1
|
Xu H, Ye G, Wei C, Xia Y, Wu Z, Zhou Y, Zhou J. Enhanced water stability and catalytic activity of Fe-based metal-organic frameworks with co-ligands for 2,4-dichlorophenol degradation. CHEMOSPHERE 2024; 361:142518. [PMID: 38830463 DOI: 10.1016/j.chemosphere.2024.142518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Fe-based metal-organic frameworks (MOFs) have good photocatalytic performance, environmental friendliness, low cost, and abundance. However, their applications are limited by low water stability, particularly in the presence of light irradiation and oxidizing agents. In this study, we present a MIL-53(Fe)-based MOF using 1,4-naphthalene dicarboxylic (1,4-NDC) and 1,4-benzenedicarboxylic (H2BDC) acid co-ligands, denoted MIL-53(Fe)-Nx, where Nx represents the ratio of 1,4-NDC. This MOF exhibits high water stability and good photocatalytic activity because of the hydrophobicity of naphthalene. The removal and mineralization rates for 100 mg/L 2,4-dichlorophenol reached 100% and 22%, respectively, within 60 min. After three cycles of use, the Fe leached into the solution from the catalysts was significantly lower than the maximum permissible limit indicated in the European Union standard. Of note, 1,4-NDC can be used to make a rigid MOF, thereby improving the crystallinity, porosity, and hydrophobicity of the resultant materials. It also significantly reduced the bandgap energy and improved the charge separation efficiency of the catalysts. This study provides a route to enhance the water stability of Fe-based MOFs via a mixed-ligand strategy to expand their applications in pollutant control.
Collapse
Affiliation(s)
- Hao Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Guirong Ye
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Cui Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yi Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiming Wu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongxin Zhou
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Sun Z, Lin J, Lu S, Li Y, Qi T, Peng X, Liang S, Jiang L. Interfacial Engineering Boosting the Activity and Stability of MIL-53(Fe) toward Electrocatalytic Nitrogen Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5469-5478. [PMID: 38433716 DOI: 10.1021/acs.langmuir.3c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The electrochemical nitrogen reduction reaction (eNRR) has emerged as a promising strategy for green ammonia synthesis. However, it suffers unsatisfactory reaction performance owing to the low aqueous solubility of N2 in aqueous solution, the high dissociation energy of N≡N, and the unavoidable competing hydrogen evolution reaction (HER). Herein, a MIL-53(Fe)@TiO2 catalyst is designed and synthesized for highly efficient eNRR. Relative to simple MIL-53(Fe), MIL-53(Fe)@TiO2 achieves a 2-fold enhancement in the Faradaic efficiency (FE) with an improved ammonia yield rate by 76.5% at -0.1 V versus reversible hydrogen electrode (RHE). After four cycles of electrocatalysis, MIL-53(Fe)@TiO2 can maintain a good catalytic activity, while MIL-53(Fe) exhibits a significant decrease in the NH3 yield rate and FE by 79.8 and 82.3%, respectively. Benefiting from the synergetic effect between TiO2 and MIL-53(Fe) in the composites, Fe3+ ions can be greatly stabilized in MIL-53(Fe) during the eNRR process, which greatly hinders the catalyst deactivation caused by the electrochemical reduction of Fe3+ ions. Further, the charge transfer ability in the interface of composites can be improved, and thus, the eNRR activity is significantly boosted. These findings provide a promising insight into the preparation of efficient composite electrocatalysts.
Collapse
Affiliation(s)
- Zhuangzhi Sun
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Jiawei Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Suwei Lu
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yuhang Li
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Tingting Qi
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Xiaobo Peng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Shijing Liang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, P. R. China
| |
Collapse
|
3
|
Yuan N, Zhang X, Chen T, Xu H, Wang Q. Fabricating Materials of Institute Lavoisier-53(Fe)/zeolite imidazolate framework-8 hybrid materials as high-efficiency and reproducible adsorbents for removing organic pollutants. J Colloid Interface Sci 2023; 646:438-451. [PMID: 37207425 DOI: 10.1016/j.jcis.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Environmental pollution by emerging contaminants has become an urgent problem. Herein, novel binary metal-organic framework hybrids were constructed from Materials of Institute Lavoisier-53(Fe) (MIL-53(Fe)) and zeolite imidazolate framework-8 (ZIF-8) for the first time. A battery of characterizations were employed to determine the MIL/ZIF hybrids' properties and morphology. Furthermore, the MIL/ZIF towards toxic antibiotics (tetracycline, ciprofloxacin and ofloxacin) were studied to explore their adsorption abilities. The present work disclosed that the obtained MIL-53(Fe)/ZIF-8 = 2:3 possessed an eminent specific surface area with an admirable removal efficiency of tetracycline (97.4%), ciprofloxacin (97.1%) and ofloxacin (92.4%), respectively. The tetracycline adsorption process conformed to the pseudo-second-order kinetic model and this process was more compatible with the Langmuir isotherm model with the highest adsorption capacity of 215.0 mg g-1. Moreover, the process of removing tetracycline was proved to be spontaneous and exothermic by the thermodynamic results. Furthermore, the MIL-53(Fe)/ZIF-8 = 2:3 towards tetracycline exhibited significant regeneration ability. The effects of pH, dosage, interfering ions and oscillation frequency on tetracycline adsorption capacity and removal efficiency were also investigated. The primary factors contributing to the decent adsorption ability between MIL-53(Fe)/ZIF-8 = 2:3 and tetracycline included electrostatic, π-π stacking, hydrogen bonding and weak coordination interactions. Additionally, we also investigated the adsorption ability in real wastewater. Thus, the proposed binary metal-organic framework hybrid materials can be deemed a promising adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
| | - Xinling Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Tianxiang Chen
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Hao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qibao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| |
Collapse
|
4
|
Xue B, Li Q, Wang L, Deng M, Zhou H, Li N, Tan M, Hao D, Du H, Wang Q. Ferric-ellagate complex: A promising multifunctional photocatalyst. CHEMOSPHERE 2023; 332:138829. [PMID: 37156288 DOI: 10.1016/j.chemosphere.2023.138829] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
The semiconductors have exhibited great potential in the field of photocatalytic energy production, environmental remediation and bactericidal. Nevertheless, those inorganic semiconductors are still restricted in commercial application due to the drawbacks of easy agglomeration and low solar energy conversion efficiency. Herein, ellagic acid (EA) based metal-organic complexes (MOCs) were synthesized through a facile stirring process at room temperature with Fe3+, Bi3+ and Ce3+ as the metal center. The EA-Fe photocatalyst exhibited superior photocatalytic activity toward Cr(VI) reduction, where Cr(VI) were completely removed within 20 min. Meanwhile, EA-Fe also displayed good photocatalytic degradation of organic contaminants and photocatalytic bactericidal performance. The photodegradation rates of TC and RhB by EA-Fe were 15 and 5 times that by bare EA, respectively. Moreover, EA-Fe was capable of effectively eliminating both E. coli and S. aureus bacteria. It was found that EA-Fe was capable of generating superoxide radicals, which could participate in the reduction of heavy metals, degradation of organic contaminants and inactivation of bacteria. A photocatalysis-self-Fenton system could be established by EA-Fe solely. This work would provide a new insight for designing multifunctional MOCs with high photocatalytic efficiency.
Collapse
Affiliation(s)
- Biao Xue
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Longyang Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meng Tan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Derek Hao
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Zhang S, Li M, Wang J, Zhang R, Ma X, Tao H. Bimetal-organic framework MIL-53(Fe,Ni) stimulates peroxydisulfate to degrade rhodamine B: Properties and degradation mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Liu P, Han D, Wang Z, Gu F. Metal-organic framework CAU-17 derived Bi/BiVO4 photocatalysts for the visible light-driven degradation of tetracycline hydrochloride. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
7
|
A green hydrothermal synthesis of polyacrylonitrile@carbon/MIL-101(Fe) composite nanofiber membrane for efficient selective removal of tetracycline. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Moghaddam AA, Mohammadi L, Bazrafshan E, Batool M, Behnampour M, Baniasadi M, Mohammadi L, Zafar MN. Antibiotics sequestration using metal nanoparticles: An updated systematic review and meta-analysis. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Kaur G, Anthwal A, Kandwal P, Sud D. Mechanochemical synthesis and theoretical investigations of Fe (II) based MOF containing 4,4′-bipyridine with ordained intercalated p-aminobenzoic acid: Application as fluoroprobe for detection of carbonyl group. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
In-situ uniform growth of ZIF-8 on 3D flower-like NiCoLDH microspheres to enhance tetracycline and doxycycline removal from wastewater: Anti-interference and stability tests. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Zhou M, Feng J, Chen Y, Hu Y, Song S. Towards BioMnOx-mediated intra/extracellular electron shuttling for doxycycline hydrochloride metabolism in Bacillus thuringiensis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115891. [PMID: 36056494 DOI: 10.1016/j.jenvman.2022.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Doxycycline hydrochloride (DCH) could be continuously removed by Bacillus thuringiensis S622 with the in-situ biogenic manganese oxide (BioMnOx) via oxidizing/regenerating. The DCH removal rate was significantly increased by 3.01-fold/1.47-fold at high/low Mn loaded via the integration of biological (intracellular/extracellular electron transfer (IET/EET)) and abiotic process (BioMnOx, Mn(III) and •OH). BioMnOx accelerated IET via activating coenzyme Q to enhance electrons transfer (ET) from complex I to complex III, and as an alternative electron acceptor for respiration and provide another electron transfer transmission channel. Additionally, EET was also accelerated by stimulating to secrete flavins, cytochrome c (c-Cyt) and flavin bounded with c-Cyt (Flavins & Cyts). To our best knowledge, this is the first report about the role of BioMnOx on IET/EET during antibiotic biodegradation. These results suggested that Bacillus thuringiensis S622 incorporated with BioMnOx could adopt an alternative strategy to enhance DCH degradation, which may be of biogeochemical and technological significance.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jiyu Feng
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Song Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
13
|
Xing L, Haddao KM, Emami N, Nalchifard F, Hussain W, Jasem H, Dawood AH, Toghraie D, Hekmatifar M. Fabrication of HKUST-1/ZnO/SA nanocomposite for Doxycycline and Naproxen adsorption from contaminated water. SUSTAINABLE CHEMISTRY AND PHARMACY 2022; 29:100757. [PMID: 35990754 PMCID: PMC9380997 DOI: 10.1016/j.scp.2022.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Doxycycline and Naproxen are among the most widely used drugs in the therapy of CoVID 19 disease found in surface water. Water scarcity in recent years has led to research to treat polluted water. One of the easy and low-cost methods for treatment is adsorption. The utilize of Metal-Organic Frameworks (MOFs) to evacuate pharmaceutical contaminants from water sources has been considered by researchers in the last decade. In this research, HKUST-1/ZnO/SA composite with high adsorption capacity, chemical and water stability, recovery, and reuse properties has been synthesized and investigated. By adding 10 wt% of ZnO and 50 wt% of sodium alginate to HKUST-1, at 25 °C and pH = 7, the specific surface area is reduced by 60%. The parameters of drugs concentration C0 =(5,80) mg/L, time=(15,240) min, and pH= (2,12) were investigated, and the results showed that the HKUST-1/ZnO/SA is stable in water for 14 days and it can be used in 10 cycles with 80% removal efficiency. The maximum Adsorption loading of doxycycline and Naproxen upon HKUST-1/ZnO/SA is 97.58 and 80.04 mg/g, respectively. Based on the correlation coefficient (R2), the pseudo-second-order and the Langmuir isotherm models were selected for drug adsorption. The proposed mechanism of drug uptake is by MOFs, hydrogen bonding, electrostatic bonding, and acid-base interaction.
Collapse
Affiliation(s)
- Lihua Xing
- School of Resources, Environment and Architectural Engineering, Chifeng University, Chifeng, Inner Mongolia, 024000, China
| | | | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Fereshteh Nalchifard
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Hadeer Jasem
- Medical Instrumentation Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Ashour H Dawood
- Department of Pharmacy, Al-Esraa University College, Baghdad, Iraq
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Maboud Hekmatifar
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Jia F, Zhao D, Shu M, Sun F, Wang D, Chen C, Deng Y, Zhu X. Co-doped Fe-MIL-100 as an adsorbent for tetracycline removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55026-55038. [PMID: 35307798 DOI: 10.1007/s11356-022-19684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In the study, Fe-MIL-100 was modified by adding Co2+ in the synthesis process; Co/Fe-MIL-100 was successfully synthesized and used to adsorb tetracycline. The addition of Co2+ increased the thermal stability of Fe-MIL-100 without changing the crystal structure. It was found that Co/Fe-MIL-100 exhibited satisfactory performance in tetracycline removal, the tetracycline removal efficiency reached almost 100% in the initial concentration range of 10-40 mg/L, and it still reached 82.38% under the condition of 60 mg/L tetracycline. Besides, the factors of tetracycline concentration, pH and inorganic anion on removal efficiency were explored. The coexistence of inorganic anion decreased the adsorption capacity of tetracycline due to the competitive adsorption. CO32- had a more obvious inhibition effect on the adsorption efficiency of tetracycline than Cl-. The fitting correlation coefficient of Langmuir model was higher and the kinetics better fitted by pseudo-second-order, respectively. As a result of its high removal efficiency and excellent recycling performance, it has great potential in application fields such as removing tetracycline from wastewater.
Collapse
Affiliation(s)
- Feiyue Jia
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Donghua Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Mengzhao Shu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Feifei Sun
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China.
| | - Chen Chen
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Yu Deng
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Xiaoming Zhu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| |
Collapse
|
16
|
Zhang J, Chen Y, Song X, Liu Y, Zhao J, Wang F. Synergistic adsorption and degradation of diclofenac by zero-valent iron modified spent bleaching earth carbon: Mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128753. [PMID: 35349849 DOI: 10.1016/j.jhazmat.2022.128753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Diclofenac (DCF) is a drug compound that exists widely in water bodies, which may pose a threat to the ecological environment. In this study, spent bleaching earth (SBE) was pyrolyzed, modified with cetyltrimethylammonium bromide (CTAB) and loaded with zero-valent iron (nZVI) to obtain CTAB-SBE@C-nZVI. The effects of CTAB concentration, Fe0 loading, CTAB-SBE@C-nZVI dosage, and initial pH value on the removal efficiency of DCF were studied. The results showed that the DCF removal efficiency could reach a maximum of 87.0% with 2.0 g/L dosage of the optimal material, which was prepared under the conditions of 30 mmol/L CTAB concentration, 25% Fe0 loading, and initial pH 5. It indicated that the strong adsorption of the material and the reduction effect of nZVI can achieve high-efficiency removal of DCF. Based on the detected reaction intermediate products, four possible degradation paths were inferred. The toxicity assessment of DCF and its intermediates manifested that the degradation of DCF by CTAB-SBE@C-nZVI was a process of gradual dechlorination and toxicity reduction. CTAB-SBE@C-nZVI displayed excellent DCF removal efficiency, good stability and environmental friendliness, achieving wastes treat wastes and exhibiting good prospects.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yue Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xue Song
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan, 450001, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan, 450001, China.
| | - Jihong Zhao
- Henan Radio and Television University, Zhengzhou, Henan 450001, China
| | - Feiyue Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
17
|
Chen Y, Shi Y, Wan D, Zhao J, He Q, Liu Y. Synergistic adsorption and advanced oxidation activated by persulfate for degradation of tetracycline hydrochloride using iron-modified spent bleaching earth carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24704-24715. [PMID: 34825336 DOI: 10.1007/s11356-021-17435-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
At present, tetracycline hydrochloride (TCH) is a widely used antibiotic, and is often detected in water, posing a serious harm to human and ecological health. In this study, spent bleaching earth (SBE) was pyrolyzed to obtain spent bleaching earth carbon (SBE@C) and the nano Fe0/SBE@C prepared after zero-valent iron loading was adopted to remove TCH in water for the first time. The combination of nano Fe0/SBE@C and PS, the strong adsorption of SBE@C coupled with the oxidation of free radicals could achieve TCH efficient removal. The effects of nano Fe0 load, nano Fe0/SBE@C dosage, solution initial pH, and PS/TCH molar ratio on TCH removal efficiency in nano Fe0/SBE@C + PS system were studied. The results indicate that the optimal reaction conditions are 5% nano Fe0 load, 0.2 g/L nano Fe0/SBE@C dosage, initial pH of 3, PS/TCH molar ratio of 100:1. Under these conditions, TCH removal efficiency could reach 91%. Meanwhile, response surface methodology (RSM) was applied to predict optimal value of reaction conditions. The removal efficiency corresponding to the predicted optimal conditions was consistent with the actual removal efficiency obtained from the experiment. Moreover, six reaction systems were tested, and TCH removal efficiency in the SBE@C + PS system was 22.6%. When nano Fe0 was loaded on SBE@C, TCH removal efficiency in Fe0/SBE@C + PS system increased to 78.2%, in which TCH was first adsorbed on the surface of nano Fe0/SBE@C, and then was degraded by the oxidation of SO4•- and •OH. Totally, the nano Fe0/SBE@C + PS system displayed excellent TCH removal efficiency, good stability and reusability, exhibiting a promise toward TCH removal.
Collapse
Affiliation(s)
- Yue Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, 450001, Henan, China
| | - Jihong Zhao
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, 450001, Henan, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
18
|
Lv S, Gao Y, Zhao M, Jiang X, Li X, Yang J, Chen S, Cui S. Biomass-derived porous material synthesized by one-step calcination method for the magnetic solid phase extraction of polychlorinated biphenyls in water. J Sep Sci 2022; 45:1693-1701. [PMID: 35304811 DOI: 10.1002/jssc.202100884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022]
Abstract
Recent findings unfold that biomass materials with the micro/mesoporous structure were often treated as adsorbents for organic substances. In this work, one-step calcination method was adopted in the preparation of magnetic porous green bean biomass material. It has the properties of magnetism and porosity after the addition of Co(NO3 )2 and high temperature calcination. A variety of characterizations have been operated, including energy dispersive X-ray detector, vibrating sample magnetometer, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis and so on. It has the specific surface area 168.1611 m2 ∙g-1 and the pore volumes 0.1764 cm3 ∙g-1 . The material was used in magnetic solid phase extraction of three polychlorinated biphenyls including 2-chlorobiphenyl, 4-chlorobiphenyl and 2,2,5-trichlorobiphenyl. Several factors were investigated, such as material amount, eluents, adsorption time, solution pH, salinity and the reusability. Under optimized conditions, good recoveries (90.24-93.34%) were achieved with the relative standard deviation in a range from 2.30 % to 4.83 %. Three real water samples (tap, river and lake water) were tested to verify the accuracy of the method. This method can be successfully used in the analysis of some polychlorinated biphenyls congeners in water. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Siying Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yinuo Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Min Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xinyu Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaodong Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Sen Chen
- Nanjing Research Academy of Environment Science, 175 Huju Road, Nanjing, 210013, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
19
|
Khan S, Guan Q, Liu Q, Qin Z, Rasheed B, Liang X, Yang X. Synthesis, modifications and applications of MILs Metal-organic frameworks for environmental remediation: The cutting-edge review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152279. [PMID: 34902423 DOI: 10.1016/j.scitotenv.2021.152279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Ever-increasing anthropogenic activities are radically deteriorating the environment by causing severe pollution. Thus, curtailing the environmental pollution and promotion of sustainable development, are the hot issues confronted by scientists in this modern era. Metal-organic frameworks (MOFs) have been highly recognized as emerging promising materials for environmental remediation due to their versatile structure and extraordinary properties. Among them, MILs (MIL = Matérial Institute of Lavoisier) are the series of MOFs mostly known for their incredible stability, unique tailorable pore structures, and astounding versatile environmental applications. Their exclusive physiochemical properties and multifunctionality make them proficient for a wide range of pollutants removal in the exposure of versatile harsh environments, compared to other MOFs. This piece of research summarizes the state-of-the-art of development of MILs on the broad spectrum, highlighting their specificities, such as synthesis techniques, modifications and applications for environmental remediation. However, MILs wonderful properties and extraordinary applications in multiple fields, their deployment on practical and commercial-scale pollutants remediation is hindered by insufficient scientific research on underlying mechanisms and relationships. Henceforth, this review not only signifies the emerging importance of MILs for environmental applications but also indicates the urgency to maximize the scientific research for exploitation of MOFs on a practical level and promotion of green technologies for environmental remediation.
Collapse
Affiliation(s)
- Sara Khan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qing Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qian Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zewan Qin
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Bilal Rasheed
- School of Science, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Xiaoxia Liang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xia Yang
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
20
|
Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. CHEMOSPHERE 2021; 284:131171. [PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Varsha Srivastava
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland.
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
21
|
Al-Wabel MI, Ahmad M, Al-Swadi HA, Ahmad J, Abdin Y, Usman ARA, Al-Farraj ASF. Sorption–Desorption Behavior of Doxycycline in Soil–Manure Systems Amended with Mesquite Wood Waste Biochar. PLANTS 2021; 10:plants10122566. [PMID: 34961036 PMCID: PMC8709227 DOI: 10.3390/plants10122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Elevated levels of doxycycline (DC) have been detected in the environment due to its extensive utilization as a veterinary antibiotic. Sorption–desorption behavior of DC in soil affects its transport, transformation, and availability in the environment. Thus, sorption–desorption behavior of DC was explored in three soils (S1, S2, and S3) after manure application with and without mesquite wood-waste-derived biochar (BC) pyrolyzed at 600 °C. Sorption batch trials demonstrated the highest DC sorption in soil S1 as compared to S2 and S3, either alone or in combination with manure or manure + BC. Chemical sorption and pore diffusion were involved in DC sorption, as indicated by the kinetic models. Soil S1 with manure + BC exhibited the highest Langmuir model predicted sorption capacity (18.930 mg g−1) compared with the other two soils. DC sorption capacity of soils was increased by 5.0–6.5-fold with the addition of manure, and 10–13-fold with BC application in a soil–manure system. In desorption trials, manure application resulted in 67%, 40%, and 41% increment in DC desorption in soil S1, S2, and S3, respectively, compared to the respective soils without manure application. In contrast, BC application reduced DC desorption by 73%, 66%, and 65%, in S1, S2, and S3, respectively, compared to the soils without any amendment. The highest DC sorption after BC application could be due to H bonding, π–π EDA interactions, and diffusion into the pores of BC. Hence, mesquite wood-waste-derived BC can effectively be used to enhance DC retention in contaminated soil to ensure a sustainable ecosystem.
Collapse
Affiliation(s)
- Mohammad I. Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
- Correspondence: author: ; Tel.: +966-1-467-8442; Fax: +966-1-467-8440
| | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| | - Hamed A. Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
- Department of Soil, Water and Environment, Faculty of Agriculture, Sana’a University, Sana’a 31220, Yemen
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| | - Yassir Abdin
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| | - Adel R. A. Usman
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Abdullah S. F. Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.A.); (H.A.A.-S.); (J.A.); (Y.A.); (A.R.A.U.); (A.S.F.A.-F.)
| |
Collapse
|
22
|
Rahman N, Varshney P. Effective removal of doxycycline from aqueous solution using CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43599-43617. [PMID: 33837937 DOI: 10.1007/s11356-021-13584-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
The primary focus of the present study was to synthesize CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan to explore its potential for uptake of doxycycline (DXN) from water. The composite material was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and thermogravimetric analysis-differential thermal analysis. Central composite design under response surface methodology was opted to optimize the process variables (pH, adsorbent dosage, contact time and initial concentration of DXN) for obtaining the highest removal efficiency. The removal of DXN reached 98.84% at 303 K under the optimum conditions of pH 7.0, equilibrating time of 70 min, adsorbent dose of 20 mg/25 mL and initial concentration of 50 mg L-1. The Langmuir isotherm and pseudo-second-order kinetic models fitted best with the experimental data. The values of ΔG° (- 29.159 to - 31.997 kJ mol-1), ΔH° (56.768 kJ mol-1) and ΔS° (283.382 J mol-1 K-1) demonstrated the spontaneous and endothermic nature of adsorption process. The adsorption/desorption study revealed the reusability of the prepared composite material for DXN uptake up to six cycles.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Poornima Varshney
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
23
|
Zong Y, Ma S, Gao J, Xu M, Xue J, Wang M. Synthesis of Porphyrin Zr-MOFs for the Adsorption and Photodegradation of Antibiotics under Visible Light. ACS OMEGA 2021; 6:17228-17238. [PMID: 34278109 PMCID: PMC8280686 DOI: 10.1021/acsomega.1c00919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 05/25/2023]
Abstract
The release of antibiotics into the water environment can pose a serious threat to human and ecological health, so it is of great significance to effectively remove antibiotics from wastewater. In this work, porphyrinic zirconium metal-organic framework material, PCN-224, was first explored for the adsorption removal of antibiotics from water using tetracycline (TC) and ciprofloxacin (CIP) as examples. We prepared a series of PCN-224 with different particle sizes (150 nm, 300 nm, 500 nm, and 6 μm). Benefiting from the huge surface area (1616 m2 g-1), the 300 nm-PCN-224 sample had the best adsorption properties for TC and CIP. Remarkably, it exhibits fast removal rates and high adsorption capacities of 354.81 and 207.16 mg g-1 for TC and CIP, respectively. The adsorption of TC and CIP in 300 nm-PCN-224 is consistent with the pseudo-second-order kinetic model and Langmuir isotherm model, which indicates that the adsorption can be regarded as homogeneous monolayer chemisorption, and the adsorption is exothermic, which has been confirmed by thermodynamic studies. Under visible-light irradiation, 300 nm-PCN-224 exhibited high photocatalytic activity for TC and CIP. The adsorption studies confirmed that the adsorption of adsorbates takes place via the formation of hydrogen bonding, π-π interactions, and electrostatic attraction. In addition, the adsorbent can be simply regenerated by photocatalysis under visible light, and the adsorption-desorption efficiency is still above 85% after repeated use five times. The work of MOFs to remove antibiotics from water shows that MOFs have great potential in this field and are worthy of further study.
Collapse
Affiliation(s)
- Yuqing Zong
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shuaishuai Ma
- College
of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiamin Gao
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Minjing Xu
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jinjuan Xue
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Mingxin Wang
- School
of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
24
|
|
25
|
Chen Y, Wang Z, Liang D, Liu Y, Yu H, Zhu S, Zhang L. Conversion of Fe-rich sludge to KFeS2 cluster: Spontaneous hydrolysis of KFeS2 for the effective adsorption of doxycycline. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Jia M, Xiong W, Yang Z, Cao J, Zhang Y, Xiang Y, Xu H, Song P, Xu Z. Metal-organic frameworks and their derivatives-modified photoelectrodes for photoelectrochemical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Mao Y, Yu S, Li P, Liu G, Ouyang S, Zhu Z, Zhang P. A novel magnesium-rich tricalcium aluminate for simultaneous removal of ammonium and phosphorus: Response surface methodology and mechanism investigation. ENVIRONMENTAL RESEARCH 2021; 195:110719. [PMID: 33549622 DOI: 10.1016/j.envres.2021.110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Coexisting ammonium (NH4+-N) and phosphate (PO43--P) in wastewater is one of the main causes of eutrophication, which poses severe risks to aquatic ecosystem and human health worldwide. Herein, magnesium-rich tricalcium aluminate (Mg/C3A), which was constructed by incorporating Mg into cement-based material C3A via solid-state reaction, was employed in the simultaneous removal of NH4+-N and PO43--P. Considering the wastewater with unbalanced N/P ratio and fluctuant pH, the effect of multiple factors (Mg/C3A dosage, pH, initial contaminant concentration, and temperature) on the removal of both ions were systematically investigated by employing response surface methodology technique. The results demonstrated that the impact order of the factors on the NH4+ removal by Mg/C3A was: temperature > Mg/C3A dosage > initial NH4+ concentration > pH > initial PO43- concentration; the impact order on the PO43- removal was: initial PO43- concentration > Mg/C3A dosage > temperature > pH > initial NH4+ concentration. The maximum removal amount of NH4+ (54.13 mg g-1) and PO43- (56.47 mg g-1) were obtained at: Mg/C3A dosage = 3 g L-1, initial NH4+ concentration = 160 mg L-1, initial PO43- concentration = 160 mg L-1, temperature = 308 K, and pH = 7. In addition, the possible interactive influence mechanisms were elucidated in depth. Mg2+ played a major role in the PO43- removal by forming struvite (MgNH4PO4·6H2O) and newberyite (MgHPO4·3H2O). OH- released from Mg/C3A hydration mainly contributed to NH4+ removal. This work showed that Mg-rich C3A is a promising candidate for simultaneous removal of NH4+ and PO43-, shedding light on practical water remediation.
Collapse
Affiliation(s)
- Yuting Mao
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China; Office of MRL Development Committee of Jiangxi Province, Nanchang, 330046, China
| | - Shuqi Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guoping Liu
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China
| | - Sida Ouyang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zhongbang Zhu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
28
|
Adesina AO, Elvis OA, Mohallem NDS, Olusegun SJ. Adsorption of Methylene blue and Congo red from aqueous solution using synthesized alumina-zirconia composite. ENVIRONMENTAL TECHNOLOGY 2021; 42:1061-1070. [PMID: 31407630 DOI: 10.1080/09593330.2019.1652696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Alumina-zirconia (Al2O3-ZrO2) composite was prepared by combustion method and used to remove Congo red and Methylene blue from aqueous solutions. It was characterized using SEM-EDS, XRD and gas adsorption techniques. The results obtained from gas adsorption and SEM agree with each other, showing meso- and macro-porosity of inter-agglomerate pores. The removal of the two dyes was pH dependent, acidic pH favoured Congo red removal, while basic pH favoured Methylene blue. The, mechanism of adsorption was not limited to electrostatic attraction between the adsorbent and the dye molecules. Adsorption kinetic of both dyes was consistent with Pseudo-second-order model. The data obtained fitted to Langmuir and Liu isotherm models, with the maximum adsorption capacity of 57. 50 and 53.44 mg g-1 for Congo red and Methylene blue, respectively. The thermodynamic parameters indicated that the adsorption is spontaneous and exothermic. The mechanism of adsorption was elucidated using XRD and FTIR techniques.
Collapse
Affiliation(s)
- Ajayi O Adesina
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
| | - Okoronkwo A Elvis
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
| | - Nelcy D S Mohallem
- Departamento de Química, Laboratório de Materiais Nanoestruturados, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sunday J Olusegun
- Departamento de Química, Laboratório de Materiais Nanoestruturados, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Fabrication of carboxymethyl cellulose and chitosan modified Magnetic alkaline Ca-bentonite for the adsorption of hazardous doxycycline. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Peng H, Cao J, Xiong W, Yang Z, Jia M, Sun S, Xu Z, Zhang Y, Cai H. Two-dimension N-doped nanoporous carbon from KCl thermal exfoliation of Zn-ZIF-L: Efficient adsorption for tetracycline and optimizing of response surface model. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123498. [PMID: 32712366 DOI: 10.1016/j.jhazmat.2020.123498] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
N-doped nanoporous carbon (NC) with two-dimensional structure derived from Zn-ZIF-L via KCl exfoliation and carbonization at different temperature were prepared for adsorptive removal of tetracycline (TC). Characterizations revealed the effective dopant of N atoms and low degree of graphitization with more defects related to the enhanced adsorption capacity of the NC materials. Benefiting from the huge surface area (2195.57 m2 g-1), high porosity (1.34 cm3 g-1) and accessible sheeting structure, the NC-800 exhibited its fast and efficient adsorption of TC in 60 min. Meantime, the maximum adsorption of TC could reach 347.06 mg g-1. Effects of pH, humic acid (HA) and ionic strength (Na+, Ca2+) were studied along with the interactions among influencing factors investigated by response surface model (RSM). By optimizing experimental conditions from RSM, the adsorption capacity could increase to 427.41 mg g-1. Additionally, electrostatic interaction and hydrogen bond interaction might play a dominating role in adsorption reaction. The NC-800 could maintain a high adsorption level after four cycles. Therefore, the NC-800 with great adsorptive property and reusability could be considered as an effective adsorbent with promising potential in applications for water treatment.
Collapse
Affiliation(s)
- Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiao Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Saiwu Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhengyong Xu
- Science and Technology Service Center of Hunan Province, Changsha 410128, PR China
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hongchun Cai
- Hunan Xinheng Environmental Technology Co Ltd, Changsha 410005, PR China
| |
Collapse
|
31
|
Wu Q, Siddique MS, Yu W. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123261. [PMID: 32629344 DOI: 10.1016/j.jhazmat.2020.123261] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Iron-nickel bimetallic organic frameworks (FeNiX-BDC, H2BDC: terephthalic acid) were developed as bifunctional materials for adsorption and photo-Fenton degradation of organic dyes with different charge properties. Significantly enhanced adsorption capacity of FeNi1/15-BDC towards methylene blue (MB) and methyl orange (MO) was achieved, 5.3 and 2.6 times higher than that of pristine Fe-BDC, which was attributed to enlarged specific surface area and pore volume and the decreased surface charges induced by Ni doping. The adsorption kinetics demonstrated that chemisorption was dominant and intra-particle diffusion was the rate-controlling step. Two-stage degradation including slow induction stage and rapid oxidation stage fitted with pseudo-zero-order kinetics well. The increased rate constants (2.472 vs. 1.188 min-1 for MB; 0.616 vs. 0.421 min-1 for MO) in the induction stage as well as the superior removal capability by asynchronism relative to synchronism jointly corroborating the improved adsorption performance was favor for subsequent degradation. Notably, this heterogeneous system not only exhibited obvious advantages like wider pH working range (3-9), better stability and reusability of catalysts, but also achieved the dual objectives of in-situ decontamination and adsorbent regeneration. The coupling of adsorption and degradation along with synergism between photocatalysis and Fenton-like process are responsible for the reinforced removal of organic contaminants.
Collapse
Affiliation(s)
- Qiangshun Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China
| | - Muhammad Saboor Siddique
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100086, China; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
32
|
A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. ACTA ACUST UNITED AC 2020; 28:e00570. [PMID: 33304842 PMCID: PMC7718465 DOI: 10.1016/j.btre.2020.e00570] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023]
Abstract
Recent research on remediation of toxic pollutants by biochar has been summarized. The production techniques of the biochar have been narrated. Biochar properties, stability and its environmental issues have been analysed. Applications of biochar in soil fertility and removing pollutants have been reported. The major stumbling block in biochar production is cost of production.
There is an upsurge enthusiasm for utilizing biochar produced from waste-biomass in different fields, to address the most important ecological issues. This review is focused on an overview of remediating harmful contaminants utilizing biochar. Production of biochar utilizing various systems has been discussed. Biochar has received the consideration of numerous analysts in building up their proficiency to remediate contaminants. Process parameters are fundamentally answerable for deciding the yield of biomass. Biochar derived from biomass is an exceptionally rich wellspring of carbon produced from biomass utilizing thermal combustion. Activating biochar is another particular region for the growing utilization of biochar for expelling specific contaminations. Closed-loop systems to produce biochar creates more opportunities. Decentralized biochar production techniques serve as an effective way of providing employment opportunities, managing wastes, increasing resource proficiency in circular bioeconomy. This paper also covers knowledge gaps and perspectives in the field of remediation of toxic pollutants using biochar.
Collapse
|
33
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
34
|
Jadhav S, Jaspal D. Elimination of cationic azodye from aqueous media using doped polyaniline (PANI): adsorption optimization and modeling. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An adsorbent doped polyaniline (PANI) has been explored for the elimination of a cationic azodye, basic red 46 (BR-46), from textile effluent. Essential factors from batch mode have been studied to investigate their effect on the removal of BR-46. The investigated data have been applied to two prevalent adsorption isothermal models (i.e., Langmuir and Freundlich). In addition to the coefficients of determination, six different statistical error functions have been used to identify the most appropriate model for the existing process. The Langmuir model has been shown to be the best adsorption isotherm with minimum error values and a high coefficient of determination value (R2 > 0.999). The maximum monolayer adsorption capacity observed was 1.83 × 10−4 mol g−1 at 50 °C. Thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy were found to be –30.06 KJ mol−1, 374 J mol−1, and 97.25 J mol−1 K−1, respectively. The positive values of enthalpy and entropy indicate the process to be endothermic. The amount of the dye adsorbed increased from 1.02 to 5.42 × 10−5 g in moving from 30 to 50 °C. The measured energy of activation was 17.467 kJ mol−1. The maximum percent removal of BR-46 from wastewater has been 93% at pH 8.
Collapse
Affiliation(s)
- Smita Jadhav
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Gram: Lavale, Tal-Mulshi, Maharashtra, Pune 412115, India; Bharati Vidyapeeth’s College of Engineering for Women, Pune 411043, India
| | - Dipika Jaspal
- Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Gram: Lavale, Tal-Mulshi, Maharashtra, Pune 412115, India
| |
Collapse
|
35
|
Yu J, Cao J, Yang Z, Xiong W, Xu Z, Song P, Jia M, Sun S, Zhang Y, Zhu J. One-step synthesis of Mn-doped MIL-53(Fe) for synergistically enhanced generation of sulfate radicals towards tetracycline degradation. J Colloid Interface Sci 2020; 580:470-479. [PMID: 32711198 DOI: 10.1016/j.jcis.2020.07.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
Herein, Mn-doped MIL-53(Fe) were fabricated via one-pot solvothermal method and used for peroxymonosulfate (PMS) activation towards tetracycline (TC) degradation from aqueous solution. The characterizations of SEM, FTIR and XRD were utilized to reveal the morphology and structure of the materials. The results showed that Mn-MIL-53(Fe)-0.3 displayed the optimal catalytic performance, the removal efficiency of TC could reach 93.2%. Moreover, the catalytic activity of Mn-MIL-53(Fe) towards TC under different initial pH values, co-existing anions (Cl-,CO32- and SO42-) and humic acid (HA) were investigated. The results of thermodynamic experiment suggested that the catalytic process was endothermic. In addition, integrated with capture experiments results and the characterization results of electron paramagnetic resonance (EPR), which revealed that SO4·- and HO- were the reactive radicals involving in the reaction. More importantly, the possible activation mechanism was discussed in detail based on the X-ray photoelectron spectroscopy results. The active species were generated by the active sites of Fe(II) and Mn(II) on Mn-MIL-53(Fe) effectively activated PMS. Furthermore, the degradation intermediates and possible degradation pathway were investigated by LC-MS. Finally, the catalyst also showed good performance in actual wastewater and demonstrated good recyclability. The Mn-MIL-53(Fe)/PMS system exhibited a promising application prospect for antibiotic-containing waste water treatment.
Collapse
|
36
|
Sun S, Yang Z, Cao J, Wang Y, Xiong W. Copper-doped ZIF-8 with high adsorption performance for removal of tetracycline from aqueous solution. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121219] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Xiang Y, Yang X, Xu Z, Hu W, Zhou Y, Wan Z, Yang Y, Wei Y, Yang J, Tsang DCW. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136079. [PMID: 31884293 DOI: 10.1016/j.scitotenv.2019.136079] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/15/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
An effective adsorbent towards fluoroquinolone antibiotics was synthesized via a facile two-step approach, the co-precipitation of Fe, Mn with vinasse wastes and then pyrolysis under controlled conditions which denoted as FMB. Its adsorption behavior was examined based on a batch adsorption experiment of fluoroquinolone antibiotics pefloxacin (PEF) and ciprofloxacin (CIP). Experimental factors, such as pH, adsorbent dose, ionic strength, contact time and temperature have done a great deal to influence the adsorption of PEF and CIP. The FMB demonstrated excellent performance in reusability tests towards to both PEF and CIP, which showed that the recycling efficiency of PEF and CIP could remain ~55% and ~80% after five recycle cycles, respectively. The dominated adsorption mechanisms included pore filling effect, π-π stacking interaction, π-π EDA, hydrogen bonding and hydrophobicity. Overall, this work presented FMB was recognized as an effective, environmental-friendly and magnetically separable adsorbent for alleviating fluoroquinolone antibiotics contamination from water.
Collapse
Affiliation(s)
- Yujia Xiang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhangyi Xu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenyong Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuhui Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuyi Wei
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Liang J, Tang S, Gong J, Zeng G, Tang W, Song B, Zhang P, Yang Z, Luo Y. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121533. [PMID: 31757720 DOI: 10.1016/j.jhazmat.2019.121533] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/22/2023]
Abstract
Biochar and compost, two common amendments, were rarely conducted to investigate their combined influence on enzymatic activities and microbial communities in organic-polluted wetlands. This article described the effects of biochar/compost on degradation efficiency of sulfamethoxazole (SMX) and ecosystem responses in polluted wetland soil during the whole remediation process. 1% biochar (SB1) increased degradation efficiency of SMX by 0.067% ascribed to the increase of dehydrogenase and urease. 5% biochar (SB5) decreased degradation efficiency by 0.206% due to the decrease of enzymes especially for dehydrogenase. 2% compost (SC2), 1% biochar & 2% compost (SBC3), both 10% compost (SC10) and 5% biochar & 10% compost (SBC15) enhanced degradation efficiency by 0.033%, 0.015% and 0.222%, respectively, due to the increase of enzymes and biomass. The degradation efficiency was positively related to biomass and enzymatic activities. High-throughput sequencing demonstrated that HCGs (SB5, SC10, SBC15) improved the bacterial diversities but reduced richness through introducing more exogenous predominance strains and annihilated several inferior strains, while LCGs (SB1, SC2, SBC3) exhibited lower diversities but higher richness through enhanced the RAs of autochthonal preponderant species and maintained some inferior species. Additionally, HCGs raised the RAs of amino and lipid metabolism gene but lowered those of carbohydrate compared with LCGs.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Siqun Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhaoxue Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
39
|
Gao H, Zhai C, Fu N, Du Y, Yu K, Zhu M. Synthesis of Pt nanoparticles supported on a novel 2D bismuth tungstate/lanthanum titanate heterojunction for photoelectrocatalytic oxidation of methanol. J Colloid Interface Sci 2020; 561:338-347. [DOI: 10.1016/j.jcis.2019.10.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/18/2023]
|
40
|
Li Y, Wang Y, He L, Meng L, Lu H, Li X. Preparation of poly(4-vinylpyridine)-functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121144. [PMID: 31518803 DOI: 10.1016/j.jhazmat.2019.121144] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel poly(4-vinylpyridine)-functionalized magnetic Al-MOF (Al-MOF-Fe3O4@P4VP) was synthesized successfully as an adsorbent for the adsorption of naproxen from aqueous solution. The resulting adsorbent was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometer (VSM), BET surface area and X-ray photoelectron spectroscopy (XPS). Al-MOF-Fe3O4@P4VP had high surface area (123.68 m2/g), porous structure, rough surface and magnetic property. The maximum adsorption capacity of Al-MOF-Fe3O4@P4VP for naproxen could reach up to 31.67 mg/g and the adsorption process was well described by the Freundlich isotherm. The adsorption rate of naproxen on Al-MOF-Fe3O4@P4VP was very fast and the kinetics could be well modeled by the pseudo-second-order model. The adsorbent exhibited good adsorption ability even after ten adsorption-desorption cycles. Al-MOF-Fe3O4@P4VP had the characteristics of high removal efficiency, fast adsorption speed, good reusability and easy separation, making it a novel environment-friendly and effective magnetic nanomaterial in adsorbing naproxen from wastewater.
Collapse
Affiliation(s)
- Yuanshuai Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuting Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liyan He
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lezu Meng
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Lu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoli Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
41
|
Zhou D, Xie G, Hu X, Cai X, Zhao Y, Hu X, Jin Q, Fu X, Tan X, Liang C, Lai K, Wang H, Tang C. Coupling of kenaf Biochar and Magnetic BiFeO 3 onto Cross-linked Chitosan for Enhancing Separation Performance and Cr(VI) Ions Removal Efficiency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030788. [PMID: 32012702 PMCID: PMC7037466 DOI: 10.3390/ijerph17030788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/02/2022]
Abstract
Cr(VI) contamination has posed great threat to both the ecosystem and human health for its carcinogenic and mutagenic nature. A highly effective adsorbent for the removal of Cr(VI) was prepared and its adsorption mechanism was thoroughly discussed in this study. In detail, magnetic BiFeO3 and kenaf biochar were loaded on cross-linked chitosan to obtain chitosan-kenaf biochar@BiFeO3 (CKB) for improving adsorption capacity towards Cr(VI). The adsorption process of Cr(VI) onto CKB was evaluated as a function of the pH, the existence of competing ions, the initial concentration of Cr(VI) and contact time. The results show that CKB exhibits the highest adsorption capacity under the optimal pH 2.0. The presence of competing ions such as Ca2+, NO3−, SO42−, and Cl− decreases the adsorption capacity; among them, Ca2+ and NO3− show the greatest hindrance. By studying the effect of initial Cr(VI) concentration on the adsorption capacity, it was found that CKB in the solution was enough to remove Cr(VI) for all treatments (10–200 mg/L). The adsorption experimental data were well fitted with pseudo-first-order model, suggesting that chemisorption is not the dominant rate-limiting step. Freundlich isotherm model can better explain the adsorption process, indicating a non-ideal adsorption towards Cr(VI) on a heterogeneous surface of CKB. A 25-1 Fractional Factorial Design (FFD) showed that pH and initial concentration of Cr(VI) have significant influence on Cr(VI) adsorption in our reaction system. In general, excellent adsorption efficiency of CKB indicates that it may be a good candidate for the remediation of Cr(VI)-contaminating wastewater.
Collapse
Affiliation(s)
- Daixi Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| | - Guangyu Xie
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
- Correspondence: or (X.H.); (X.H.); Tel.: +86-0731-85623096 (Xin.H.)
| | - Xiaoxi Cai
- College of Art and Design, Hunan First Normal University, Changsha 410205, China;
| | - Yunlin Zhao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.); (Q.J.)
| | - Xi Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
- Correspondence: or (X.H.); (X.H.); Tel.: +86-0731-85623096 (Xin.H.)
| | - Qi Jin
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.Z.); (Q.J.)
| | - Xiaohua Fu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;
| | - Chong Liang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| | - Kaiqi Lai
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| | - Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (D.Z.); (G.X.); (X.F.); (C.L.); (K.L.); (H.W.); (C.T.)
| |
Collapse
|
42
|
Lv SW, Liu JM, Zhao N, Li CY, Wang ZH, Wang S. A novel cobalt doped MOF-based photocatalyst with great applicability as an efficient mediator of peroxydisulfate activation for enhanced degradation of organic pollutants. NEW J CHEM 2020. [DOI: 10.1039/c9nj05503g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cobalt doped MOF-based photocatalyst was synthesized for the first time and employed as a mediator of peroxydisulfate activation for enhanced pollutant degradation.
Collapse
Affiliation(s)
- Shi-Wen Lv
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- China
- Tianjin Key Laboratory of Food Science and Health
| | - Jing-Min Liu
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- China
- Tianjin Key Laboratory of Food Science and Health
| | - Ning Zhao
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- China
- Tianjin Key Laboratory of Food Science and Health
| | - Chun-Yang Li
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- China
- Tianjin Key Laboratory of Food Science and Health
| | - Zhi-Hao Wang
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- China
- Tianjin Key Laboratory of Food Science and Health
| | - Shuo Wang
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- China
- Tianjin Key Laboratory of Food Science and Health
| |
Collapse
|
43
|
Deng L, Yin D, Khaing KK, Xiao S, Li L, Guo X, Wang J, Zhang Y. The facile boosting sunlight-driven photocatalytic performance of a metal–organic-framework through coupling with Ag2S nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02030c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile method was successfully developed to tremendously boost sunlight-driven photocatalytic performance of a MOFs material (MIL-53(Fe)) by coupling with silver sulfide (Ag2S) nanoparticles for the first time.
Collapse
Affiliation(s)
- Linlin Deng
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Kyu Kyu Khaing
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | | | - Luqiu Li
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Xiandi Guo
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Jun Wang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| | - Yong Zhang
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- China
| |
Collapse
|
44
|
Xiang Y, Xu Z, Zhou Y, Wei Y, Long X, He Y, Zhi D, Yang J, Luo L. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. CHEMOSPHERE 2019; 237:124464. [PMID: 31394454 DOI: 10.1016/j.chemosphere.2019.124464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 05/06/2023]
Abstract
This present study reported the synthesis and characterization of a low-cost, environment friendly and high efficient biochar, ferromanganese modified biochar (Fe/Mn-BC) for the removal of levofloxacin (LEV) from aqueous medium. Fe/Mn-BC was synthesized through the facile co-precipitation of Fe, Mn with vinasse wastes and then pyrolysis under controlled conditions. The characterization of Fe/MnBC was analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction patterns (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman. Some influencing factors (e.g., pH, Fe/Mn-BC dosage, initial LEV concentration, ionic strength, contact time and temperature) were comprehensively investigated. The results manifested that the adsorption process of LEV onto Fe/Mn-BC was high pH dependence and the maximum adsorption capacity was achieved at pH 5. Moreover, the adsorption capacity of LEV was increased with increasing ionic strength. To gain a clearer perspective on the adsorption behavior of LEV onto Fe/Mn-BC, the adsorption kinetics and isotherms were also performed, revealing pseudo-second-order and Freundlich model had a better fitting effect. Reusability experiments indicated that Fe/Mn-BC could maintain a certain adsorption capacity for LEV after 5 recycles. Overall, this work showed that Fe/Mn-BC was an effective and promising adsorbent for eliminating LEV from aqueous medium.
Collapse
Affiliation(s)
- Yujia Xiang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhangyi Xu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Yuyi Wei
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Long
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yangzhou He
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
45
|
Tamoradi T, Veisi H, Karmakar B, Gholami J. A competent green methodology for the synthesis of aryl thioethers and 1H-tetrazole over magnetically retrievable novel CoFe 2O 4@l-asparagine anchored Cu, Ni nanocatalyst. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110260. [PMID: 31761157 DOI: 10.1016/j.msec.2019.110260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
The current work describes the successful synthesis of a magnetic CoFe2O4 centered asparagine functionalized noble metal (M = Cu, Ni) anchored nanocomposite. The novel materials, synthesized by post-functionalization approach, have been characterized by XRD, SEM, EDX, X-ray elemental mapping, FT-IR and VSM studies. The materials are proved to be efficient heterogeneous catalyst in the synthesis of diarylthioethers by C-S cross coupling reaction and 5-substituted 1H-tetrazoles by azide-alkyne cycloaddition reaction under green conditions. The current methodology is advantageous in terms of simplicity of procedure, facile synthesis, high yield in short reaction time, easy magnetic isolation and reusability of catalysts in consecutive runs with insignificant change in catalytic activity.
Collapse
Affiliation(s)
- Taiebeh Tamoradi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran.
| | - Hojat Veisi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India.
| | - Javad Gholami
- Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, Iran
| |
Collapse
|
46
|
Fernández-Peña L, Guzmán E, Leonforte F, Serrano-Pueyo A, Regulski K, Tournier-Couturier L, Ortega F, Rubio RG, Luengo GS. Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids Surf B Biointerfaces 2019; 185:110578. [PMID: 31678812 DOI: 10.1016/j.colsurfb.2019.110578] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
Abstract
Pseudo-binary mixtures of different glycolipids, four different rhamnolipids (RL) and an alkyl polyglucoside (APG), with poly(diallyl-dimethylammonium chloride) (PDADMAC) have been studied in relation to their adsorption onto negatively charged surfaces to shed light on the impact of the molecular structure of surfactants from natural sources (instead of synthetic surfactant, such as sodium laureth sulfate) on the adsorption of hair-conditioning polymers. For this purpose, the self-assembly of such mixtures in aqueous solution and their adsorption onto negatively charged surfaces mimicking the negative charge of damaged hair fibres have been studied combining experiments and self-consistent field (SCF) calculations. The results show that the specific physico-chemical properties of the surfactants (charge, number of sugar rings present in surfactant structure and length of the hydrocarbon length) play a main role in the control of the adsorption process, with the adsorption efficiency and hydration being improved in relation to conventional sulfate-based systems for mixtures of PDADMAC and glycolipids with the shortest alkyl chains. SCF calculations and Energy Dispersive X-Ray Spectroscopy (EDS) analysis on real hair confirmed such observations. The results allow one to assume that the characteristic of the surfactants, especially rhamnolipids, conditions positively the adsorption potential of polyelectrolytes in these model systems. This study provides important insights on the mechanisms underlying the performance of more complex but eco-friendly washing formulations.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| | | | - Ana Serrano-Pueyo
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | | | | | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| | | |
Collapse
|
47
|
Wu HH, Chang CW, Lu D, Maeda K, Hu C. Synergistic Effect of Hydrochloric Acid and Phytic Acid Doping on Polyaniline-Coupled g-C 3N 4 Nanosheets for Photocatalytic Cr(VI) Reduction and Dye Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35702-35712. [PMID: 31532604 DOI: 10.1021/acsami.9b10555] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, graphitic carbon nitride (g-C3N4) nanosheets (CNns) were modified using polyaniline (PANI) codoped with an inorganic (hydrochloric acid, HCl) and an organic (phytic acid, PA) acid. Our results revealed that these samples exhibited extended visible-light absorption and a three-dimensional (3D) hierarchical structure with a large specific surface area. They also inhibited photoluminescence emission, reduced electrical resistance, and provided abundant free radicals, resulting in high photocatalytic performance. The PANI/g-C3N4 sample demonstrated outstanding photocatalytic activity of a Cr(VI) removal capacity of 4.76 mg·min-1·gc-1, which is the best record for the reduction of a 100 ppm K2Cr2O7 solution. Moreover, g-C3N4 coupled with PANI monotonically doped with HCl or PA did not demonstrate increased activity, suggesting that the codoping of HCl and PA plays a significant role in enhancing the performance. The improved photocatalytic activity of PANI/g-C3N4 can be attributed to the interchain and intrachain doping of PA and HCl over PANI, respectively, to create a 3D connected network and synergistically increase the electrical conductivity. Therefore, new insights into g-C3N4 coupled with PANI and codoped by HCl and PA may have excellent potential for the design of g-C3N4-based compounds for efficient photocatalytic reactions.
Collapse
Affiliation(s)
- Hsiao-Han Wu
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| | - Chien-Wei Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8503 , Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science , Tokyo Institute of Technology , 2-12-1-NE-2 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Chechia Hu
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| |
Collapse
|
48
|
Rončević S, Nemet I, Ferri TZ, Matković-Čalogović D. Characterization of nZVI nanoparticles functionalized by EDTA and dipicolinic acid: a comparative study of metal ion removal from aqueous solutions. RSC Adv 2019; 9:31043-31051. [PMID: 35529387 PMCID: PMC9072297 DOI: 10.1039/c9ra04831f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Surface modification of nZVI particles by EDTA and PDCA leads to the formation of magnetite and feroxyhyte shell. PDCA capping caused the elongation of spheres into ellipsoids. Metals adsorption was more efficient on smaller ellipsoidal particles.
Collapse
Affiliation(s)
- Sanda Rončević
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- 10000 Zagreb
- Croatia
| | - Ivan Nemet
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- 10000 Zagreb
- Croatia
| | | | | |
Collapse
|