1
|
Zhang J, Huang H, Ding B, Liu Z, Chen D, Li S, Shen T, Zhu Q. Histone demethylase KDM4A mediating macrophage polarization: A potential mechanism of trichloroethylene induced liver injury. Cell Biol Int 2024; 48:1148-1159. [PMID: 38800986 DOI: 10.1002/cbin.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to β-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in β-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1β. These results suggest that the association of KDM4A and Wnt/β-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Hua Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department Of Infectious Disease Prevention and Control, Linan District Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Baiwang Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department Of Infectious Disease Prevention and Control, Linan District Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Zhibing Liu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Daojun Chen
- Institute of Medical Technology, Anhui Medical College, Hefei, Anhui, China
| | - Shulong Li
- The Center for Scientific Research, Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Qixing Zhu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Lu CW, Lo KH, Wang SC, Kao CM, Chen SC. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170885. [PMID: 38342459 DOI: 10.1016/j.scitotenv.2024.170885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 μmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 μmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 μmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sun-Chong Wang
- Systems Biology and Bioinformatics Institute, National Central University, Taoyuan 32001, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
3
|
Adamson A, Ilieva N, Stone WJ, De Miranda BR. Low-dose inhalation exposure to trichloroethylene induces dopaminergic neurodegeneration in rodents. Toxicol Sci 2023; 196:218-228. [PMID: 37669148 PMCID: PMC11491929 DOI: 10.1093/toxsci/kfad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Trichloroethylene (TCE) is one of the most pervasive environmental contaminants in the world and is associated with Parkinson disease (PD) risk. Experimental models in rodents show that TCE is selectively toxic to dopaminergic neurons at high doses of ingestion, however, TCE is a highly volatile toxicant, and the primary pathway of human exposure is inhalation. As TCE is a highly lipophilic, volatile organic compound (VOC), inhalation exposure results in rapid diffusion throughout the brain, avoiding first-pass hepatic metabolism that necessitated high doses to recapitulate exposure conditions observed in human populations. We hypothesized that inhalation of TCE would induce significantly more potent neurodegeneration than ingestion and better recapitulate environmental conditions of vapor intrusion or off gassing from liquid TCE. To this end, we developed a novel, whole-body passive exposure inhalation chamber in which we exposed 10-month-old male and female Lewis rats to 50 ppm TCE (time weighted average, TWA) or filtered room air (control) over 8 weeks. In addition, we exposed 12-month-old male and female C57Bl/6 mice to 100 ppm TCE (TWA) or control over 12 weeks. Both rats and mice exposed to chronic TCE inhalation showed significant degeneration of nigrostriatal dopaminergic neurons as well as motor and gait impairments. TCE exposure also induced accumulation of pSer129-αSyn in dopaminergic neurons as well as microglial activation within the substantia nigra of rats. Collectively, these data indicate that TCE inhalation causes highly potent dopaminergic neurodegeneration and recapitulates some of the observed neuropathology associated with PD, providing a future platform for insight into the mechanisms and environmental conditions that influence PD risk from TCE exposure.
Collapse
Affiliation(s)
- Ashley Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Neda Ilieva
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - William J Stone
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Briana R De Miranda
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
4
|
Adamson AB, Ilieva NM, Stone WJ, De Miranda BR. Low-dose inhalation exposure to trichloroethylene induces dopaminergic neurodegeneration in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548754. [PMID: 37502893 PMCID: PMC10369984 DOI: 10.1101/2023.07.12.548754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Trichloroethylene (TCE) is one of the most pervasive environmental contaminants in the world and is associated with Parkinson disease (PD) risk. Experimental models in rodents show that TCE is selectively toxic to dopaminergic neurons at high doses of ingestion, however, TCE is a highly volatile toxicant, and the primary pathway of human exposure is inhalation. As TCE is a highly lipophilic, volatile organic contaminant (VOC), inhalation exposure results in rapid diffusion throughout the brain, avoiding first-pass hepatic metabolism that necessitated high doses to recapitulate exposure conditions observed in human populations. We hypothesized that inhalation of TCE would induce significantly more potent neurodegeneration than ingestion and better recapitulate environmental conditions of vapor intrusion or off gassing from liquid TCE. To this end, we developed a novel, whole-body passive exposure inhalation chamber in which we exposed 10-month-old male and female Lewis rats to 50 ppm TCE (time weighted average, TWA) or filtered room air (control) over 8 weeks. In addition, we exposed 12-month-old male and female C57Bl/6 mice to 100 ppm TCE (TWA) or control over 12 weeks. Both rats and mice exposed to chronic TCE inhalation showed significant degeneration of nigrostriatal dopaminergic neurons as well as motor and gait impairments. TCE exposure also induced accumulation of pSer129-αSyn in dopaminergic neurons as well as microglial activation within the substantia nigra of rats. Collectively, these data indicate that TCE inhalation causes highly potent dopaminergic neurodegeneration and recapitulates some of the observed neuropathology associated with PD, providing a future platform for insight into the mechanisms and environmental conditions that influence PD risk from TCE exposure.
Collapse
|
5
|
Chen CY, Kuan SP, Nagarajan D, Chen JH, Ariyadasa TU, Chang JS. A novel two-stage process for the effective treatment of swine wastewater using Chlorella sorokiniana AK-1 based algal-bacterial consortium under semi-continuous operation. BIORESOURCE TECHNOLOGY 2022; 365:128119. [PMID: 36252751 DOI: 10.1016/j.biortech.2022.128119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study aimed at developing an eco-friendly and effective treatment for swine wastewater (SWW) using a designer microalgae-bacteria consortium. A functional algal bacterial consortium was developed with SWW-derived bacteria and Chlorella sorokiniana AK-1. Light intensity (300 µmol/m2/s) and inoculum size (0.15 and 0.2 g/L for microalgae and bacteria) were optimized. Semi-batch operation treating 50 % SWW resulted in a COD, BOD, TN, and TP removal efficiency of 81.1 ± 0.9 %, 97.0 ± 0.7 %, 90.6 ± 1.6 % and 91.3 ± 1.1 %, respectively. A novel two-stage process with an initial bacterial start-up stage followed by microalgal inoculation was applied for attaining stable organic carbon removal, in addition to satisfactory TN and TP removal. Full strength SWW was treated with this strategy with COD, BOD, TN, and TP removal efficiencies of 72.1 %, 94.9 %, 88 %, and 94.6 %, respectively. The biomass consisted of 36 % carbohydrates, indicating a potential feedstock for biochar production. In addition, the effluent met the standards for effluent discharge in Taiwan.
Collapse
Affiliation(s)
- Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ping Kuan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jih-Heng Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
6
|
Koner S, Chen JS, Hsu BM, Rathod J, Huang SW, Chien HY, Hussain B, Chan MWY. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127266. [PMID: 34600373 DOI: 10.1016/j.jhazmat.2021.127266] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
This study explores the toxic effect of TCE at different depths of sub-surface soil and underpins microbial community-level suitable carbon (C)-sources that provided directionality to the in situ biostimulation effort via augmentation strategy for effective TCE remediation in soil. The impacts on resident microbial communities and their functional profiles that govern the TCE biodegradation process were identified. Highly contaminated PW01 soil (9 m depth) had severely limited microbial diversity and was enriched in Proteobacteria and Firmicutes. The abundance of TCE degradation-associated genera was observed in all contaminated samples, and the abundance of TCE-degradation-related taxa were positively correlated with soil TCE contamination levels. Community-level metabolic activity associated with the utilization of diverse external C-sources was directly influenced by TCE concentration and soil depth. Multivariate data analysis revealed that the functional genus, TCE concentration, and selected available C substrate uptake capacity correlated in soil samples. Pearson's correlation tests revealed that C sources such as L-arginine, phenylethylamine and γ-hydroxybutyric acid utilization trait exhibited significant positive correlations with chloroalkane and chloroalkene degradation pathway abundance. Ultimately, depth and TCE contamination level-associated soil microbiota and their most preferred C-source understanding could add to facilitate effective biostimulation via external nutrient amendment for efficient in situ TCE degradation.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan.
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Wei Huang
- Center for environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| | - Hua-Yi Chien
- Environmental Technology Development Department, Taiwan VCM Corporation, Kaohsiung, Taiwan; Department of Environmental Sciences and Engineering, Fooyin University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
7
|
Moqsud MA. Bioremediation of polluted soil due to tsunami by using recycled waste glass. Sci Rep 2021; 11:14272. [PMID: 34253815 PMCID: PMC8275791 DOI: 10.1038/s41598-021-93806-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
In this research, bioremediation of tsunami-affected polluted soil has been conducted by using collective microorganisms and recycled waste glass. The Tohoku earthquake, which was a mega earthquake in Japan triggered a huge tsunami on March 11th, 2011 that caused immeasurable damage to the geo-environmental conditions by polluting the soil with heavy metals and excessive salt content. Traditional methods to clean this polluted soil was not possible due to the excess cost and efforts. Laboratory experiments were conducted to examine the capability of bioremediation of saline soil by using recycled waste glass. Different collective microorganisms which were incubated inside the laboratory were used. The electrical conductivity (EC) was measured at different specified depths. It was noticed that the electrical conductivity decreased with the assist of the microbial metabolisms significantly. Collective microorganisms (CM2) were the highly capable to reduce salinity (up to 75%) while using recycled waste glass as their habitat.
Collapse
Affiliation(s)
- M Azizul Moqsud
- Department of Civil and Environmental Engineering, Yamaguchi University, Ube City, 755-8611, Japan.
| |
Collapse
|
8
|
De Miranda BR, Castro SL, Rocha EM, Bodle CR, Johnson KE, Greenamyre JT. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis 2021; 153:105312. [PMID: 33636387 DOI: 10.1016/j.nbd.2021.105312] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Gene-environment interaction is implicated in the majority of idiopathic Parkinson's disease (PD) risk, and some of the most widespread environmental contaminants are selectively toxic to dopaminergic neurons. Pesticides have long been connected to PD incidence, however, it has become increasingly apparent that other industrial byproducts likely influence neurodegeneration. For example, organic solvents, which are used in chemical, machining, and dry-cleaning industries, are of growing concern, as decades of solvent use and their effluence into the environment has contaminated much of the world's groundwater and soil. Like some pesticides, certain organic solvents, such as the chlorinated halocarbon trichloroethylene (TCE), are mitochondrial toxicants, which are collectively implicated in the pathogenesis of dopaminergic neurodegeneration. Recently, we hypothesized a possible gene-environment interaction may occur between environmental mitochondrial toxicants and the protein kinase LRRK2, mutations of which are the most common genetic cause of familial and sporadic PD. In addition, emerging data suggests that elevated wildtype LRRK2 kinase activity also contributes to the pathogenesis of idiopathic PD. To this end, we investigated whether chronic, systemic TCE exposure (200 mg/kg) in aged rats produced wildtype LRRK2 activation and caused nigrostriatal dopaminergic dysfunction. Interestingly, we found that TCE not only induced LRRK2 kinase activity in the brain, but produced a significant dopaminergic lesion in the nigrostriatal tract, elevated oxidative stress, and caused endolysosomal dysfunction and α-synuclein accumulation. Together, these data suggest that TCE-induced LRRK2 kinase activity contributed to the selective toxicity of dopaminergic neurons. We conclude that gene-environment interactions between certain industrial contaminants and LRRK2 likely influence PD risk.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher R Bodle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Katrina E Johnson
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
9
|
Ebrahimbabaie P, Pichtel J. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7710-7741. [PMID: 33403642 DOI: 10.1007/s11356-020-11598-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA
| | - John Pichtel
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA.
| |
Collapse
|
10
|
Lai C, Wu F, Wang Y, Wang W, Li Y, Zhang G, Gao J, Zhu Z, Yuan J, Yang J, Zhang W. Specific epigenetic microenvironment and the regulation of tumor-related gene expression by trichloroethylene in human hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111453. [PMID: 33068984 DOI: 10.1016/j.ecoenv.2020.111453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Trichloroethylene (TCE), an important volatile organic solvent, causes a series of toxic damage to human. Conventional genetic mechanisms cannot fully explain its toxicity and carcinogenicity, indicative of the possible involvement of epigenetic mechanisms. Our study was intended to investigate the epigenetic toxicity and underlying mechanisms of TCE. Data showed that 0.3 mM TCE treatment for 24 h increased the growth of L-02 cells transiently. In contrast, subacute exposure to TCE inhibited cell growth and induced the genomic DNA hypomethylation and histone hyperacetylation. Further studies have revealed the TCE-induced DNA hypomethylation in the promoter regions of tumor-related genes, N-Ras, c-Jun, c-Myc, c-Fos and IGF-II, promoting their protein levels in a time-dependent manner. These results reveal there is a negative relationship existing between DNA hypomethylation and protein expression in tumor-related gene after TCE exposure under specific epigenetic microenvironment, serving as early biomarkers for TCE-associated diseases.
Collapse
Affiliation(s)
- Caiyun Lai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Fan Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yan Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yueqi Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Gaoqiang Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jianji Gao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhiliang Zhu
- Baoan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518101, PR China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Jianping Yang
- Shenzhen Taike Test Co., Ltd, Shenzhen, Guangdong 518053, PR China.
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
11
|
Berens MJ, Hofstetter TB, Bolotin J, Arnold WA. Assessment of 2,4-Dinitroanisole Transformation Using Compound-Specific Isotope Analysis after In Situ Chemical Reduction of Iron Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5520-5531. [PMID: 32275413 DOI: 10.1021/acs.est.9b07616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferrous iron-bearing minerals are important reductants in the contaminated subsurface, but their availability for the reduction of anthropogenic pollutants is often limited by competition with other electron acceptors including microorganisms and poor accessibility to Fe(II) in complex hydrogeologic settings. The supply of external electron donors through in situ chemical reduction (ISCR) has been proposed as one remediation approach, but the quantification of pollutant transformation is complicated by the perturbations introduced to the subsurface by ISCR. Here, we evaluate the application of compound specific isotope analysis (CSIA) for monitoring the reduction of 2,4-dinitroanisole (DNAN), a component of insensitive munitions formulations, by mineral-bound Fe(II) generated through ISCR of subsurface material from two field sites. Electron balances from laboratory experiments in batch and column reactors showed that 3.6% to 11% of the total Fe in the sediments was available for the reduction of DNAN and its partially reduced intermediates after dithionite treatment. The extent of DNAN reduction was successfully quantified from its N isotope fractionation measured in the column effluent based on the derivation of a N isotope enrichment factor, εN, derived from a comprehensive series of isotope fractionation experiments with numerous Fe(II)-bearing minerals as well as dithionite-reduced subsurface materials. Our observations illustrate the utility of CSIA as a robust approach to evaluate the success of in situ remediation through abiotic contaminant reduction.
Collapse
Affiliation(s)
- Matthew J Berens
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Chemistry, Überlandstrasse 133, CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Chemistry, Überlandstrasse 133, CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, United States
| |
Collapse
|
12
|
Lin TF, Jegatheesan V, Shu L, Rene ER. Challenges in Environmental Science/Engineering and Emerging Sustainable Practices for Future Water Conservation. CHEMOSPHERE 2020; 238:124591. [PMID: 31445329 DOI: 10.1016/j.chemosphere.2019.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | | | - Li Shu
- LJS Environment, Australia
| | | |
Collapse
|
13
|
Wang X, Aulenta F, Puig S, Esteve-Núñez A, He Y, Mu Y, Rabaey K. Microbial electrochemistry for bioremediation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 1:100013. [PMID: 36160374 PMCID: PMC9488016 DOI: 10.1016/j.ese.2020.100013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
Lack of suitable electron donors or acceptors is in many cases the key reason for pollutants to persist in the environment. Externally supplementation of electron donors or acceptors is often difficult to control and/or involves chemical additions with limited lifespan, residue formation or other adverse side effects. Microbial electrochemistry has evolved very fast in the past years - this field relates to the study of electrochemical interactions between microorganisms and solid-state electron donors or acceptors. Current can be supplied in such so-called bioelectrochemical systems (BESs) at low voltage to provide or extract electrons in a very precise manner. A plethora of metabolisms can be linked to electrical current now, from metals reductions to denitrification and dechlorination. In this perspective, we provide an overview of the emerging applications of BES and derived technologies towards the bioremediation field and outline how this approach can be game changing.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Belgium
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria Km 29,300, 00015, Monterotondo, RM, Italy
| | - Sebastià Puig
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Analytical Chemistry and Chemical Engineering, University of Alcalá, Campus Universitario, Ctra. Madrid-Barcelona Km 33.600, 28871, Alcalá de Henares, Spain
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse (SKL-PCRR), School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, China
| | - Yang Mu
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Belgium
- Corresponding author. Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium. http://www.capture-resources.be
| |
Collapse
|