1
|
Du M, Liu J, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution. J Environ Sci (China) 2025; 147:74-82. [PMID: 39003085 DOI: 10.1016/j.jes.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 07/15/2024]
Abstract
Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
3
|
Wu X, Cai C, Cen Q, Fu G, Lu X, Zheng H, Zhang Q, Cui X, Liu Y. Efficient catalytic removal of phenolic pollutants by laccase from Coriolopsis gallica: Binding interaction and polymerization mechanism. Int J Biol Macromol 2024; 279:135272. [PMID: 39226979 DOI: 10.1016/j.ijbiomac.2024.135272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Laccase is a green catalyst that can efficiently catalyze phenolic pollutants, and its catalytic efficiency is closely related to the interaction between enzyme and substrates. To investigate the binding effects between enzyme and phenolic pollutants, phenol, p-chlorophenol, and bisphenol A were used as substrates in this study. We focused on the removal and catalytic mechanism of these pollutants in water using yellow laccase derived from Coriolopsis gallica. The enzymatic catalytic products were characterized using Ultraviolet-Visible Absorption Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and High-Resolution Mass Spectrometry (HRMS), and the catalytic mechanism of laccase on phenolic pollutants was further explored by molecular docking. Based on the structural characterization and molecular docking results, the possible polymerization pathways of these phenolic compounds were speculated. Laccase catalyzed phenol to produce phenolic hydroxyl radicals, their para-radicals, and ortho-radicals, which polymerized to form oligomers linked by benzene‑oxygen-benzene and benzene-benzene. P-chlorophenol produced phenolic hydroxyl radicals and their ortho-radicals, polymerizing to form oligomers connected by benzene‑oxygen-benzene or benzene-benzene. The CC bond of the isopropyl group of bisphenol A broke to formed an intermediate product, which was further polymerized to formed a benzene‑oxygen-benzene linked oligomer.
Collapse
Affiliation(s)
- Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Changjun Cai
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qingjing Cen
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China.
| | - Xuan Lu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
4
|
Rincon I, Hidalgo T, Armani G, Rojas S, Horcajada P. Enzyme_Metal-Organic Framework Composites as Novel Approach for Microplastic Degradation. CHEMSUSCHEM 2024; 17:e202301350. [PMID: 38661054 DOI: 10.1002/cssc.202301350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is one of the main worldwide environmental concerns. Our lifestyle involves persistent plastic consumption, aggravating the low efficiency of wastewater treatment plants in its removal. Nano/microplastics are accumulated in living beings, pushing to identify new water remediation strategies to avoid their harmful effects. Enzymes (e. g., Candida rugosa-CrL) are known natural plastic degraders as catalysts in depolymerization reactions. However, their practical use is limited by their stability, recyclability, and economical concerns. Here, enzyme immobilization in metal-organic frameworks (CrL_MOFs) is originally presented as a new plastic degradation approach to achieve a boosted plastic decomposition in aqueous systems while allowing the catalyst cyclability. Bis-(hydroxyethyl)terephthalate (BHET) was selected as model substrate for decontamination experiments for being the main polyethylene terephthalate (PET) degradation product. Once in contaminated water, CrL_MOFs can eliminate BHET (37 %, 24 h), following two complementary mechanisms: enzymatic degradation (CrL action) and byproducts adsorption (MOF effect). As a proof-of-concept, the capacity of a selected CrL_MOF composite to eliminate the BHET degradation products and its reusability are also investigated. The potential of these systems is envisioned in terms of improving enzyme cyclability, reducing costs along with feasible co-adsorption of plastic byproducts and other harmful contaminants, to successfully remove them in a single step.
Collapse
Affiliation(s)
- Irene Rincon
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Giacomo Armani
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
- Department of Inorganic Chemistry, University of Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de La Sagra, 3, Móstoles, 28935, Madrid, Spain
| |
Collapse
|
5
|
Kandelous YM, Nikpassand M, Fekri LZ. Recent Focuses in the Syntheses and Applications of Magnetic Metal-Organic Frameworks. Top Curr Chem (Cham) 2024; 382:30. [PMID: 39369352 DOI: 10.1007/s41061-024-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
In this article, we examine the recent uses of magnetic metal-organic frameworks (MMOFs). MMOFs can be used in various fields such as water purification, laboratory, food, environment, etc. Their materials can be composed of different metals and ligands, each of which has its own properties. Also, the presence of a magnetic property in these absorbents adds good features such as easy separation, faster absorption, and better interaction with other particles, which improves their application and performance. In recent years, various types of these compounds have been made, and, in this article, while classifying them, we will discuss the structure and application of some MMOFs.
Collapse
Affiliation(s)
| | - Mohammad Nikpassand
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Leila Zare Fekri
- Department of Chemistry, Payame Noor University (PNU), PO Box, Tehran, 19395-4697, Iran
| |
Collapse
|
6
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Subrahmanian S, Sundararaman S, Kasivelu G. Carbon and metal based magnetic porous materials - Role in drug removal: A Comprehensive review. CHEMOSPHERE 2024; 361:142533. [PMID: 38849099 DOI: 10.1016/j.chemosphere.2024.142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Development of effective adsorbents for the removal of contaminants from wastewater is indispensable due to increasing water scarcity and a lack of pure drinking water, which are prevailing as a result of rapid industrialization and population growth. Recently, the development of new adsorbents and their effective use without generating secondary waste is receiving huge consideration. In order to protect the environment from primary and secondary pollution, the development of adsorbents from wastes and their recycling have become conventional practices aimed at waste management. As a result, significant progress has been made in the synthesis of new porous carbon and metal-organic frameworks as adsorbents, with the objective of using them for the removal of pollutants. While many different kinds of pollutants are produced in the environment, drug pollutants are the most vicious because of their tendency to undergo significant structural changes, producing metabolites and residues with entirely different properties compared to their parent compounds. Chemical reactions involving oxidation, hydrolysis, and photolysis transform drugs. The resulting compounds can have detrimental effects on living beings that are present in soil and water. This review stresses the development of adsorbents with adjustable porosities for the broad removal of primary drug pollutants and their metabolites, which are formed as a result of drug transformations in environmental matrices. This keeps adsorbents from building up in the environment and prevents them from becoming significant pollutants in the future. Additionally, it stops secondary pollution caused by the deterioration of the used adsorbents. Focus on the development of effective adsorbents with flexible porosities allows for the complete removal of coexisting contaminants and makes a substantial contribution to wastewater management. In order to concentrate more on the development of flexible pore adsorbents, it is crucial to comprehend the milestones reached in the research and applications of porous magnetic adsorbents based on metal and carbon, which are discussed here.
Collapse
Affiliation(s)
- Supriya Subrahmanian
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India.
| | - Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai -600119, India
| |
Collapse
|
8
|
Aghaee M, Salehipour M, Rezaei S, Mogharabi-Manzari M. Bioremediation of organic pollutants by laccase-metal-organic framework composites: A review of current knowledge and future perspective. BIORESOURCE TECHNOLOGY 2024; 406:131072. [PMID: 38971387 DOI: 10.1016/j.biortech.2024.131072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Immobilized laccases are widely used as green biocatalysts for bioremediation of phenolic pollutants and wastewater treatment. Metal-organic frameworks (MOFs) show potential application for immobilization of laccase. Their unique adsorption properties provide a synergic effect of adsorption and biodegradation. This review focuses on bioremediation of wastewater pollutants using laccase-MOF composites, and summarizes the current knowledge and future perspective of their biodegradation and the enhancement strategies of enzyme immobilization. Mechanistic strategies of preparation of laccase-MOF composites were mainly investigated via physical adsorption, chemical binding, and de novo/co-precipitation approaches. The influence of architecture of MOFs on the efficiency of immobilization and bioremediation were discussed. Moreover, as sustainable technology, the integration of laccases and MOFs into wastewater treatment processes represents a promising approach to address the challenges posed by industrial pollution. The MOF-laccase composites can be promising and reliable alternative to conventional techniques for the treatment of wastewaters containing pharmaceuticals, dyes, and phenolic compounds. The detailed exploration of various immobilization techniques and the influence of MOF architecture on performance provides valuable insights for optimizing these composites, paving the way for future advancements in environmental biotechnology. The findings of this research have the potential to influence industrial wastewater treatment and promoting cleaner treatment processes and contributing to sustainability efforts.
Collapse
Affiliation(s)
- Mehdi Aghaee
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861 Sari 4847193698, Iran
| | - Masoud Salehipour
- Department of Biology, Faculty of Biological Sciences, Parand Branch of Islamic Azad University, P.O. Box 37613-96361, Parand, Tehran, Iran
| | - Shahla Rezaei
- Department of Biology, Faculty of Biological Sciences, Parand Branch of Islamic Azad University, P.O. Box 37613-96361, Parand, Tehran, Iran
| | - Mehdi Mogharabi-Manzari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861 Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Zhang W, Zhang M, Song J, Zhang Y, Nian B, Hu Y. Spacer arm of ionic liquids facilitated laccase immobilization on magnetic graphene enhancing its stability and catalytic performance. CHEMOSPHERE 2024; 362:142735. [PMID: 38950743 DOI: 10.1016/j.chemosphere.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To fulfill the requirements of environmental protection, a magnetically recoverable immobilized laccase has been developed for water pollutant treatment. In order to accomplish this objective, we propose a polydopamine-coated magnetic graphene material that addresses the challenges associated with accumulation caused by electrostatic interactions between graphene and enzyme molecules, which can lead to protein denaturation and inactivation. To achieve this, we present a polydopamine-coated magnetic graphene material that binds to the enzyme molecule through flexible spacer arms formed by ionic liquids. The immobilized laccase exhibited a good protective effect on laccase and showed a high stability and recycling ability. Laccase-ILs-PDA-MGO has a wider pH and temperature range and retains about 80% of its initial activity even after incubation at 50 °C for 2 h, which is 2.2 times more active than free laccase. Furthermore, the laccase-ILs-PDA-MGO exhibited a remarkable removal efficiency of 97.0% and 83.9% toward 2,4-DCP and BPA within 12 h at room temperature. More importantly, laccase-ILs-PDA-MGO can be recovered from the effluent and used multiple times for organic pollutant removal, while maintaining a relative removal efficiency of 80.6% for 2,4-DCP and 81.4% for BPA after undergoing seven cycles. In this study, a strategy for laccase immobilization by utilizing ILs spacer arms to modify GO aims to provide valuable insights into the advancement of efficient enzyme immobilization techniques and the practical application of immobilized enzymes in wastewater treatment.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Jifei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Wang H, Kou X, Gao R, Huang S, Chen G, Ouyang G. Enzyme-Immobilized Porous Crystals for Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11869-11886. [PMID: 38940189 DOI: 10.1021/acs.est.4c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Developing efficient technologies to eliminate or degrade contaminants is paramount for environmental protection. Biocatalytic decontamination offers distinct advantages in terms of selectivity and efficiency; however, it still remains challenging when applied in complex environmental matrices. The main challenge originates from the instability and difficult-to-separate attributes of fragile enzymes, which also results in issues of compromised activity, poor reusability, low cost-effectiveness, etc. One viable solution to harness biocatalysis in complex environments is known as enzyme immobilization, where a flexible enzyme is tightly fixed in a solid carrier. In the case where a reticular crystal is utilized as the support, it is feasible to engineer next-generation biohybrid catalysts functional in complicated environmental media. This can be interpreted by three aspects: (1) the highly crystalline skeleton can shield the immobilized enzyme against external stressors. (2) The porous network ensures the high accessibility of the interior enzyme for catalytic decontamination. And (3) the adjustable and unambiguous structure of the reticular framework favors in-depth understanding of the interfacial interaction between the framework and enzyme, which can in turn guide us in designing highly active biocomposites. This Review aims to introduce this emerging biocatalysis technology for environmental decontamination involving pollutant degradation and greenhouse gas (carbon dioxide) conversion, with emphasis on the enzyme immobilization protocols and diverse catalysis principles including single enzyme catalysis, catalysis involving enzyme cascades, and photoenzyme-coupled catalysis. Additionally, the remaining challenges and forward-looking directions in this field are discussed. We believe that this Review may offer a useful biocatalytic technology to contribute to environmental decontamination in a green and sustainable manner and will inspire more researchers at the intersection of the environment science, biochemistry, and materials science communities to co-solve environmental problems.
Collapse
Affiliation(s)
- Hao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Siming Huang
- Guangzhou Municipal and Guangzhou Province Key Laboratory of Molecular Target & Clinical Phamacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Phamaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
11
|
Li Y, Liu H, Wang S, Fang W, Jiang X, Zhang G, Zhao Y. Fast screening of α-glucosidase inhibitors from Ginkgo biloba leaf by using α-glucosidase immobilized on magnetic metal-organic framework. J Sep Sci 2024; 47:e2400342. [PMID: 39031453 DOI: 10.1002/jssc.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
In this study, a ligand fishing method for the screening of α-glucosidase inhibitors from Ginkgo biloba leaf was established for the first time using α-glucosidase immobilized on the magnetic metal-organic framework. The immobilized α-glucosidase exhibited enhanced resistance to temperature and pH, as well as good thermal stability and reusability. Two ligands, namely quercitrin and quercetin, were screened from Ginkgo biloba leaf and identified by ultra-high performance liquid chromatography-tandem mass spectrometry. The half-maximal inhibitory concentration values for quercitrin and quercetin were determined to be 105.69 ± 0.39 and 83.49 ± 0.79 µM, respectively. Molecular docking further confirmed the strong inhibitory effect of these two ligands. The proposed approach in this study demonstrates exceptional efficiency in the screening of α-glucosidase inhibitors from complex natural medicinal plants, thus exhibiting significant potential for the discovery of antidiabetic compounds.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, China
| | - Wei Fang
- School of Science, Xihua University, Chengdu, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
| |
Collapse
|
12
|
Wang Z, Wang R, Geng Z, Luo X, Jia J, Pang S, Fan X, Bilal M, Cui J. Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. Crit Rev Biotechnol 2024; 44:674-697. [PMID: 37032548 DOI: 10.1080/07388551.2023.2189548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/11/2023]
Abstract
Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.
Collapse
Affiliation(s)
- Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Ruirui Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Zixin Geng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xiuyan Luo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Jiahui Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Saizhao Pang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xianwei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guang Xi University, Nanning, China
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
13
|
El-Sayed GM, Agwa MM, Emam MTH, Kandil H, Abdelhamid AE, Nour SA. Utilizing immobilized recombinant serine alkaline protease from Bacillus safensis lab418 in wound healing: Gene cloning, heterologous expression, optimization, and characterization. Int J Biol Macromol 2024; 270:132286. [PMID: 38735612 DOI: 10.1016/j.ijbiomac.2024.132286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Microbial proteases have proven their efficiency in various industrial applications; however, their application in accelerating the wound healing process has been inconsistent in previous studies. In this study, heterologous expression was used to obtain an over-yielding of the serine alkaline protease. The serine protease-encoding gene aprE was isolated from Bacillus safensis lab 418 and expressed in E. coli BL21 (DE3) using the pET28a (+) expression vector. The gene sequence was assigned the accession number OP610065 in the NCBI GenBank. The open reading frame of the recombinant protease (aprEsaf) was 383 amino acids, with a molecular weight of 35 kDa. The yield of aprEsaf increased to 300 U/mL compared with the native serine protease (SAFWD), with a maximum yield of 77.43 U/mL after optimization conditions. aprEsaf was immobilized on modified amine-functionalized films (MAFs). By comparing the biochemical characteristics of immobilized and free recombinant enzymes, the former exhibited distinctive biochemical characteristics: improved thermostability, alkaline stability over a wider pH range, and efficient reusability. The immobilized serine protease was effectively utilized to expedite wound healing. In conclusion, our study demonstrates the suitability of the immobilized recombinant serine protease for wound healing, suggesting that it is a viable alternative therapeutic agent for wound management.
Collapse
Affiliation(s)
- Ghada M El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Egypt
| | - Mona M Agwa
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Egypt
| | - Maha T H Emam
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Heba Kandil
- Polymers and Pigments Department, National Research Centre, Egypt
| | | | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Egypt
| |
Collapse
|
14
|
Ilić N, Davidović S, Milić M, Lađarević J, Onjia A, Dimitrijević-Branković S, Mihajlovski K. Green biocatalyst for decolorization of azo dyes from industrial wastewater: Coriolopsis trogii 2SMKN laccase immobilized on recycled brewer's spent grain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32072-32090. [PMID: 38644428 DOI: 10.1007/s11356-024-33367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
This study presents an innovative approach for the reuse and recycling of waste material, brewer's spent grain (BSG) for creating a novel green biocatalyst. The same BSG was utilized in several consecutive steps: initially, it served as a substrate for the cultivation and production of laccase by a novel isolated fungal strain, Coriolopsis trogii 2SMKN, then, it was reused as a carrier for laccase immobilization, aiding in the process of azo dye decolorization and finally, reused as recycled BSG for the second successful laccase immobilization for six guaiacol oxidation, contributing to a zero-waste strategy. The novel fungal strain produced laccase with a maximum activity of 171.4 U/g after 6 days of solid-state fermentation using BSG as a substrate. The obtained laccase exhibited excellent performance in the decolorization of azo dyes, both as a free and immobilized, at high temperatures, without addition of harmful mediators, achieving maximum decolorization efficiencies of 99.0%, 71.2%, and 61.0% for Orange G (OG), Congo Red, and Eriochrome Black T (EBT), respectively. The immobilized laccase on BSG was successfully reused across five cycles of azo dye decolorization process. Notably, new green biocatalyst outperformed commercial laccase from Aspergillus spp. in the decolorization of OG and EBT. GC-MS and LC-MS revealed azo-dye degradation products and decomposition pathway. This analysis was complemented by antimicrobial and phytotoxicity tests, which confirmed the non-toxic nature of the degradation products, indicating the potential for safe environmental disposal.
Collapse
Affiliation(s)
- Nevena Ilić
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, 11120, Serbia
| | - Slađana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| | - Marija Milić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| | - Jelena Lađarević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia
| | | | - Katarina Mihajlovski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11120, Serbia.
| |
Collapse
|
15
|
Tao J, Song S, Qu C. Recent Progress on Conversion of Lignocellulosic Biomass by MOF-Immobilized Enzyme. Polymers (Basel) 2024; 16:1010. [PMID: 38611268 PMCID: PMC11013631 DOI: 10.3390/polym16071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The enzyme catalysis conversion of lignocellulosic biomass into valuable chemicals and fuels showed a bright outlook for replacing fossil resources. However, the high cost and easy deactivation of free enzymes restrict the conversion process. Immobilization of enzymes in metal-organic frameworks (MOFs) is one of the most promising strategies due to MOF materials' tunable building units, multiple pore structures, and excellent biocompatibility. Also, MOFs are ideal support materials and could enhance the stability and reusability of enzymes. In this paper, recent progress on the conversion of cellulose, hemicellulose, and lignin by MOF-immobilized enzymes is extensively reviewed. This paper focuses on the immobilized enzyme performances and enzymatic mechanism. Finally, the challenges of the conversion of lignocellulosic biomass by MOF-immobilized enzyme are discussed.
Collapse
Affiliation(s)
- Juan Tao
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Shengjie Song
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (J.T.); (S.S.)
| | - Chen Qu
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 9808577, Japan
| |
Collapse
|
16
|
Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, Zhou Z. Recent Progress and Future Prospects of Laccase Immobilization on MOF Supports for Industrial Applications. Appl Biochem Biotechnol 2024; 196:1669-1684. [PMID: 37378720 DOI: 10.1007/s12010-023-04607-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Laccase is a multicopper oxidoreductase enzyme that can oxidize organics such as phenolic compounds. Laccases appear to be unstable at room temperature, and their conformation often changes in a strongly acidic or alkaline environment, making them less effective. Therefore, rationally linking enzymes with supports can effectively improve the stability and reusability of native enzymes and add important industrial value. However, in the process of immobilization, many factors may lead to a decrease in enzymatic activity. Therefore, the selection of a suitable support can ensure the activity and economic utilization of immobilized catalysts. Metal-organic frameworks (MOFs) are porous and simple hybrid support materials. Moreover, the characteristics of the metal ion ligand of MOFs can enable a potential synergistic effect with the metal ions of the active center of metalloenzymes, enhancing the catalytic activity of such enzymes. Therefore, in addition to summarizing the biological characteristics and enzymatic properties of laccase, this article reviews laccase immobilization using MOF supports, as well as the application prospects of immobilized laccase in many fields.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China
| | - Fangfang Wang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Hui Gao
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Xiaoling Han
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Tong Zhang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Yanlin Yuan
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
| | - Zhiguo Zhou
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China.
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China.
| |
Collapse
|
17
|
Huang W, Zhang W, Chen G, Chen Y, Ma J, Huang D, Zhao Q, Wu B. Visible light-driven oxidation of non-native substrate by laccase attached on Ru-based metal-organic frameworks. J Environ Sci (China) 2024; 137:741-753. [PMID: 37980056 DOI: 10.1016/j.jes.2023.02.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 11/20/2023]
Abstract
Light-induced electron transfer can broaden the substrate range of metalloenzyme. However, the efficiency of photo-enzyme coupling is limited by the poor combination of photosensitizer or photocatalyst with enzyme. Herein, we prepared the nano-photocatalyst MIL-125-NH2@Ru(bpy) by in site embedding ruthenium pyridine-diimine complex [Ru(bpy)3]2+ into metal organic frameworks MIL-125-NH2 and associated it with multicopper oxidase (MCO) laccase. Compared to [Ru(bpy)3]2+, the coupling efficiency of MIL-125-NH2@Ru(bpy)3 for enzymatic oxygen reduction increased by 35.7%. A series of characterizations confirmed that the amino group of laccase formed chemical bonds with the surface defects or hydrophobic groups of MIL-125-NH2@Ru(bpy)3. Consequently, the tight binding accelerated the quenching process and electron transfer between laccase and the immobilized ruthenium pyridine-diimine complex. This work would open an avenue for the synthesis of MOFs photocatalyst towards photo-enzyme coupling.
Collapse
Affiliation(s)
- Wenguang Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guantongyi Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Jun Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China
| | - Dawei Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Qinzheng Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215002, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| |
Collapse
|
18
|
Rajendran HK, Deen MA, Ray JP, Singh A, Narayanasamy S. Harnessing the Chemical Functionality of Metal-Organic Frameworks Toward Removal of Aqueous Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3963-3983. [PMID: 38319923 DOI: 10.1021/acs.langmuir.3c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wastewater treatment has been bestowed with a plethora of materials; among them, metal-organic frameworks (MOFs) are one such kind with exceptional properties. Besides their application in gas adsorption and storage, they are applied in many fields. In orientation toward wastewater treatment, MOFs have been and are being successfully employed to capture a variety of aqueous pollutants, including both organic and inorganic ones. This review sheds light on the postsynthetic modifications (PSMs) performed over MOFs to adsorb and degrade recalcitrant. Modifications performed on the metal nodes and the linkers have been explained with reference to some widely used chemical modifications like alkylation, amination, thiol addition, tandem modifications, and coordinate modifications. The boost in pollutant removal efficacy, reaction rate, adsorption capacity, and selectivity for the modified MOFs is highlighted. The rationale and the robustness of micromotor MOFs, i.e., MOFs with motor activity, and their potential application in the capture of toxic pollutants are also presented for readers. This review also discusses the challenges and future recommendations to be considered in performing PSM over a MOF concerning wastewater treatment.
Collapse
Affiliation(s)
- Harish Kumar Rajendran
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Prakash Ray
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anushka Singh
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
19
|
Islam MA, Nazal MK, Angove MJ, Morton DW, Hoque KA, Reaz AH, Islam MT, Karim SMA, Chowdhury AN. Emerging iron-based mesoporous materials for adsorptive removal of pollutants: Mechanism, optimization, challenges, and future perspective. CHEMOSPHERE 2024; 349:140846. [PMID: 38043616 DOI: 10.1016/j.chemosphere.2023.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Collapse
Affiliation(s)
- Md Aminul Islam
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh.
| | - Mazen K Nazal
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia.
| | - David W Morton
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia
| | - Khondaker Afrina Hoque
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh; Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Akter Hossain Reaz
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Tajul Islam
- Department of Textile Engineering, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - S M Abdul Karim
- Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - Al-Nakib Chowdhury
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| |
Collapse
|
20
|
Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, Rostro-Alanis MDJ, Sánchez-Sánchez M, Blanco RM, Rodríguez-Rodríguez J, Parra-Saldívar R. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Biotechnol Adv 2024; 70:108299. [PMID: 38072099 DOI: 10.1016/j.biotechadv.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Laccases are natural catalysts with remarkable catalytic activity. However, their application is limited by their lack of stability. Metal-organic frameworks (MOFs) have emerged as a promising alternative for enzyme immobilization. Enzymes can be immobilized in MOFs via two approaches: postsynthetic immobilization and in situ immobilization. In postsynthetic immobilization, an enzyme is embedded after MOF formation by covalent interactions or adsorption. In contrast, in in situ immobilization, a MOF is formed in the presence of an enzyme. Additionally, MOFs have exhibited intrinsic enzyme-like activity. These materials, known as nanozymes when they have the ability to replace enzymes in certain catalytic processes, have multiple key advantages, such as low cost, easy preparation, and large surface areas. This review presents a general overview of the most recent advances in both enzyme@MOF biocatalysts and MOF-based nanozymes in different applications, with a focus on laccase, which is one of the most widely investigated enzymes with excellent industrial potential.
Collapse
Affiliation(s)
| | | | - Andrea López-Legarrea
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Dulce Trejo-Ayala
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | | | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
21
|
Zhang W, Zhang Y, Lu Z, Nian B, Yang S, Hu Y. Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118975. [PMID: 37716172 DOI: 10.1016/j.jenvman.2023.118975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shipin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
22
|
Zhang W, Zhang Z, Ji L, Lu Z, Liu R, Nian B, Hu Y. Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects. Bioprocess Biosyst Eng 2023; 46:1513-1531. [PMID: 37458833 DOI: 10.1007/s00449-023-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 11/01/2023]
Abstract
The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants' removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Liran Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
23
|
Al-Sakkaf MK, Basfer I, Iddrisu M, Bahadi SA, Nasser MS, Abussaud B, Drmosh QA, Onaizi SA. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2152. [PMID: 37570470 PMCID: PMC10420689 DOI: 10.3390/nano13152152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.
Collapse
Affiliation(s)
- Mohammed K. Al-Sakkaf
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Basfer
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustapha Iddrisu
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem A. Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Basim Abussaud
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qasem A. Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A. Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
24
|
Wang L, Li Y, Du X, Wu J, Zhang Z, Jin H, Liang H, Gao D. Performance enhancement of white rot fungi extracellular enzymes via new hydrogel microenvironments for remediation of benzo[a]pyrene contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131505. [PMID: 37121037 DOI: 10.1016/j.jhazmat.2023.131505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Organic pollutants with low solubility and high ecotoxicity, mutagenicity, and carcinogenicity, are rapidly entering and accumulating in soil, resulting in soil pollution. Several methods have been investigated for remediation of organic contaminated soil, including enzymatic remediation approach. However, free enzymes are easily deactivated, which hinders their practical application in soil remediation. Immobilization of enzyme improves its stability and catalytic performance, but the immobilized material itself becomes secondary pollutants in soil. In this study, Trametes versicolor extracellular enzyme was immobilized on the degradable calcium alginate hydrogel microspheres. The laccase maintained a high activity. In addition, the addition of cellulose improved the strength of the carrier. Hydrogel microspheres solved the problems of easy inactivation of free enzyme and secondary contamination of immobilized materials. By a novel combination of extracellular enzymes and hydrogel microenvironments, immobilized enzymes not only demonstrate outstanding performance in thermal stability and pH adaptability, but also achieves a significant improvement in biocatalytic activity for benzo[a]pyrene contaminated soil. The thermal stability of immobilized enzyme was much higher than that of free enzyme. When the temperature increased to 50 °C, the activity of immobilized enzyme remained at 93.15% of the maximum enzyme activity, while the activity of free enzyme decreased to 63.76%. At pH 8, the immobilized enzyme activity maintained 74.84% of the maximum enzyme activity, while the free enzyme activity was only 11.86%. Immobilized enzymes can effectively remove 91.40% of benzo[a]pyrene from soil within 96 h. Furthermore, the catalytic oxidation of benzo[a]pyrene by enzymes that have been immobilized ultimately results in the production of 6,12-benzo[a]pyrene-dione. Molecular dynamics simulation showed that the catalytic degradation of benzo[a]pyrene was mainly through the interaction of amino acid residues PRO-391 with the Pi-alkyl of benzo[a]pyrene. This study presents an innovative strategy for designing and developing immobilized enzymes for use in biocatalytic applications related to eco-remediation of soil.
Collapse
Affiliation(s)
- Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huixia Jin
- School of Civil Engineering &Architecture, Ningbotech University, Zhejiang University, Ningbo 315100, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
25
|
Bo H, Zhang Z, Chen Z, Qiao W, Jing S, Dou T, Tian T, Zhang M, Qiao W. Construction of a biomimetic core-shell PDA@Lac bioreactor from intracellular laccase as a nano-confined biocatalyst for decolorization. CHEMOSPHERE 2023; 330:138654. [PMID: 37044142 DOI: 10.1016/j.chemosphere.2023.138654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 04/08/2023] [Indexed: 05/14/2023]
Abstract
Enzymes immobilized on the surface of the carriers are difficult to maintain their conformation and high activity due to the influence of the external harsh environments. A biomimetic core-shell PDA@Lac bioreactor was constructed by depositing polydopamine (PDA) on the surface of the recombinant Escherichia coli with CotA laccase gene, and releasing intracellular laccase into the PDA shell using ultrasound to break the cell wall of the bacteria. The bioreactor provided a nano-confined environment for the laccase and accelerated the mass and electron transfer in the volume-confined space, with a 2.77-fold increase in Km compared with the free laccase. Since there was no barrier of the cell wall, the crystal violet dye can enter the bioreactor to participate in the enzymatic reaction. As a result, PDA@Lac achieved excellent decolorization performance even without ABTS as an electron mediator. Moreover, the cytoplasmic solution retained in the PDA shell promoted the enzyme's tolerance to pH, temperature and harsh environments. In addition to PDA encapsulation, carbonyl and -NH2 groups of PDA were bound covalently with -NH2 and -COOH on the laccase in the PDA@Lac, resulting in an extremely high laccase loading of 817.59 mg/g. Also, the relative activity of the bioreactor maintained approximately 75% after 10 cycles of reuse. In addition, the protection of the PDA shell increased the resistance of laccase to UV irradiation. This work provides a novel method of laccase immobilization for application in wastewater treatment.
Collapse
Affiliation(s)
- Hongqing Bo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyan Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenrui Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyi Jing
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongtong Dou
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tian Tian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
26
|
Zou M, Tian W, Chu M, Lu Z, Liu B, Xu D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163057. [PMID: 36966832 DOI: 10.1016/j.scitotenv.2023.163057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The tremendous potential of hybrid technologies for the elimination of quinolone antibiotics has recently attracted considerable attention. This current work prepared a magnetically modified biochar (MBC) immobilized laccase product named LC-MBC through response surface methodology (RSM), and LC-MBC showed an excellent capacity in the removal of norfloxacin (NOR), enrofloxacin (ENR) and moxifloxacin (MFX) from aqueous solution. The superior pH, thermal, storage and operational stability demonstrated by LC-MBC revealed its potential for sustainable application. The removal efficiencies of LC-MBC in the presence of 1 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for NOR, ENR and MFX were 93.7 %, 65.4 % and 77.0 % at pH 4 and 40 °C after 48 h reaction, respectively, which were 1.2, 1.3 and 1.3 times higher than those of MBC under the same conditions. The synergistic effect of adsorption by MBC and degradation by laccase dominated the removal of quinolone antibiotics by LC-MBC. Pore-filling, electrostatic, hydrophobic, π-π interactions, surface complexation and hydrogen bonding contributed in the adsorption process. The attacks on the quinolone core and piperazine moiety were involved in the degradation process. This study underscored the possibility of immobilization of laccase on biochar for enhanced remediation of quinolone antibiotics-contaminated wastewater. The proposed physical adsorption-biodegradation system (LC-MBC-ABTS) provided a novel perspective for the efficient and sustainable removal of antibiotics in actual wastewater through combined multi-methods.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Laoshan Laboratory, Qingdao 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Bingkun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Dongpo Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
27
|
Liang J, Liang K. Nanobiohybrids: Synthesis strategies and environmental applications from micropollutants sensing and removal to global warming mitigation. ENVIRONMENTAL RESEARCH 2023:116317. [PMID: 37290626 DOI: 10.1016/j.envres.2023.116317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micropollutants contamination and global warming are critical environmental issues that require urgent attention due to natural and anthropogenic activities posing serious threats to human health and ecosystems. However, traditional technologies (such as adsorption, precipitation, biodegradation, and membrane separation et al.) are facing challenges of low utilization efficiency of oxidants, poor selectivity, and complex in-situ monitoring operations. To address these technical bottlenecks, nanobiohybrids, synthesized by interfacing the nanomaterials and biosystems, have recently emerged as eco-friendly technologies. In this review, we summarize the synthesis approaches of nanobiohybrids and their utilization as emerging environmental technologies for addressing environmental problems. Studies demonstrate that enzymes, cells, and living plants can be integrated with a wide range of nanomaterials including reticular frameworks, semiconductor nanoparticles and single-walled carbon nanotubes. Moreover, nanobiohybrids demonstrate excellent performance for micropollutant removal, carbon dioxide conversion, and sensing of toxic metal ions and organic micropollutants. Therefore, nanobiohybrids are expected to be environmental friendly, efficient, and cost-effective techniques for addressing environmental micropollutants issues and mitigating global warming, benefiting both humans and ecosystems alike.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
28
|
Xu R, Zhang X, Zelekew OA, Schott E, Wu YN. Improved stability and activity of laccase through de novo and post-synthesis immobilization on a hierarchically porous metal-organic framework (ZIF-8). RSC Adv 2023; 13:17194-17201. [PMID: 37304779 PMCID: PMC10248541 DOI: 10.1039/d3ra01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Porous materials such as metal-organic frameworks (MOFs) are considered to be suitable materials for immobilizing enzymes to improve their stability. However, conventional MOFs reduce the enzymes' catalytic activity due to difficulties with mass transfer and diffusing reactants after their micropores are occupied by enzyme molecules. To address these issues, a novel hierarchically structured zeolitic imidazolate framework-8 (HZIF-8) was prepared to study the effects of different laccase immobilization approaches such as the post-synthesis (LAC@HZIF-8-P) and de novo (LAC@HZIF-8-D) immobilization of catalytic activities for removing 2,4-dichlorophenol (2,4-DCP). The results showed higher catalytic activity for the laccase-immobilized LAC@HZIF-8 prepared using different methods than for the LAC@MZIF-8 sample, with 80% of 2,4-DCP removed under optimal conditions. These results could be attributable to the multistage structure of HZIF-8. The LAC@HZIF-8-D sample was stable and superior to LAC@HZIF-8-P, maintaining a 2,4-DCP removal efficiency of 80% after three recycles and demonstrating superior laccase thermostability and storage stability. Moreover, after loading with copper nanoparticles, the LAC@HZIF-8-D approach exhibited a 2,4-DCP removal efficiency of 95%, a promising finding for its potential use in environmental purification.
Collapse
Affiliation(s)
- Ran Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Xujie Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| | - Osman Ahmend Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
- Department of Materials Science and Engineering, Adama Science and Technology University Adama Ethiopia
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile Vicuña Mackenna 4860, Macul Santiago Chile
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University 1239 Siping Rd. Shanghai 200092 China
- Shanghai Institute of Pollution Control and Ecological Security 1239 Siping Rd. Shanghai 200092 China
| |
Collapse
|
29
|
Zhang W, Liu R, Yang X, Nian B, Hu Y. Immobilization of laccase on organic—inorganic nanocomposites and its application in the removal of phenolic pollutants. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
30
|
Bilal M, Rashid EU, Munawar J, Iqbal HMN, Cui J, Zdarta J, Ashraf SS, Jesionowski T. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology. Int J Biol Macromol 2023; 237:123968. [PMID: 36906204 DOI: 10.1016/j.ijbiomac.2023.123968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Junaid Munawar
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
31
|
Liu C, Zhang X, Zhou Y, Zhu L, Zhang C, Yan X, You S, Qi W, Su R. A reusable and leakage-proof immobilized Laccase@UiO-66-NH2(30) for the efficient biodegradation of rifampicin and lincomycin. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
32
|
Parra-Arroyo L, González-González RB, Chavez-Santoscoy RA, Flores-Contreras EA, Parra-Saldívar R, Martínez EMM, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis to abate groundwater pollution. MethodsX 2023; 10:102161. [PMID: 37077891 PMCID: PMC10106955 DOI: 10.1016/j.mex.2023.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Magnetic nanoparticles are of great interest for research as they have a wide range of applications in biotechnology, environmental science, and biomedicine. Magnetic nanoparticles are ideal for magnetic separation, improving catalysis's speed and reusability by immobilizing enzymes. Nanobiocatalysis allows the removal of persistent pollutants in a viable, cost-effective and eco-friendly manner, transforming several hazardous compounds in water into less toxic derivatives. Iron oxide and graphene oxide are the preferred materials used to confer nanomaterials their magnetic properties for this purpose as they pair well with enzymes due to their biocompatibility and functional properties. This review describes the most common synthesis methods for magnetic nanoparticles and their performance of nanobiocatalysis for the degradation of pollutants in water.•Magnetic nanomaterials have been synthesized for their application in nanobiocatalysis and treating groundwater.•The most used method for magnetic nanoparticle preparation is the co-precipitation technique.•Peroxidase and oxidase enzymes have great potential in the remotion of multiple contaminants from groundwater.
Collapse
Affiliation(s)
- Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor Martínez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Corresponding authors at: Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico.
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Corresponding authors at: Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico.
| |
Collapse
|
33
|
Yang J, Huang W, Zhang W, Wei K, Pan B, Zhang S. Using Defect Control To Break the Stability-Activity Trade-Off in Enzyme Immobilization via Competitive Coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2312-2321. [PMID: 36720635 DOI: 10.1021/acs.langmuir.2c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immobilization of enzymes within metal-organic frameworks is a powerful strategy to enhance the long-term usability of labile enzymes. However, the thus-confined enzymes suffer from the trade-off between enhanced stability and reduced activity because of the contradiction between the high crystallinity and the low accessibility. Here, by taking laccase and zeolitic imidazolate framework-8 (ZIF-8) as prototypes, we disclosed an observation that the stability-activity trade-off could be solved by controlling the defects via competitive coordination. Owing to the presence of competitive coordination between laccase and the ligand precursor of ZIF-8, there existed a three-stage process in the de novo encapsulation: nucleation-crystallization-recrystallization. Our results show that the biocomposites collected before the occurrence of recrystallization possessed both increased activity and enhanced stability. The findings here shed new light on the control of defects through the subtle use of competitive coordination, which is of great significance for the engineering application of biomacromolecules.
Collapse
Affiliation(s)
- Jianghua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wenguang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wentao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Kunrui Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
34
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
35
|
Li M, Li L, Sun Y, Ma H, Zhang H, Li F. Facile synthesis of dual-hydrolase encapsulated magnetic ZIF-8 composite for efficient removal of multi-pesticides induced pollution in water. CHEMOSPHERE 2023; 314:137673. [PMID: 36584821 DOI: 10.1016/j.chemosphere.2022.137673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Multi-pesticides pollution induced by organophosphorus insecticides (OPs) and aryloxyphenoxypropionate herbicides (AOPPs) has become a significant challenge in bioremediation of water pollution due to their prolonged and over application. Though a number of physical, chemical, and biological approaches have been developed for different pesticides, the explorations usually focus on eliminating single pesticide pollution. Herein, a heterostructure nanocomposite OPH/QpeH@mZIF-8, encapsulating OPs hydrolase OPH and AOPPs hydrolase QpeH in the magnetic zeolitic imidazolate frameworks-8 (mZIF-8), was synthesized through a facile one-pot method in aqueous solution. The immobilized OPH and QpeH in mZIF-8 showed high activities towards the two most common OPs and AOPPs, i.e., chlorpyrifos and quizalofop-P-ethyl, which were hydrolyzed to 3,5,6-Trichloro-2-pyridino (TCP) and quizalofop acid, respectively. Moreover, the magnetic nanocatalyst possessed great tolerance towards broad pH range, high temperatures, and different chemical solvents and excellent recyclability. More importantly, compared to free OPH and QpeH, OPH/QpeH@mZIF-8, with significantly enhanced degradation capability, exhibited enormous potential for simultaneous removal of chlorpyrifos and quizalofop-p-ethyl from the surface and industrial wastewater. Overall, the study demonstrates the applicability of this strategy for utilizing magnetic nanocatalysts encapsulating multiple enzymes due to its simplicity, high efficiency, and economic benefits to removing pesticide compound pollution from various water resources.
Collapse
Affiliation(s)
- Mengya Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Lei Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yue Sun
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Hengyan Ma
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
36
|
Dlamini ML, Lesaoana M, Kotze I, Richards HL. Zeolitic imidazolate frameworks as effective crystalline supports for aspergillus-based laccase immobilization for the biocatalytic degradation of carbamazepine. CHEMOSPHERE 2023; 311:137142. [PMID: 36347352 DOI: 10.1016/j.chemosphere.2022.137142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In this study, zeolitic imidazolate frameworks (ZIF) were employed as effective porous supports for laccase enzyme attachment and further explored synergistic adsorption and biocatalytic degradation of carbamazepine (CBZ) in aqueous solutions. Characterization results from FTIR and NMR analysis confirmed successful incorporation of the laccase enzyme onto ZIF particles. Further analyses from SEM and TEM revealed rhombic dodecahedral morphologies of ZIF crystals with crusts of the enzyme observed on the particles' surface. The carbamazepine degradation results showed that immobilization of the laccase improved its stability and resistance at various pH's, in comparison to the free enzyme. The immobilized laccase also exhibited relatively higher activities across the studied temperature range compared to the free form. Kinetic studies revealed a negligible decline in velocity, Vmax after immobilization, evaluated to be 0.873 and 0.692 mg L-1 h-1 for the free and immobilized laccase, respectively. The immobilized laccase demonstrated improved stabilities towards organic solvents, which qualifies the composite's application in real wastewater samples. In which case, the laccase-ZIF composite proved effective in CBZ decontamination with an efficiency of ∼92%. Furthermore, the immobilized laccase exhibited appreciable storage stabilities (∼70% residual activity) for up to 15 days before any significant loss in activity.
Collapse
Affiliation(s)
- Mbongiseni Lungelo Dlamini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Mahadi Lesaoana
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Izak Kotze
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Heidi Lynn Richards
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa.
| |
Collapse
|
37
|
Immobilization of horseradish peroxidase on hierarchically porous magnetic metal-organic frameworks for visual detection and efficient degradation of 2,4-dichlorophenol in simulated wastewater. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Preparation of novel HKUST-1-glucose oxidase composites and their application in biosensing. Mikrochim Acta 2022; 190:10. [PMID: 36472673 DOI: 10.1007/s00604-022-05563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Copper-based metal-organic frameworks (MOF) and multi-walled carbon nanotubes (HKUST-1-MWCNTs) composite were synthesized by one-step hydrothermal method, and PDA-enzyme-HKUST-1-MWCNTs composite was prepared by one-pot method for the construction of glucose biosensors, which realized the sensitive amperometric detection of glucose at 0.7 V (vs. SCE). The sensitivity of the sensor for glucose detection was 178 μA mM-1cm-2 in the wide linear range of 0.005 ~ 7.05 mM, the detection limit was 0.12 μM and the corresponding RSD was 3.8%. Its high performance is mainly benefitted from the high porosity and large specific surface area of HKUST-1, the good conductivity of MWCNTs, and the excellent adhesion and dispersion of PDA. The strategy of combining PDA and MWCNTs to improve the dispersion and conductivity of MOF is expected to achieve a wider application of MOF-based materials in the electrochemical biosensing field.
Collapse
|
39
|
Liu R, Wang S, Han M, Zhang W, Xu H, Hu Y. Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal. Bioprocess Biosyst Eng 2022; 45:1955-1966. [PMID: 36355205 DOI: 10.1007/s00449-022-02799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
In this study, an amino-functionalized ionic liquid-modified magnetic chitosan (MACS-NIL) containing 2,2-diamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) was used as a carrier, and dialdehyde starch (DAS) was used as a cross-linking agent to covalently immobilize laccase (MACS-NIL-DAS-lac), which realized the co-immobilization of laccase and ABTS. The carrier was characterized by Fourier infrared transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction analysis, electron paramagnetic resonance, etc. The immobilization efficiency and activity retention of MACS-NIL-DAS-lac could reach 76.7% and 69.8%, respectively. At the same time, its pH stability, thermal stability, and storage stability had been significantly improved. In the organic pollutant removal performance test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MACS-NIL-DAS-lac (1 U) could reach 100% within 6 h, and the removal efficiency could still reach 88.6% after six catalytic runs. In addition, MACS-NIL-DAS-lac also showed excellent degradation ability for other conventional phenolic pollutants and polycyclic aromatic hydrocarbons. The research results showed that MACS-NIL-DAS fabricated by the combination inorganic material, organic biomacromolecules, ionic liquid, and electron mediator could be used as a novel carrier for laccase immobilization and the immobilized laccase showed excellent removal efficiency for organic pollutants.
Collapse
Affiliation(s)
- Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Silin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Mengyao Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Huajin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
40
|
Rawat S, Misra N, Meena SS, Shelkar SS, Kumar N N, Goel NK, Kumar V. Plasma polymerized functional supermagnetic Fe 3O 4 nanostructured templates for laccase immobilization: A robust catalytic system for bio-inspired dye degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82524-82540. [PMID: 35752670 DOI: 10.1007/s11356-022-21539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Fe3O4 magnetic nanoparticles, synthesized using co-precipitation method, were epoxy functionalized via plasma polymerization of 2,3-epoxypropylmethacrylate (EPMA) precursor. The EPMA-functionalized Fe3O4 nanoparticles (EPMA-f-MN) were employed as templates for facile, one-step covalent immobilization of laccase enzyme at room temperature. Samples were rigorously characterized by FTIR, TGA, SEM, TEM, XRD techniques, while Mössbauer spectroscopy (MöS) and vibrating sample magnetometry (VSM) confirmed the supermagnetic nature of Fe3O4 nanoparticles. Activities of free and immobilized laccase (ImLac) were assayed by spectrophotometrically monitoring the enzymatic reduction of substrate 2,2-azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS) at 420 nm, corresponding to the λmax of ABTS.+. In addition to possessing higher thermal stability and a broader pH tolerance window compared to free laccase, the supermagnetic property of the Fe3O4 renders the ImLac system conveniently recoverable and recyclable. Practical applicability of ImLac towards catalytic degradation of industrial dyes was also ably demonstrated using Acid Blue 193 (AB 193) as a commercially used model textile dye, which belongs to the family of azo dyes. Over 95% degradation of the dye was achieved within a period of 4 hours. ImLac could be used for more than 10 dye degradation cycles with >90 % of retention in enzyme activity.
Collapse
Affiliation(s)
- Swarnima Rawat
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Nilanjal Misra
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Sher Singh Meena
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Shubhangi S Shelkar
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Naveen Kumar N
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Narender Kumar Goel
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Virendra Kumar
- Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
41
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Liu D, Yang X, Zhang L, Tang Y, He H, Liang M, Tu Z, Zhu H. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13830. [PMID: 36360710 PMCID: PMC9657116 DOI: 10.3390/ijerph192113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In the field of environmental science and engineering, microorganisms, enzymes and algae are promising biomass materials that can effectively degrade pollutants. However, problems such as poor environmental adaptability, recycling difficulties, and secondary pollution exist in the practical application of non-immobilized biomass materials. Biomass immobilization is a novel environmental remediation technology that can effectively solve these problems. Compared with non-immobilized biomass, immobilized biomass materials have the advantages of reusability and stability in terms of pH, temperature, handling, and storage. Many researchers have studied immobilization technology (i.e., methods, carriers, and biomass types) and its applications for removing refractory organic pollutants. Based on this, this paper reviews biomass immobilization technology, outlines the mechanisms and factors affecting the removal of refractory organic pollutants, and introduces the application of immobilized biomass materials as fillers for reactors in water purification. This review provides some practical references for the preparation and application of immobilized biomass materials and promotes further research and development to expand the application range of this material for water purification.
Collapse
Affiliation(s)
- Danxia Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaolong Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lin Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yiyan Tang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
| | - Zhihong Tu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin 541004, China
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxiang Zhu
- Guangxi Modern Industry College of Ecology and Environmental Protection, Guilin 541006, China
| |
Collapse
|
43
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Characterization of Carboxylic Acid Reductase from Mycobacterium phlei Immobilized onto Seplite LX120. Polymers (Basel) 2022; 14:polym14204375. [PMID: 36297953 PMCID: PMC9609965 DOI: 10.3390/polym14204375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
A multi-domain oxidoreductase, carboxylic acid reductase (CAR), can catalyze the one-step reduction of carboxylic acid to aldehyde. This study aimed to immobilize bacterial CAR from a moderate thermophile Mycobacterium phlei (MpCAR). It was the first work reported on immobilizing bacterial CAR onto a polymeric support, Seplite LX120, via simple adsorption. Immobilization time and protein load were optimized for MpCAR immobilization. The immobilized MpCAR showed optimal activity at 60 °C and pH 9. It was stable over a wide range of temperatures (10 to 100 °C) and pHs (4–11), retaining more than 50% of its activity. The immobilized MpCAR also showed stability in polar solvents. The adsorption of MpCAR onto the support was confirmed by Scanning Electron Microscopy (SEM), Fourier-Transform Infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. The immobilized MpCAR could be stored for up to 6 weeks at 4 °C and 3 weeks at 25 °C. Immobilized MpCAR showed great operational stability, as 59.68% of its activity was preserved after 10 assay cycles. The immobilized MpCAR could also convert approximately 2.6 mM of benzoic acid to benzaldehyde at 60 °C. The successfully immobilized MpCAR on Seplite LX120 exhibited improved properties that benefit green industrial processes.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
44
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
45
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Application Prospects and Opportunities of Inorganic Nanomaterials for Enzyme Immobilization in the Food Processing Industry. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Immobilization of laccase on chitosan functionalized halloysite nanotubes for degradation of Bisphenol A in aqueous solution: degradation mechanism and mineralization pathway. Heliyon 2022; 8:e09919. [PMID: 35865982 PMCID: PMC9294056 DOI: 10.1016/j.heliyon.2022.e09919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
As a hazardous organic chemical raw material, Bisphenol A (BPA) has attracted a great deal of scientific and public attention. In this study, the chitosan functionalized halloysite nanotubes immobilized laccase (lac@CS-HNTs) was prepared by simultaneous adsorption-covalent binding method to remove BPA for the first time. We optimized the preparation of lac@CS-NHTs by controlling one-factor variable method and response surface methodology (RSM). The cubic polynomial regression model via Design-Expert 12 was developed to describe the optimal preparation conditions of immobilized laccase. Under the optimal conditions, lac@CS-NHTs obtained the maximum enzyme activity, and the enzyme loading was as high as 60.10 mg/g. The results of batch removal experiment of BPA showed that under the optimum treatment condition, the BPA removal rate of lac@CS-NHTs, FL and heat-inactivated lac@CS-NHTs was 87.31 %, 60.89 % and 24.54 %, respectively, which indicated that the contribution of biodegradation was greater than adsorption. In addition, the relative activity of lac@CS-NHTs dropped to about 44.24 % after 8 cycles of BPA removal, which demonstrated that lac@CS-NHTs have the potential to reduce costs in practical applications. Finally, the possible degradation mechanism and mineralization pathway of BPA were given via High-performance liquid chromatography (HPLC) analysis and gas chromatography-mass spectrometry (GC-MS) analysis.
Collapse
|
48
|
Awais M, Kamal S, Ijaz F, Rafique M, Rehman S. Improved Catalytic Performance of Aspergillus flavus Laccase Immobilized on the Zinc Ferrite Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Salehipour M, Rezaei S, Asadi Khalili HF, Motaharian A, Mogharabi-Manzari M. Nanoarchitectonics of Enzyme/Metal–Organic Framework Composites for Wastewater Treatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Instantaneous synthesis and full characterization of organic-inorganic laccase-cobalt phosphate hybrid nanoflowers. Sci Rep 2022; 12:9297. [PMID: 35662266 PMCID: PMC9165545 DOI: 10.1038/s41598-022-13490-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023] Open
Abstract
A novel approach termed the "concentrated method" was developed for the instant fabrication of laccase@Co3(PO4)2•hybrid nanoflowers (HNFs). The constructed HNFs were obtained by optimizing the concentration of cobalt chloride and phosphate buffer to reach the highest activity recovery. The incorporation of 30 mM CoCl2 and 160 mM phosphate buffer (pH 7.4) resulted in a fast anisotropic growth of the nanomaterials. The purposed method did not involve harsh conditions and prolonged incubation of precursors, as the most reported approaches for the synthesis of HNFs. The catalytic efficiency of the immobilized and free laccase was 460 and 400 M−1S−1, respectively. Also, the enzymatic activity of the prepared biocatalyst was 113% of the free enzyme (0.5 U mL−1). The stability of the synthesized HNFs was enhanced by 400% at pH 6.5–9.5 and the elevated temperatures. The activity of laccase@Co3(PO4)2•HNFs declined to 50% of the initial value after 10 reusability cycles, indicating successful immobilization of the enzyme. Structural studies revealed a 32% increase in the α-helix content after hybridization with cobalt phosphate, which improved the activity and stability of the immobilized laccase. Furthermore, the fabricated HNFs exhibited a considerable ability to remove moxifloxacin as an emerging pollutant. The antibiotic (10 mg L−1) was removed by 24% and 75% after 24 h through adsorption and biodegradation, respectively. This study introduces a new method for synthesizing HNFs, which could be used for the fabrication of efficient biocatalysts, biosensors, and adsorbents for industrial, biomedical, and environmental applications.
Collapse
|