with synthetic alternatives. Characterization analysis confirmed the enhanced surface area, improving dye interaction and adsorption. The interconnected channels and capillaries of the oxidized natural asphalt facilitated the capillary action drawing in liquids, including dyes. The distinctive porosity of natural asphalt oxide (NA-oxide) was noted, and the experimental results showed that the NA-oxide nanoadsorbent efficiently adsorbed cationic and anionic dyes in water, with maximum capacities of 14.68 mg.g-1, 17.81 mg.g-1 and 16.47 mg.g-1 for methyl orange, methylene blue and Rhodamine B, respectively. The study investigated various parameters, such as concentration, adsorption dose, pH, contact time, and temperature, affecting the dye removal process. Langmuir, Freundlich, and Temkin isotherms along with pseudo-first and pseudo-second-order kinetic equations were applied to assess the adsorption process, indicating that dyes adhered to the pseudo-first-order model and Langmuir isotherm. Analysis of MO, MB, and RhB dyes revealed conformity to Langmuir isotherm and first-order kinetics. Thermodynamic evaluations like ΔH°, ΔS°, and ∆G° displayed the exothermic and spontaneous nature of dye adsorption on the NA-oxide adsorbent. Furthermore, the absorbent displayed remarkable stability with a recovery rate of 98.45% after ten cycles, signifying its potential for enduring effectiveness in dye removal processes.
Collapse
Affiliation(s)
- Shabnam Rashidi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| | - Mohammad Soleiman-Beigi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran.
| | - Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, P.O. Box 69315-516, Ilam, Iran
| |
Collapse
|
2
|
Yan X, Wang T, Yang H, Chen Y, Wang N, Sui Y, Gao G. Robust nanoparticles growth in the interior of porous sponges for efficient dye adsorption and emulsion separation. CHEMOSPHERE 2024; 357:142100. [PMID: 38657697 DOI: 10.1016/j.chemosphere.2024.142100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Emulsified oils and dye contaminants already pose a huge threat to global ecosystems and human health. It is a significant research topic to develop efficient, rapid, versatile methods for emulsion separation and dye adsorption. The membrane material modified with common methods only modified the outer surface of the membrane, while the interior is hardly fully decorated. In this investigation, a solvent exchange method was used to in situ grow nanoparticles in the interior of a porous sponge. These nanoparticles were obtained with polyethyleneimine, gallic acid, and tannic acid via Michael addition and Schiff base reaction. The prepared nanoparticle-coated sponges provided efficient separation of dyes, emulsions, and complex contaminants. The separation efficiency of the dye reached 99.49%, and the separation efficiency of the emulsion was as high as 99.87% with a flux of 11140.3 L m-2 h-1. Furthermore, the maximum adsorption capacity reached 486.8 mg g-1 for cationic dyes and 182.1 mg g-1 for anionic dyes. More importantly, the nanoparticles were highly robust on the surface of the porous sponge, and the modified sponge could have long-term applications in hazardous environments. Overall, it is envisioned that the nanoparticles-modified porous sponge exhibited considerable potential for emulsion and dye wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Yan
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Tianyu Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Hongkun Yang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Chen
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ning Wang
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Ying Sui
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China
| | - Guanghui Gao
- School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun 130012, China.
| |
Collapse
|
3
|
Revadekar CC, Batukbhai Godiya C, Jun Park B. Novel soy protein isolate/sodium alginate-based functional aerogel for efficient uptake of organic dye from effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120011. [PMID: 38183917 DOI: 10.1016/j.jenvman.2023.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
In response to the increasing global concern regarding water pollution, there is a growing demand for the development of novel adsorbents capable of effectively eliminating hazardous organic pollutants from effluents. In this study, we present a functional soy protein isolate (SPI)/sodium alginate (ALG)/polyethyleneimine (PEI) aerogel prepared via a facile chemical crosslinking process as a novel adsorbent with excellent capabilities for removing toxic methyl blue (MB) dye from effluents. Thanks to the synergistic dense oxygen and nitrogen-containing functional groups in the networks, the ALG/SPI/PEI (ASP) aerogel displayed high adsorption capacity for MB (106.3 mg/g) complying the adsorption kinetics and isotherm with the pseudo-second-order and Langmuir models, respectively. Remarkably, the MB adsorption capability of the ASP aerogel surpasses that of its pristine counterpart and outperforms recently reported adsorbents. Moreover, the aerogel maintained >80% of initial adsorption capability in the fourth regenerative cycle, indicating excellent reusability. The superior MB adsorbability coupled with high-efficiency regenerability in this study reveal the significant potential of ASP aerogel in efficiently eliminating organic dye from wastewater.
Collapse
Affiliation(s)
- Chetan C Revadekar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Chirag Batukbhai Godiya
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
4
|
Wang R, Li Z, Tian Q, Ma Z, Zhu M. Making graphene oxide (GO)-cladded SiO 2 spheres (SiO 2 @GO) as inorganic fillers for dental restorative resin composites. Dent Mater 2023; 39:1076-1084. [PMID: 37827873 DOI: 10.1016/j.dental.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Graphene oxide (GO) is of great interest in dentistry as the functional filler, mainly owing to its ability to inhibit the formation of cariogenic bacteria and possess low cytotoxicity to different cells, such as human dental pulp cells, HeLa cells, etc. However, its typical brown color limits the practical application. METHODS Here, the refractive-index-matched monodisperse SiO2 were used as the supporting substrates to synthesize GO-cladded SiO2 spheres (xSiO2 @ yGO) through a mild electrostatic self-assembly process, where x and y represent the amount of SiO2 and GO in the reaction mixture, respectively. The morphology and the optical performance of the obtained xSiO2 @ yGO particles were modulated by varying the mass ratio of SiO2 and GO (5:1, 10:1, 50:1, and 100:1). All developed hybrid particles were silanized and formulated with dimethacrylate-based resins. These were tested for curing depth, polymerization conversion, mechanical performance, in vitro cell viability, and antibacterial activity. RESULTS Of all xSiO2 @ yGO materials, increasing the mass ratio to 100:1 made the 100SiO2 @GO particles appear light brown and possess the lowest light absorbance from 300 to 800 nm. The results of CIEL*a*b* system showed that all these hybrid particles exhibited obvious discoloration compared with SiO2 and GO, where 100SiO2 @GO possessed the smallest color difference. Furthermore, following the results of curing depth, polymerization conversion, and mechanical performance of dental composites, the optimal filler composition was 100SiO2 @GO at 5 wt% filler loading. The resultant 100SiO2 @GO-filled composite produced the highest flexural strength (115 ± 12 MPa) and the lowest bacterial concentration (6.7 × 108 CFU/mL) than those of the resin matrix (78 ± 11 MPa; 9.2 × 108 CFU/mL) and 5 wt% SiO2-filled composite (106 ± 9 MPa; 9.1 × 108 CFU/mL), respectively, without affecting in vitro cell viability. SIGNIFICANCE The facile and mild synthesis of xSiO2 @ yGO hybrid particles provided a convenient way to tune their optical property. The optimal 100SiO2 @GO particles could be considered as the promising antibacterial filler to be applied in dental care and therapy.
Collapse
Affiliation(s)
- Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhihao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingyi Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Du B, Li W, Zhu H, Xu J, Wang Q, Shou X, Wang X, Zhou J. A functional lignin for heavy metal ions adsorption and wound care dressing. Int J Biol Macromol 2023; 239:124268. [PMID: 37003375 DOI: 10.1016/j.ijbiomac.2023.124268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Recently, the application of lignin activation by demethylation to improve reactivity and enrich multiple functions has intensively attracted attention. However, it is still challenge up to now due to the low reactivity and complexity of lignin structure. Here, an effective demethylation way was explored by microwave-assisted method for substantially enhancing the hydroxyl (-OH) content and retaining the structure of lignin. Then, the optimum demethylated lignin was used to removal heavy metal ions and promote wound healing, respectively. In detail, for microwave-assisted demethylated poplar lignin (M-DPOL), the contents of phenolic (Ar-OH) and total hydroxyl (Tot-OH) groups reached the maximum for 60 min at 90 °C in DMF with 7.38 and 9.13 mmol/g, respectively. After demethylation, with this M-DPOL as lignin-based adsorbent, the maximum adsorption capacity (Qmax) for Pb2+ ions reached 104.16 mg/g. Based on the isotherm, kinetic and thermodynamic models analyses, the chemisorption occurred in monolayer on the surface of M-DPOL, and all adsorption processes were endothermic and spontaneous. Meanwhile, M-DPOL as a wound dressing had excellent antioxidant property, outstanding bactericidal activity and remarkable biocompatibility, suggesting that it did not interfere with cell proliferation. Besides, the wounded rats treated with M-DPOL significantly promoted its formation of re-epithelialization and wound healing of full-thickness skin defects. Overall, microwave-assisted method of demethylated lignin can offer great advantages for heavy metal ions removal and wound care dressing, which facilitates high value application of lignin.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wanjing Li
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xiling Shou
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China.
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
6
|
Zhao H, Qi Y, Zhan P, Zhu Q, Liu X, Guan X, Zhang C, Su C, Qin P, Cai D. Artificial Photoenzymatic Reduction of Carbon Dioxide to Methanol by Using Electron Mediator and Co-factorAssembled ZnIn 2 S 4 Nanoflowers. CHEMSUSCHEM 2023:e202300061. [PMID: 36847586 DOI: 10.1002/cssc.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Increased absorption of visible light, low electron-hole recombination, and fast electron transfer are the major objectives for highly effective photocatalysts in biocatalytic artificial photosynthetic systems. In this study, a polydopamine (PDA) layer containing electron mediator, [M], and NAD+ cofactor was assembled on the outer surface of ZnIn2 S4 nanoflower, and the as-prepared nanoparticle, ZnIn2 S4 /PDA@poly/[M]/NAD+ , was used for photoenzymatic methanol production from CO2 . Because of effective capturing of visible light, reduced distance of electron transfer, and elimination of electron-holes recombination, a high NADH regeneration of 80.7±1.43 % could be obtained using the novel ZnIn2 S4 /PDA@poly/[M]/NAD+ . In the artificial photosynthesis system, a maximum methanol production of 116.7±11.8 μm was obtained. The enzymes and nanoparticles in the hybrid bio-photocatalysis system could be easily recovered using the ultrafiltration membrane at the bottom of the photoreactor. This is due to the successful immobilization of the small blocks including the electron mediator and cofactor on the surface of the photocatalyst. The ZnIn2 S4 /PDA@poly/[M]/NAD+ photocatalyst exhibited good stability and recyclability for methanol production. The novel concept presented in this study shows great promise for other sustainable chemical productions through artificial photoenzymatic catalysis.
Collapse
Affiliation(s)
- Hongqing Zhao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanou Qi
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Zhu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangshi Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyao Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenxi Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
7
|
Al-Amrani WA, Hanafiah MAKM, Mohammed AHA. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76565-76610. [PMID: 36166120 DOI: 10.1007/s11356-022-23062-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Surface -functionalised silica networks are advanced adsorbents. They have been given much attention for treating wastewater using the adsorption technique due to the silanol reactivity, resulting in strong binding affinities towards many pollutants. This review discusses the removal of anionic azo dyes utilising various functional groups such as amines, surfactants, polymers, macrocyclic, and other chelating groups functionalised on silica's surface. This review also reveals the steadily increasing interest in surface-functionalised silicas as adsorbents, emphasising the scholarly advancements in this field as a platform for future research. For that, adsorption capacities with different experimental conditions have been compared. The possible adsorption mechanisms, rate-limiting step, and factors affecting the anionic azo dye adsorption process have been comprehensively discussed. This review discloses that adsorbent characteristics such as porosity and functional groups, besides structural properties of an anionic azo dye, significantly affect adsorption. The adsorption process followed the Langmuir isotherm and pseudo-second-order models, with a predominantly spontaneous and endothermic nature. Multiple interactions, including electrostatic interaction, π-π interactions, and hydrogen bonding, are observed between dyes and functionalised silicas, indicating the adsorption process's complexity. Regeneration and cost-economic analysis are also presented to provide a roadmap for sustainable improvements. Chemical and biological regeneration techniques restore > 80% of the spent functionalised silicas. There is a significant opportunity to improve their efficiencies and regenerability, resulting in surface-functionalised silicas being used commercially instead of only in the laboratory. Finally, future research has been proposed by identifying current research gaps, particularly concerning the application of functionalised silicas in wastewater treatment.
Collapse
|
8
|
Rai A, Sirotiya V, Mourya M, Khan MJ, Ahirwar A, Sharma AK, Kawatra R, Marchand J, Schoefs B, Varjani S, Vinayak V. Sustainable treatment of dye wastewater by recycling microalgal and diatom biogenic materials: Biorefinery perspectives. CHEMOSPHERE 2022; 305:135371. [PMID: 35724717 DOI: 10.1016/j.chemosphere.2022.135371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.
Collapse
Affiliation(s)
- Anshuman Rai
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Anil K Sharma
- Department of Biotechnology, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133203, India
| | - Rajeev Kawatra
- Forensic Science Laboratory, Haryana, Madhuban, Karnal, 132037, India
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India.
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
9
|
Du B, Chai L, Li W, Wang X, Chen X, Zhou J, Sun RC. Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Luo Y, Wu Z, Guan Q, Chen S, Wu D. Facile synthesis of magnetic porous carbon nanosheets as efficient As(III) adsorbent. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Liu D, Huang J, Wu D, Liu Y, Zhang R, Chen S. Efficient removal of phosphate by nitrogen and oxygen-rich polyethyleneimine composite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Pratibha, Rajput JK. Synergistically Enhanced Solar‐light Driven Degradation of Hazardous Food Colorants by Ultrasonically Derived MgFe
2
O
4
/S‐doped g‐C
3
N
4
Nanocomposite: A Z‐Scheme System Based Heterojunction Approach. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratibha
- Department of Chemistry, Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab India
| | - Jaspreet Kaur Rajput
- Department of Chemistry, Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab India
| |
Collapse
|
13
|
Al-Araji DD, Al-Ani FH, Alsalhy QF. Modification of polyethersulfone membranes by Polyethyleneimine (PEI) grafted Silica nanoparticles and their application for textile wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2022:1-17. [PMID: 35244524 DOI: 10.1080/09593330.2022.2049890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In the current work, a novel nanocomposite membrane for wastewater treatment applications has been synthesized. A hydrophilic nature nanoadditive comprised grafting polyethylenimine (PEI) molecules onto the surfaces of silica nanoparticles (SiO2 NPs) was synthesized then entrapped within a polyethersulfone polymeric matrix at disparate ratios via the classical phase inversion technique. A series of experimental tools were employed to probe the influence of SiO2-PEI on the surface topography and morphological changes, hydrophilicity, porosity, surface chemistry as well as permeation and dyes retention characteristics of the new nanocomposite. Upon increasing the nanoadditives content (up to 0.7 wt. % SiO2- PEI), clear cross-sectional changes were depicted along with a noticeable decline in the water contact angle by 29.7%. Performance evaluation measurements against synthetic dye solutions were disclosed explicit enhancement in both; retention and permeation characteristics of the nanocomposite membranes. Besides, prolonged permeation test has maintained high flux stability against real textile wastewater; implying better resistance and self-cleaning characteristics have been achieved.
Collapse
Affiliation(s)
- Dalya D Al-Araji
- Civil Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | - Faris H Al-Ani
- Civil Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
14
|
Shin JH, Yang JE, Park JE, Jeong SW, Choi SJ, Choi YJ, Jeon J. Rapid and Efficient Removal of Anionic Dye in Water Using a Chitosan-Coated Iron Oxide-Immobilized Polyvinylidene Fluoride Membrane. ACS OMEGA 2022; 7:8759-8766. [PMID: 35309453 PMCID: PMC8928519 DOI: 10.1021/acsomega.1c06991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 05/14/2023]
Abstract
Anionic dyes are one of the most serious contaminants in water as these molecules are known to be toxic to many living organisms. Herein, we report the development of functionalized polyvinylidene fluoride membranes modified with chitosan-coated iron oxide nanomaterials (Fe-PVDF) for the efficient treatment of anionic dye-contaminated water. Aqueous solutions of anionic dyes could be captured rapidly by passing through the functionalized membrane under reduced pressure. Under neutral conditions, Fe-PVDF showed a maximum removal capacity of 74.6 mg/g for Evans blue (EB) through the adsorption process. In addition, the adsorption capacity was significantly enhanced up to 434.78 mg/g under acidic conditions. The adsorption process for EB matched well with the Langmuir model, indicating monolayer adsorption of the dye to the membrane surface. Moreover, Fe-PVDF can be reusable by a simple washing step in an alkaline solution, and thus, the composite membrane was applied several times without a significant decrease in its adsorption performance. The same composite membrane was further applied to the removal of five other different anionic dyes with high efficiencies. The adsorption mechanism can be explained by the electrostatic interaction between the positively charged chitosan and the negatively charged dye as well as the affinity of the sulfate groups in dye molecules for the surface of the iron oxide nanoparticles. The easy preparation and rapid decolorization procedures make this composite membrane suitable for efficient water treatment.
Collapse
Affiliation(s)
- Jun-Ho Shin
- Department
of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic
of Korea
| | - Jung Eun Yang
- Department
of Advanced Process Technology and Fermentation, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jung Eun Park
- Department
of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic
of Korea
| | - Sun-Wook Jeong
- School
of Environmental Engineering, University
of Seoul, Seoul 02504, Republic of Korea
| | - Sang-June Choi
- School
of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic
of Korea
| | - Yong Jun Choi
- School
of Environmental Engineering, University
of Seoul, Seoul 02504, Republic of Korea
| | - Jongho Jeon
- Department
of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic
of Korea
| |
Collapse
|
15
|
Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. NANOMATERIALS 2022; 12:nano12050791. [PMID: 35269279 PMCID: PMC8912468 DOI: 10.3390/nano12050791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Ordered mesoporous Santa Barbara amorphous (SBA-15) materials have high surface areas and are widely used in adsorption, separation, filtration, and heterogeneous catalytic processes. However, SBA-15 surfaces contain hydroxyl groups that are unsuited to the adsorption of organic pollutants; thus, SBA-15 must be chemically modified to promote its adsorption activity. In this study, amino-functionalized nanoporous SBA-15 was fabricated by employing sodium silicate as a precursor. The structural characteristics of the prepared composites were examined using thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, transmission electron microscopy, and surface area analysis. The prepared SBA-15 had a large pore size (6.46–7.60 nm), large pore volume (1.037–1.105 cm3/g), and high surface area (546–766 m2/g). Functionalization caused a reduction in the SBA-15 pore volume and surface area, whereas amino groups that promoted an interaction between adsorbates and solids facilitated solute adsorption. The adsorption of tannic acid (TA) onto amino-modified silica composites (SBA-15 and 3-aminopropyltriethoxysilane (SBA-15/APTES) and SBA-15 and pentaethylenehexamine (SBA-15/PEHA)) was studied. Their adsorption capacities were affected by solution temperature, solution pH, agitation speed, adsorbent dosage, and initial TA concentration. The maximum adsorption capacities for SBA-15/APTES and SBA-15/PEHA were 485.18 and 413.33 mg/g, respectively, with SBA-15/APTES exhibiting ultrafast removal of TA (98.61% removal rate at 15 min). In addition, this study explored the thermodynamics, adsorption isotherms, and kinetics. A comparison of two types of amino-functionalized SBA-15 was used for the first time to adsorb TA, which providing valuable information on TA adsorption on high adsorption capacity materials in water media.
Collapse
|
16
|
Wu Z, Wang X, Yao J, Zhan S, Li H, Zhang J, Qiu Z. Synthesis of polyethyleneimine modified CoFe2O4-loaded porous biochar for selective adsorption properties towards dyes and exploration of interaction mechanisms. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Thorat MN, Jagtap A, Dastager SG. Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
|
19
|
Yang Y, Sun Y, Song X, Yu J. Separation of mono- and di-valent ions from seawater reverse osmosis brine using selective electrodialysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18754-18767. [PMID: 32651781 DOI: 10.1007/s11356-020-10014-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
As water scarcity has become a serious global issue, seawater reverse osmosis (SWRO) is considered as a promising technique to expand traditional water supplies. However, the reject brine from SWRO systems is still a major environmental concern. In this research, the monovalent selective electrodialysis (S-ED) was used to separate and recover one of the primary components, i.e., sodium chloride, from the SWRO brine, thereby avoiding the direct discharge of the brine and achieving the brine valorization. The permselectivity of selective ion-exchange membranes (IEMs) was elucidated by comparing with the standard IEMs in structure-property via membrane characterization techniques. Results indicated that the permselectivity of Selemion CSO membrane was attributed to the positive-charged layer with a low sulfonate/ammonium ratio of 1.28. Whereas the permselectivity of Selemion ASV membrane resulted from the highly cross-linked layer, according to the similar content of the fixed quaternary amines and the shift of the C‑N absorption peak. In addition, the effects of the current density and temperature on the membrane performance were studied, including permselectivity ([Formula: see text] and [Formula: see text]), Na+ recovery, and specific energy consumption (ESEC). Finally, the NaCl-rich brine with the total dissolved solid (TDS) value of 167.5 ± 3.3 g/L was obtained using SWRO brine with the initial TDS of 76.8 g/L. The Na+/Mg2+ mass ratio of the concentrate was 222.4, compared with the initial value of 9.7 in SWRO brine.
Collapse
Affiliation(s)
- Ye Yang
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzhu Sun
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China.
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xingfu Song
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianguo Yu
- Engineering Research Center of Resource Process Engineering, Ministry of Education, Shanghai, China.
- National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
20
|
Shair AS, Dena ASA, El-Sherbiny IM. Matrix-dispersed PEI-coated SPIONs for fast and efficient removal of anionic dyes from textile wastewater samples: Applications to triphenylmethanes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119301. [PMID: 33348092 DOI: 10.1016/j.saa.2020.119301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Textile industries produce a massive amount of wastewater that should be cleaned from toxic substances such as fats, colors and any chemicals used during the production steps. Water-treatment methods should be facile, economic, fast and efficient. Here, we report the synthesis, characterization and application of matrix-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) for the removal of anionic dyes from wastewater released from textile industrial plants. The matrix-dispersed SPIONs were synthesized via a solvothermal method in which a polyethyleneimine (PEI) shell was deposited onto SPIONs in order to add positive charges to their surfaces. TEM images revealed that the size of PEI-coated and uncoated SPIONs is 30-50 and 15-30 nm, respectively. Moreover, TEM images depicted that the as synthesized PEI-coated SPIONs show matrix-dispersed structures. Furthermore, the particle size obtained with DLS measurements was found to be 87.93 and 158.9 nm for uncoated and PEI-coated SPIONs, respectively. Bromophenol blue (BPB) and bromocresol green (BCG), two triphenylmethanes, were used as model anionic dyes. FTIR spectroscopy revealed the interaction between the PEI surface coating and the anionic dyes. The apparent ζ-potential measurements showed that the surface negative charges decreased from -13.5 to -4.03 mV upon coating with PEI. In order to investigate the anionic dyes removal/entrapment efficiency of SPIONs, a new derivative visible spectrophotometric method was developed for the simultaneous quantification of BPB and BCG before and after treatment where the linear ranges were 6.98-27.9 and 6.70-26.8 μg/mL and the recovery values were in the ranges of 98.10-101.7% and 99.55-104.8% for BCG and BPB, respectively. It was found that the uptake/adsorption capacity of PEI-coated SPIONs is ca.15.5 and 11.3 mg/g for BCG and BPB, respectively. The calculated thermodynamic parameters for the adsorption of BCG (ΔH = 37.08 J/mol and ΔS = 120.89 J/mol K) and BPB (ΔH = 181.26 J/mol and ΔS = 596.46 J/mol K) and the negative ΔG values indicate that the adsorption is thermodynamically favored. The adsorption processes were found to follow the pseudo-second-order kinetic model with r2 values of 0.9982 and 0.9956 for BCG and BPB, respectively.
Collapse
Affiliation(s)
- Alaa S Shair
- Center for Materials Science, Zewail City of Science and Technology, 6 of October City, Giza 12578, Egypt
| | - Ahmed S Abo Dena
- Center for Materials Science, Zewail City of Science and Technology, 6 of October City, Giza 12578, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, Zewail City of Science and Technology, 6 of October City, Giza 12578, Egypt.
| |
Collapse
|
21
|
Ji Y, Zhang W, Yang H, Ma F, Xu F. Green synthesis of poly(pyrrole methane) for enhanced adsorption of anionic and cationic dyes from aqueous solution. J Colloid Interface Sci 2021; 590:396-406. [PMID: 33549897 DOI: 10.1016/j.jcis.2021.01.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
The presence and accumulation of dyestuff in the environment is posing great harm to human beings. In this study, a novel poly(pyrrole methane) (PPm) adsorbent with abundant OH was greenly synthesized via a facile polymerization method. Its physicochemical properties were characterized in detail. Furthermore, the adsorption performance of PPm for anionic dye (acid red G, ARG) and cationic dye (methylene blue, MB) was comparatively studied with a typical dye adsorbent (polyprrrole, PPy). The results revealed that the adsorption of ARG or MB onto PPm followed pseudo-second-order model and Langmuir mode. The adsorption processes were endothermic and spontaneous. The maximum capacities of PPm to adsorb ARG and MB were 555.56 mg/g and 99.11 mg/g, which were about 10 and 2 times higher than that of PPy, respectively. PPm could be reused for 5 cycles without a significant decrease of its adsorption rate. The adsorption of ARG and MB is mainly attributed to electrostatic interaction and hydrogen bonding between ARG or MB and OH in PPm. Additionally, ARG could be adsorbed by ion exchange with the doped Cl- in PPm. Therefore, this study provides a new strategy to synthesis efficient adsorbent for the removal of both anionic and cationic dyes.
Collapse
Affiliation(s)
- Yajun Ji
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang 464000, China.
| | - Wenlong Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honghui Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fang Ma
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang 464000, China
| | - Feiya Xu
- Analysis & Testing Center, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
22
|
Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials. SUSTAINABILITY 2021. [DOI: 10.3390/su13031502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.
Collapse
|
23
|
Yan Z, Wu T, Fang G, Ran M, Shen K, Liao G. Self-assembly preparation of lignin-graphene oxide composite nanospheres for highly efficient Cr(vi) removal. RSC Adv 2021; 11:4713-4722. [PMID: 35424380 PMCID: PMC8694538 DOI: 10.1039/d0ra09190a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g-1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g-1 in 200 mg g-1 Cr(vi) solution. Therefore, the prepared lignin-GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.
Collapse
Affiliation(s)
- Zhenyu Yan
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210042 Jiangsu China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210042 Jiangsu China
| | - Miao Ran
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, CAF, Jiangsu Key Lab. of Biomass Energy and Material Nanjing 210042 Jiangsu China
| | - Guangfu Liao
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| |
Collapse
|
24
|
Tang Y, Zhao J, Zhang Y, Zhou J, Shi B. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization. CHEMOSPHERE 2021; 263:127987. [PMID: 32835980 DOI: 10.1016/j.chemosphere.2020.127987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The high value-added use of tannery solid waste and elimination of tannery liquid waste in the leather-making industry have attracted widespread attention. In this study, a MgO-doped biochar (MgO/BC) adsorbent was successfully prepared by utilizing tannery solid waste (i.e., non-tanned hide wastes) as the biomass material for dye removal from tannery wastewater. Characterization results indicated that MgO was uniformly embedded into the porous BC structure. The adsorption capacity of acid orange II by MgO/BC reached up to 448.4 mg g-1, which drastically exceeded the pure BC and other reported adsorbents. The adsorption behavior of acid orange II by MgO/BC matched nicely with Langmuir isotherm and pseudo-second-order kinetic model. This satisfactory adsorption capacity of MgO/BC for acid orange II was mainly due to the large specific surface area and the enhanced electrostatic interaction. According to the BET, zeta potential and XPS analysis, the possible mechanism towards acid orange II removal was attributed to the pore filling, surface complexation, electrostatic attraction and π-π interaction. In addition, MgO/BC showed the efficient removal towards anionic dyes from actual tannery wastewater. This work could provide guidance for the value-added utilization of tannery solid waste and a practical way to remove dyes from tannery wastewater.
Collapse
Affiliation(s)
- Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jieting Zhao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Yingjiao Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China.
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu, 610065, PR China
| |
Collapse
|
25
|
Md. Munjur H, Hasan MN, Awual MR, Islam MM, Shenashen M, Iqbal J. Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114356] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Fabrication of carboxymethyl functionalized β-cyclodextrin-modified graphene oxide for efficient removal of methylene blue. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Chang Y, Dou N, Liu M, Jiang M, Men J, Cui Y, Li R, Zhu Y. Efficient removal of anionic dyes from aqueous solution using CTAB and β-cyclodextrin-induced dye aggregation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Duan HL, Deng X, Wang J, Fan L, Yang YC, Zhang ZQ. Ethanolamine- and amine-functionalized porous cyclodextrin polymers for efficient removal of anionic dyes from water. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Xiao C, Lin J. PAMPS- graft-Ni 3Si 2O 5(OH) 4 multiwalled nanotubes as a novel nano-sorbent for the effective removal of Pb(ii) ions. RSC Adv 2020; 10:7619-7627. [PMID: 35492162 PMCID: PMC9049933 DOI: 10.1039/c9ra10971d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/03/2020] [Indexed: 11/30/2022] Open
Abstract
The existence of Pb(ii) ions in water systems poses significant potential hazards to public health and the environment. In the present study, poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) brush-modified Ni3Si2O5(OH)4 nanotubes were prepared, and their adsorption efficiency against the Pb(ii) ions was investigated. The characterization results of FTIR spectroscopy, TGA, TEM, and XPS indicated the successful grafting of PAMPS on the surface of free Ni3Si2O5(OH)4 NTs, and the prepared PAMPS-g-Ni3Si2O5(OH)4 NTs exhibited a 6-8 nm grafting layer, which could provide abundant binding sites for metal adsorption. During the Pb(ii) removal process, a pH-dependent adsorption behavior was observed, and the adsorption processes fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm model. Compared with unmodified Ni3Si2O5(OH)4, the PAMPS-g-Ni3Si2O5(OH)4 NTs exhibited obviously faster adsorption of Pb(ii) and higher equilibrium adsorption capacity for the removal of Pb(ii). The maximum adsorption capacity calculated via the Langmuir isotherm model was 0.653 mmol g-1 (135.3 mg g-1) at 298 K. In a metal coexisting system, the total adsorption capacity of the NTs was increased; this indicated the potential of the proposed NTs in the removal of Pb(ii) from metal coexisting wastewater. This study showed the significant potential of PAMPS-g-Ni3Si2O5(OH)4 NTs in the effective removal of Pb(ii).
Collapse
Affiliation(s)
- Chunmei Xiao
- College of Materials Science & Engineering, Huaqiao University 361021 China
- College of Chemical Engineering and Materials, Quanzhou Normal University Quanzhou 362002 China
| | - Jianming Lin
- College of Materials Science & Engineering, Huaqiao University 361021 China
| |
Collapse
|
30
|
Aldawsari AM. Fe 3O 4@ABDA nanocomposite as a new adsorbent effective removal of methylene blue dye: isotherm, kinetic, and thermodynamic study. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1722169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Abdullah Mohammed Aldawsari
- Chemistry Department, College of Arts & Science, Wadi Al-dawaser, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
31
|
Godiya CB, Xiao Y, Lu X. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Int J Biol Macromol 2020; 144:671-681. [DOI: 10.1016/j.ijbiomac.2019.12.139] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023]
|
32
|
Tang Y, Li Y, Zhang Y, Mu C, Zhou J, Zhang W, Shi B. Nonswelling Silica–Poly(acrylic acid) Composite for Efficient and Simultaneous Removal of Cationic Dye, Heavy Metal, and Surfactant-Stabilized Emulsion from Wastewater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yuqi Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Yingjiao Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Chuanhui Mu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Wenhua Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| |
Collapse
|
33
|
Kwak HW, Lee H, Lee KH. Surface-modified spherical lignin particles with superior Cr(VI) removal efficiency. CHEMOSPHERE 2020; 239:124733. [PMID: 31526991 DOI: 10.1016/j.chemosphere.2019.124733] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Lignin, natural aromatic polymer derived from plant dry matter, is second abundant biopolymer. Recently, interest in applications of lignin, especially as an adsorbent material is increasing. However, the physicochemical complexity of lignin significantly reduces access to practical environmental remediation processes. Also, there is a limitation because the adsorption performance of the pristine lignin materials is not superior to that of commercial adsorbent and ion exchange resin material. In this study, spherical lignin particles with high physicochemical stability and excellent Cr(VI) adsorption capacity are prepared using a polyethylenimine (PEI) modification strategy. This modification process significantly improves the mechanical properties and water stability of lignin by complementing the instability of lignin particles. In addition, the PEI-lignin particles exhibit a superior Cr(VI) removal capability (657.9 mg/g, the highest value for a PEI-modified natural adsorbent), which is attributed to their structural stability and introduced amine functional groups. The Cr(VI) removal with PEI-lignin particles is performed via intra-particle diffusion and adsorption followed by covalent bonding combined with a reduction process. Moreover, the PEI-lignin particles exhibit excellent reusability, which sustains their high adsorption efficiency over a long and repeated adsorption period. The results herein strongly support the potential use of PEI-lignin particles as a high performance bio-sorption material for heavy metal removal and its detoxification in aqueous wastewater streams. Evidently, this lignin-based bio-sorbent manufacturing system can provide sustainable bio-resource recycling and cost efficiency.
Collapse
Affiliation(s)
- Hyo Won Kwak
- Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Hyunji Lee
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Ki Hoon Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|