1
|
Razali MC, Wahab NA, Sunar N, Shamsudin NH. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. MEMBRANES 2023; 13:285. [PMID: 36984672 PMCID: PMC10051433 DOI: 10.3390/membranes13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Water is one of the main sources of life's survival. It is mandatory to have good-quality water, especially for drinking. Many types of available filtration treatment can produce high-quality drinking water. As a result, it is intriguing to determine which treatment is the best. This paper provides a review of available filtration technology specifically for drinking water treatment, including both conventional and advanced treatments, while focusing on membrane filtration treatment. This review covers the concerns that usually exist in membrane filtration treatment, namely membrane fouling. Here, the parameters that influence fouling are identified. This paper also discusses the different ways to handle fouling, either based on prevention, prediction, or control automation. According to the findings, the most common treatment for fouling was prevention. However, this treatment required the use of chemical agents, which will eventually affect human health. The prediction process was usually used to circumvent the process of fouling development. Based on our reviews up to now, there are a limited number of researchers who study membrane fouling control based on automation. Frequently, the treatment method and control strategy are determined individually.
Collapse
Affiliation(s)
- Mashitah Che Razali
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaliza Abdul Wahab
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Noorhazirah Sunar
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Nur Hazahsha Shamsudin
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| |
Collapse
|
2
|
Costa LRDC, Féris LA. Integration of ozonation with water treatment for pharmaceuticals removal from Arroio Diluvio in southern Brazil. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:938-953. [PMID: 36853772 DOI: 10.2166/wst.2023.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pharmaceutical compounds can reach water bodies through sewage systems. The process of water treatment is insufficient for the removal of these contaminants. The ozonation has great potential to be integrated into the treatment, since it promotes the reduction of pharmaceuticals, reduces the generation of disinfection byproducts and can reduce operational costs. In this work, the integration of the ozonation process with water treatment was studied. The ozone was applied in the pre-oxidation and intermediate ozonation stages, to evaluate the dependence of different variables. Water samples were collected from Arroio Diluvio, a river of the city of Porto Alegre (Brazil). The doses of ozone were maintained between 0.5 and 1.0 mgO3 L-1 while the coagulant was between 25 and 150 mg·L-1. Pre-ozonation resulted in a removal of pharmaceuticals at pH 10.0, time of 15 min and coagulant concentration of 52.5 mgL-1. The intermediate ozonation provided a removal with pH 10.0 and a time of 5 min of bubbling. Based on the results, it was confirmed that the synergy of the ozonation process with conventional water treatment is an effective, sensitive and fast method for the removal of pharmaceuticals from the aqueous medium.
Collapse
Affiliation(s)
- Letícia Reggiane de Carvalho Costa
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2777, Postal code: 90035-007, Porto Alegre, RS, Brazil E-mail:
| | - Liliana Amaral Féris
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2777, Postal code: 90035-007, Porto Alegre, RS, Brazil E-mail:
| |
Collapse
|
3
|
Anderson LE, DeMont I, Dunnington DD, Bjorndahl P, Redden DJ, Brophy MJ, Gagnon GA. A review of long-term change in surface water natural organic matter concentration in the northern hemisphere and the implications for drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159699. [PMID: 36306839 DOI: 10.1016/j.scitotenv.2022.159699] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Reduced atmospheric acid deposition has given rise to recovery from acidification - defined as increasing pH, acid neutralization capacity (ANC), or alkalinity in surface waters. Strong evidence of recovery has been reported across North America and Europe, driving chemical responses. The primary chemical responses identified in this review were increasing concentration and changing character of natural organic matter (NOM) towards predominantly hydrophobic nature. The concentration of NOM also influenced trace metal cycling as many browning surface waters also reported increases in Fe and Al. Further, climate change and other factors (e.g., changing land use) act in concert with reductions in atmospheric deposition to contribute to widespread browning and will have a more pronounced effect as deposition stabilizes. The observed water quality trends have presented challenges for drinking water treatment (e.g., increased chemical dosing, poor filter operations, formation of disinfection by-products) and many facilities may be under designed as a result. This comprehensive review has identified key research areas to be addressed, including 1) a need for comprehensive monitoring programs (e.g., larger timescales; consistency in measurements) to assess climate change impacts on recovery responses and NOM dynamics, and 2) a better understanding of drinking water treatment vulnerabilities and the transition towards robust treatment technologies and solutions that can adapt to climate change and other drivers of changing water quality.
Collapse
Affiliation(s)
- Lindsay E Anderson
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada.
| | - Isobel DeMont
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| | - Dewey D Dunnington
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| | - Paul Bjorndahl
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dave J Redden
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| | | | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington St. Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Yan Z, Shen L, Pei Z, Yang M, Zhang W. Efficiencies and mechanism of enhanced coagulation pre-treatment on domestic sewage with PAC-HCA compound. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:27-38. [PMID: 36640022 DOI: 10.2166/wst.2022.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poly dimethyl diallyl propyl ammonium chloride (HCA) and poly aluminum chloride (PAC) were used to prepare complex coagulants for the enhanced coagulation (EC) pretreatment of domestic sewage. The influences of hydraulic conditions, the dosage ratio of PAC-HCA complex coagulants, initial pH value, and dosage on the removal efficiency of SS, COD, and TP in domestic sewage were investigated. The fractal dimension and Zeta potential were used to verify and characterize the experimental results. The results showed that the optimum coagulant conditions were as follows: G1 = 200.0-265.0 s-1, T1 = 1.5 min, G2 = 40.0 s-1, T2 = 5 min, PAC: HCA = 25:1, dosage = 15 mL/L, pH = 8. At the mentioned point, the removal rates of SS, COD, and TP are 98.74%, 44.63%, and 89.85%, respectively. In addition, through comparative tests, PAC-HCA compound coagulants show better treatment efficiency than PAC and HCA used alone. When the HCA dosage was 15 mg/L, Zeta potential and flocs fractal dimension was 2.29 mv and 0.9844, respectively. This indicates that PAC-HCA has a good treatment effect on domestic sewage, and the mechanism of enhanced coagulation to remove nutrients is mainly electrical neutralization.
Collapse
Affiliation(s)
- Zichun Yan
- Key Laboratory of Yellow River Water Environment of Gansu Province, Lanzhou 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Li Shen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Zhibing Pei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Mingxia Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| | - Wei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China E-mail:
| |
Collapse
|
5
|
Effect of modified microbial flocculant on membrane fouling alleviation in a hybrid aerobic granular sludge membrane system for wastewater reuse. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
7
|
Othman NH, Alias NH, Fuzil NS, Marpani F, Shahruddin MZ, Chew CM, David Ng KM, Lau WJ, Ismail AF. A Review on the Use of Membrane Technology Systems in Developing Countries. MEMBRANES 2021; 12:30. [PMID: 35054556 PMCID: PMC8779680 DOI: 10.3390/membranes12010030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Fulfilling the demand of clean potable water to the general public has long been a challenging task in most developing countries due to various reasons. Large-scale membrane water treatment systems have proven to be successful in many advanced countries in the past two decades. This paves the way for developing countries to study the feasibility and adopt the utilization of membrane technology in water treatment. There are still many challenges to overcome, particularly on the much higher capital and operational cost of membrane technology compared to the conventional water treatment system. This review aims to delve into the progress of membrane technology for water treatment systems, particularly in developing countries. It first concentrates on membrane classification and its application in water treatment, including membrane technology progress for large-scale water treatment systems. Then, the fouling issue and ways to mitigate the fouling will be discussed. The feasibility of membrane technologies in developing countries was then evaluated, followed by a discussion on the challenges and opportunities of the membrane technology implementation. Finally, the current trend of membrane research was highlighted to address future perspectives of the membrane technologies for clean water production.
Collapse
Affiliation(s)
- Nur Hidayati Othman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.H.A.); (N.S.F.); (F.M.); (M.Z.S.)
| | - Nur Hashimah Alias
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.H.A.); (N.S.F.); (F.M.); (M.Z.S.)
| | - Nurul Syazana Fuzil
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.H.A.); (N.S.F.); (F.M.); (M.Z.S.)
| | - Fauziah Marpani
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.H.A.); (N.S.F.); (F.M.); (M.Z.S.)
| | - Munawar Zaman Shahruddin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.H.A.); (N.S.F.); (F.M.); (M.Z.S.)
| | - Chun Ming Chew
- Taman Industri Meranti Perdana, Pusat Teknologi Sinar Meranti, Techkem Group, No. 6, Jalan IMP 1/3, Puchong 47120, Selangor, Malaysia;
| | - Kam Meng David Ng
- Taman Industri Meranti Perdana, Pusat Teknologi Sinar Meranti, Techkem Group, No. 6, Jalan IMP 1/3, Puchong 47120, Selangor, Malaysia;
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (W.J.L.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (W.J.L.); (A.F.I.)
| |
Collapse
|
8
|
Yin Z, Shao Q, Wen T, Li A, Long C. Insights into the coupling pre-ozonation with coagulation pre-treatment for mitigating biopolymer fouling of reverse osmosis membrane: Role of Ca2+. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Jayasree R, Kumar PS, Saravanan A, Hemavathy RV, Yaashikaa PR, Arthi P, Shreshta J, Jeevanantham S, Karishma S, Arasu MV, Al-Dhabi NA, Choi KC. Sequestration of toxic Pb(II) ions using ultrasonic modified agro waste: Adsorption mechanism and modelling study. CHEMOSPHERE 2021; 285:131502. [PMID: 34329150 DOI: 10.1016/j.chemosphere.2021.131502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Treating the effluents from industries by using biological and agricultural wastes is an emerging field of research. In this study, three different biosorbents are prepared from tamarind seeds such as; raw, sulphuric acid-modified and ultrasonic-assisted surface-modified tamarind seed powder has been utilized to expel the Pb (II) ions from synthetic solution. The surface characteristics of the newly synthesized raw and surface modified agro-waste biomass were studied by FTIR and SEM. An experimental study was carried out to investigate the effect of different parameters on adsorption of Pb(II) ions using raw, sulphuric acid-modified and ultrasonic-assisted surface-modified tamarind seeds. The maximum Pb(II) ions adsorption was found at pH - 6.0, temperature - 303 K, biosorbent dosage - 3.5 g/L and contact time - 60 min for raw tamarind seeds and 30 min for sulphuric acid-modified and ultrasonic-assisted surface-modified tamarind seeds. The adsorption mechanism was described by Langmuir isotherm and pseudo-first order kinetic model. Among the three biosorbents, ultrasonic-assisted surface-modified tamarind seeds show higher adsorption capacity (18.86 mg/g) of Pb(II) ions removal from the synthetic solution. The thermodynamic study declared that the present Pb(II) ions adsorption onto the prepared biosorbents was spontaneous, exothermic and followed physical adsorption process. Results have shown that tamarind seed was found to be the best adsorbent in the expulsion of Pb(II) ions from the wastewater environment.
Collapse
Affiliation(s)
- R Jayasree
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Chennai, India
| | - P Arthi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - J Shreshta
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ki Choon Choi
- Department Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, Republic of Korea
| |
Collapse
|
10
|
Characterization of ozone dosage reduction mechanism in catalytic ozonation process coupled with coagulation and flocculation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Shahi NK, Maeng M, Choi I, Dockko S. Degradation effect of ultraviolet-induced advanced oxidation of chlorine, chlorine dioxide, and hydrogen peroxide and its impact on coagulation of extracellular organic matter produced by Microcystis aeruginosa. CHEMOSPHERE 2021; 281:130765. [PMID: 34010716 DOI: 10.1016/j.chemosphere.2021.130765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Implementation of an ultraviolet (UV)-induced advanced oxidation process (AOP) before coagulation was found to enhance the removal of algae cells. However, the effect of UV-induced AOPs on extracellular cellular organic matter (EOM) and on its coagulation and removal was neglected. This study investigated the impact of UV-induced AOPs (UV/Cl2, UV/ClO2, and UV/H2O2) on EOM from Microcystis aeruginosa, and its coagulation and removal by a conventional gravity system (CGS), dissolved air flotation, and a low-energy flash-pressurized flotation (FPF) process. The changes in EOM characteristics before and after the UV-induced AOPs were based on UV absorbance (UV254) and liquid chromatography with organic carbon detection analysis. The reduction in UV254 increased with an increasing dose of oxidant and UV irradiation. The reduction in UV254 for UV/Cl2, UV/ClO2 and UV/H2O2 was 59.5%, 26.5%, and 17.5% respectively, for 0.71 mM equimolar concentration of oxidant and 1920 mJ/cm2 UV irradiation, as evident from a pseudo-first order kinetics study. Similarly, degradation of the high molecular weight to low molecular weight (LMW) fraction was pronounced for UV/Cl2. The coagulation efficiency decreased after UV-induced AOP in the following order: UV/H2O2 > UV/ClO2 > UV/Cl2. By contrast, the low-energy FPF process showed a higher removal of LMW fractions than CGS. Thus, low-energy FPF could be an alternative technology for the UV-induced AOP treatment system.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Minsoo Maeng
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ilhwan Choi
- Water Analysis and Research Center, Water Research Corporation, Daejeon, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Combination of Coagulation-Flocculation-Decantation and Ozonation Processes for Winery Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168882. [PMID: 34444631 PMCID: PMC8395062 DOI: 10.3390/ijerph18168882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
This research assessed a novel treatment process of winery wastewater, through the application of a chemical-based process aiming to decrease the high organic carbon content, which represents a difficulty for wastewater treatment plants and a public health problem. Firstly, a coagulation–flocculation–decantation process (CFD process) was optimized by a simplex lattice design. Afterwards, the efficiency of a UV-C/ferrous iron/ozone system was assessed for organic carbon removal in winery wastewater. This system was applied alone and in combination with the CFD process (as a pre- and post-treatment). The coagulation–flocculation–decantation process, with a mixture of 0.48 g/L potassium caseinate and 0.52 g/L bentonite at pH 4.0, achieved 98.3, 97.6, and 87.8% removals of turbidity, total suspended solids, and total polyphenols, respectively. For the ozonation process, the required pH and ferrous iron concentration (Fe2+) were crucial variables in treatment optimization. With the application of the best operational conditions (pH = 4.0, [Fe2+] = 1.0 mM), the UV-C/ferrous iron/ozone system achieved 63.2% total organic carbon (TOC) removal and an energy consumption of 1843 kWh∙m−3∙order−1. The combination of CFD and ozonation processes increased the TOC removal to 66.1 and 65.5%, respectively, for the ozone/ferrous iron/UV-C/CFD and CFD/ozone/ferrous iron/UV-C systems. In addition, the germination index of several seeds was assessed and excellent values (>80%) were observed, which revealed the reduction in phytotoxicity. In conclusion, the combination of CFD and UV-C/ferrous iron/ozone processes is efficient for WW treatment.
Collapse
|
13
|
Su Z, Liu T, Li X, Graham N, Yu W. Beneficial impacts of natural biopolymers during surface water purification by membrane nanofiltration. WATER RESEARCH 2021; 201:117330. [PMID: 34134038 DOI: 10.1016/j.watres.2021.117330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Membrane filtration in various forms has become an increasingly used treatment method worldwide for the supply of safe drinking water. The fouling of membranes is commonly considered to be the major operational limitation to its wider application since it leads to frequent backwashing and a shortening of membrane life, and increased production costs. The components of natural organic matter (NOM) in surface waters have been reported previously to be important foulants of nanofiltration (NF) membranes, however, the potential beneficial effect of particular components of these 'foulants' has not been investigated or demonstrated to date. In this study, we have considered the roles of different organic materials including autochthonous NOM (e.g., biopolymers) and allochthonous NOM (e.g., humic substances) on the fouling of NF membranes by bench-scale tests with samples of two representative source waters (UK) taken in two different seasons (autumn and winter). Microfiltration (MF) and ultrafiltration (UF) were employed to generate two permeates, between which the presence of biopolymers (30 kDa - 90 kDa) is the major difference. We developed sequential filtration (MF/UF-NF) to investigate biopolymers' behaviours in NF process. The results showed that the accumulation of biopolymers on NF membranes can mitigate fouling by providing a protective layer in which medium-low molecular weight (MW) materials (e.g. humic substances) are separated by adsorption and/or size exclusion. The protective layers assisted by biopolymers were seen to be thicker under scanning electron microscope (SEM) observation and characterized by higher roughness (i.e. three-dimensional, spacial structure) and greater adsorptive capacity. Moreover, improvement on NF membrane fouling mitigation could be more significant in autumn, comparing to that in winter. The findings in this study were found to be repeatable in similar tests with samples of comparable raw waters in China, and will be important to the practical application of NF membrane systems in terms of a new approach to combating fouling in long-term operation.
Collapse
Affiliation(s)
- Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100024, China.
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100024, China.
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
14
|
Liu J, Chen K, Zou K, He L, Zhao D, Wang Z, Qiu Y, Chen Y. Insights into the roles of membrane pore size and feed foulant concentration in ultrafiltration membrane fouling based on collision-attachment theory. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:516-523. [PMID: 32892420 DOI: 10.1002/wer.1453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Membrane property and feed characteristics play critical roles in membrane fouling. This paper aims to clarify the roles of membrane pore size (φ) and feed foulant concentration (Cb ) in ultrafiltration fouling induced by polysaccharides. The fouling behaviors were expounded by collision-attachment theory, where the rate of membrane fouling is mainly determined by collision frequency (JCb ) and attachment efficiency (γ). At the initial fouling stage, rapid flux decline was observed at large φ or high Cb due to the great JCb and/or γ. At the later fouling stage, there existed a nearly identical maximum stable flux attributing to the same JCb and γ, which was independent of φ and Cb . Moreover, the smaller φ can lead to less foulants passed through the membrane and thus more foulants attaching on the membrane, while the higher Cb can give rise to more foulants on both the membrane surface and in the permeate. The results presented in current study provide fundamental basis in understanding membrane fouling. PRACTITIONER POINTS: Collision-attachment theory was employed to expound the UF fouling behavior. Rapid flux decline occurred at large membrane pore size or high feed foulant concentration in the initial fouling stage. Membranes with different pore size or feed foulant concentration had an identical flux at the latter fouling stage. Lowering membrane pore size or increasing feed foulant concentration can lead to more foulants attaching on the membrane surface.
Collapse
Affiliation(s)
- Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Kang Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Kangbing Zou
- Guangzhou Water Affairs Engineering Co., LTD., Guangzhou, China
| | - Linjuan He
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Dongsheng Zhao
- College of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yongting Qiu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yiliang Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Ouali S, Loulergue P, Biard PF, Nasrallah N, Szymczyk A. Ozone compatibility with polymer nanofiltration membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Heavy Metals Removal Using Carbon Based Nanocomposites. ENVIRONMENTAL REMEDIATION THROUGH CARBON BASED NANO COMPOSITES 2021. [DOI: 10.1007/978-981-15-6699-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Barešová M, Načeradská J, Novotná K, Čermáková L, Pivokonský M. The impact of preozonation on the coagulation of cellular organic matter produced by Microcystis aeruginosa and its toxin degradation. J Environ Sci (China) 2020; 98:124-133. [PMID: 33097143 DOI: 10.1016/j.jes.2020.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Ozonation pretreatment is typically implemented to improve algal cell coagulation. However, knowledge on the effect of ozonation on the characteristics and coagulation of associated algal organic matter, particularly cellular organic matter (COM), which is extensively released during algal bloom decay, is limited. Hence, this study aimed to elucidate the impact of ozonation applied before the coagulation of dissolved COM from the cyanobacteria Microcystis aeruginosa. Additionally, the degradation of microcystins (MCs) naturally present in the COM matrix was investigated. A range of ozone doses (0.1-1.0 mg O3/mg of dissolved organic carbon - DOC) and ozonation pH values (pH 5, 7 and 9) were tested, while aluminium and ferric sulphate coagulants were used for subsequent coagulation. Despite negligible COM removal, ozonation itself eliminated MCs, and a lower ozone dose was required when performing ozonation at acidic or neutral pH (0.4 mg O3/mg DOC at pH 5 and 7 compared to 0.8 mg O3/mg DOC at pH 9). Enhanced MC degradation and a similar pattern of pH dependence were observed after preozonation-coagulation, whereas coagulation alone did not sufficiently remove MCs. In contrast to the benefits of MC depletion, preozonation using ≥ 0.4 mg O3/mg DOC decreased the coagulation efficiency (from 42%/48% to 28%-38%/41%-44% using Al/Fe-based coagulants), which was more severe with increasing ozone dosage. Coagulation was also influenced by the preozonation pH, where pH 9 caused the lowest reduction in COM removal. The results indicate that ozonation efficiently removes MCs, but its employment before COM coagulation is disputable due to the deterioration of coagulation.
Collapse
Affiliation(s)
- Magdalena Barešová
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 5, 166 12 Prague 6, Czech Republic
| | - Jana Načeradská
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 5, 166 12 Prague 6, Czech Republic
| | - Kateřina Novotná
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 5, 166 12 Prague 6, Czech Republic
| | - Lenka Čermáková
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 5, 166 12 Prague 6, Czech Republic
| | - Martin Pivokonský
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 5, 166 12 Prague 6, Czech Republic.
| |
Collapse
|
18
|
Srivastav AL, Patel N, Chaudhary VK. Disinfection by-products in drinking water: Occurrence, toxicity and abatement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115474. [PMID: 32889516 DOI: 10.1016/j.envpol.2020.115474] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Disinfection means the killing of pathogenic organisms (e.g. bacteria and its spores, viruses, protozoa and their cysts, worms, and larvae) present in water to make it potable for other domestic works. The substances used in the disinfection of water are known as disinfectants. At municipal level, chlorine (Cl2), chloramines (NH2Cl, NHCl2), chlorine dioxide (ClO2), ozone (O3) and ultraviolet (UV) radiations, are the most commonly used disinfectants. Chlorination, because of its removal efficiency and cost effectiveness, has been widely used as method of disinfection of water. But, disinfection process may add several kinds of disinfection by-products (DBPs) (∼600-700 in numbers) in the treated water such as Trihalomethanes (THM), Haloacetic acids (HAA) etc. which are detrimental to the human beings in terms of cytotoxicity, mutagenicity, teratogenicity and carcinogenicity. In water, THMs and HAAs were observed in the range from 0.138 to 458 μg/L and 0.16-136 μg/L, respectively. Thus, several regulations have been specified by world authorities like WHO, USEPA and Bureau of Indian Standard to protect human health. Some techniques have also been developed to remove the DBPs as well as their precursors from the water. The popular techniques of DBPs removals are adsorption, advance oxidation process, coagulation, membrane based filtration, combined approaches etc. The efficiency of adsorption technique was found up to 90% for DBP removal from the water.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Naveen Patel
- Department of Civil Engineering, Institute of Engineering & Technology, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
19
|
Banik A, Biswal SK, Bandyopadhyay TK. Predicting the optimum operating parameters and hydrodynamic behavior of rectangular sheet membrane using response surface methodology coupled with computational fluid dynamics. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01136-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Liu B, Ren B, Xia Y, Yang Y, Yao Y. Electrochemical degradation of safranine T in aqueous solution by Ti/PbO2 electrodes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electrochemical degradation of safranine T (ST) in aqueous solution was studied. The effects of current density, initial concentration of ST, initial pH values, and Na2SO4 concentration on electrocatalytic degradation of ST in the aqueous solution by Ti/PbO2 electrode were analyzed. The experimental results showed that the electrochemical oxidization reaction of ST fitted a pseudo first order kinetics model. By using the Ti/ PbO2 electrode as the anode, 99.96% of ST can be eliminated at 120 min. It means that the electrochemical degradation of ST in aqueous solution by the Ti/PbO2 electrode was very effective. The optimal reaction conditions were as follows: current density, 40 mA cm−2; initial ST concentration, 100 mg L−1; Na2SO4 concentration, 0.20 mol L−1; initial pH, 6. It can be known from the test of UV–vis and HPLC in the reaction process that the intermediates will be generated, and the possible intermediate structure was studied by HPLC–MS test. However, with the progress of degradation reaction, the intermediates will eventually be oxidized into CO2 and H2O. Cyclic voltammetry and fluorescence experiments proved that ST was indirectly oxidized through the generation of hydroxyl radicals. Under the optimal reaction conditions, the energy required to completely remove ST was 17.92 kWh/m3.
Collapse
Affiliation(s)
- Baichen Liu
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Bingli Ren
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yun Xia
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yang Yang
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| | - Yingwu Yao
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, P.R. China
| |
Collapse
|
21
|
Yi H, Li M, Huo X, Zeng G, Lai C, Huang D, An Z, Qin L, Liu X, Li B, Liu S, Fu Y, Zhang M. Recent development of advanced biotechnology for wastewater treatment. Crit Rev Biotechnol 2019; 40:99-118. [PMID: 31690134 DOI: 10.1080/07388551.2019.1682964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Minfang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, China.,Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, China
| |
Collapse
|