1
|
Zhang Q, Li Y, Peng X, Bai X, Zhang L, Zhong S, Shu X. Pyrite from acid mine drainage promotes the removal of antibiotic resistance genes and mobile genetic elements in karst watershed with abundant calcium carbonate. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134344. [PMID: 38678706 DOI: 10.1016/j.jhazmat.2024.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
More information is needed to fully comprehend how acid mine drainage (AMD) affects the phototransformation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in karst water and sewage-irrigated farmland soil with abundant carbonate rocks (CaCO3) due to increasing pollution of AMD formed from pyrite (FeS2). The results showed FeS2 accelerated the inactivation of ARB with an inactivation of 8.7 log. Notably, extracellular and intracellular ARGs and mobile genetic elements (MGEs) also experienced rapid degradation. Additionally, the pH of the solution buffered by CaCO3 significantly influenced the photo-inactivation of ARB. The Fe2+ in neutral solution was present in Fe(II) coordination with strong reducing potential and played a crucial role in generating •OH (7.0 μM), which caused severe damage to ARB, ARGs, and MGEs. The •OH induced by photo-Fenton of FeS2 posed pressure to ARB, promoting oxidative stress response and increasing generation of reactive oxygen species (ROS), ultimately damaging cell membranes, proteins and DNA. Moreover, FeS2 contributed to a decrease in MIC of ARB from 24 mg/L to 4 mg/L. These findings highlight the importance of AMD in influencing karst water and sewage-irrigated farmland soil ecosystems. They are also critical in advancing the utilization of FeS2 to inactivate pathogenic bacteria.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Yuhua Li
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Xinyi Peng
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Xue Bai
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Lishan Zhang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Shan Zhong
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, Guangxi 541000, China
| | - Xiaohua Shu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541000, China.
| |
Collapse
|
2
|
Li X, Ren H, Xu Z, Chen G, Zhang S, Zhang L, Sun Y. Practical application for legacy acid mine drainage (AMD) prevention and treatment technologies in karst-dominated regions: A case study. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 258:104238. [PMID: 37673015 DOI: 10.1016/j.jconhyd.2023.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Acid mine drainage (AMD) from abandoned mines in karst-dominated regions in southwestern China was causing contamination of groundwater and surface streams. To avert the unwise decisions of "pollution first before treatment" during pre-mining, mid-mining and post-mining activities, this paper proposes a contaminant migration prevention technical framework covering 4 comprehensive processes. The formation mechanism of spring pollution, engineering remediation processes and contamination treatment effects were described in Longdong Spring. In 2018, the Longdong Spring water had Fe 33.83 mg/L and Mn 3.60 mg/L, exceeding the Chinese surface water standard (0.3 mg/L and 0.1 mg/L in GB 3838-2002) by 112 and 36 times, respectively. In 2020, after grout blocking, in situ treatment and wetland remediation, the highest Fe was 4.5 mg/L in a short period, and the spring water pollution days in this year were 42 days compared with the previous 320 spring water pollution days in 2018. In 2021, two years of remediation with the implementation of terminal remediation wetlands, the Fe was less than 0.03 mg/L compared with the previous 33.83 mg/L, and the water quality reached water standard (less than 0.3 mg/L). At present, Longdong Spring has become one of the most beautiful natural local landscapes.
Collapse
Affiliation(s)
- Xin Li
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Hujun Ren
- China Coal Hydrogeological Bureau Group Company, 18 Dafeng Road, Hongqiao District, Tianjin 300131, People's Republic of China
| | - Zhimin Xu
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China; Fundamental Research Laboratory for Mine Water Hazards Prevention and Controlling Technology, Xuzhou 221006, Jiangsu, People's Republic of China.
| | - Ge Chen
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Shangguo Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Li Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Yajun Sun
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China; Fundamental Research Laboratory for Mine Water Hazards Prevention and Controlling Technology, Xuzhou 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Chen C, Li B, Zhu M, Wang X, Liu G, Deng Y. Multi-isotope identification of key hydrogeochemical processes and pollution pathways of groundwater in abandoned mining areas in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27607-9. [PMID: 37266785 DOI: 10.1007/s11356-023-27607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Acid mine drainage (AMD) is considered one of the serious environmental issues in the mining area. Understanding the key processes and pathways of hydrogeochemical evolution is critical for the effective control of AMD pollution. Hydrogeochemical analysis along with environmental isotope tracing was utilized to provide information regarding the hydrogeochemical process of groundwater pollution by using the multi-aquifer of abandoned Dashu pyrite in Southwest China as an example. Using the deuterium excess parameter d of groundwater and the results of 2H, 18O, and T analysis, the water-rock interaction intensity was determined. The distribution characteristics of d-T revealed that the groundwater primarily originated from the Quaternary reservoir platform groundwater and that there was a close hydraulic connection among the aquifers. The results of ion analysis and sulfur isotope tracing indicated that the sulfur in groundwater was primarily derived from gypsum dissolution, whereas the sulfur in mine water was primarily derived from pyrite oxidation. The results of the hydrogeochemical inversion indicated that mining activities altered the water level and flow conditions, promoted water-rock interactions, altered the hydrogeochemical process, and caused aquifer and mine water cross-contamination. The findings provide theoretical guidance for identifying the pollution sources and critical hydrogeochemical processes that affect groundwater in depleted mining areas of multi-aquifers and also provide technical support for developing water source control and prevention techniques.
Collapse
Affiliation(s)
- Cheng Chen
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, 610059, China
| | - Bo Li
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, 610059, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Mingtan Zhu
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, 610059, China
| | - Xuemei Wang
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, 610059, China
| | - Guo Liu
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu, 610059, China.
| | - Yinger Deng
- College of Environment Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
4
|
Mao H, Wang C, Qu S, Liao F, Wang G, Shi Z. Source and evolution of sulfate in the multi-layer groundwater system in an abandoned mine-Insight from stable isotopes and Bayesian isotope mixing model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160368. [PMID: 36414065 DOI: 10.1016/j.scitotenv.2022.160368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The source and evolution of sulfate (SO42-) in groundwater from abandoned mines are widely concerned environmental issues. Herein, major dissolved ions, multi-isotopes (δ34S, δ18Osulfate, δ2H and δ18Owater), machine learning (Self-organizing maps) and Bayesian isotope mixing model were used to identify the source and evolution of SO42- in an abandoned mine (Fengfeng mine, northern China) with a multi-layer groundwater system. Groundwater in the study area was mainly divided into three clusters (Cluster I, Cluster II and Cluster III), dominated by Na-SO4, Ca-SO4 and Ca-HCO3 types, respectively. According to δ2H and δ18Owater, groundwater in the study area mainly originated from atmospheric precipitation. δ34S, δ18Osulfate and SO42- suggested that bacterial sulfate reduction did not affect the SO42- isotopic composition. Dual SO42- isotopes, and MixSIAR model revealed that the main source of SO42- in the study area was pyrite oxidation/gypsum dissolution, accounting for an average of 57.4 % (gypsum), 71.24 % (pyrite oxidation) and 52.93 % (pyrite oxidation) of SO42- in the samples of Clusters I-III, respectively. Combined with the hydrochemical diagrams, the evolution of SO42- in different clusters of samples was derived. Cluster I was mainly gypsum dissolution; In contrast, Clusters II and III were mainly pyrite oxidation accompanied by carbonate dissolution, and Cluster II was also influenced by cation exchange. These findings will help in developing management strategies for protecting groundwater quality, which will provide a reference for the study of solute sources and S cycling in abandoned mines.
Collapse
Affiliation(s)
- Hairu Mao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Chenyu Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Fu Liao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China.
| | - Zheming Shi
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
5
|
Chen W, Liu P, Luo Y, Li B, Peng J, Jin X. Behavior of Sb and As in the hydrogeochemistry of adjacent karst underground river systems and the responses of such systems to mining activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159411. [PMID: 36243076 DOI: 10.1016/j.scitotenv.2022.159411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Through the investigation of Qinglong mining area and adjacent karst underground river system, mining activities and water-rock interactions are found to control the hydrogeochemical evolution of karst underground water. Along the flow direction of the karst underground river, the hydro-chemical type is converted from HCO3-Ca type to SO4-Ca type. The concentrations of Sb and As also gradually decrease. Using PHREEQC to calculate the SI shows that: in the karst underground river system, both gypsum and fluorite are unsaturated, indicating a high degree of water-rock interaction. LogPCO2 is negatively correlated with pH, indicating that the karst underground river systems are both open systems. The dissolution of carbonate minerals and the alternate adsorption of ions are the main water-rock interactions that lead to the rapid decline of Sb and As concentrations. This research also applies principal component analysis to identify the types of pollution in adjacent karst underground river systems. The results show that the LongBaiwei underground river was mainly affected by coal mining activities, and Fe was more prominent; the ShuiYa underground river was more significantly affected by the leachate from the antimony tailings yard. This study provides a scientific basis for the evolution of the water environment as well as strategies for pollution prevention and control in typical karst underground river systems owing to the influence of mining activities.
Collapse
Affiliation(s)
- Weixiao Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pu Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Ying Luo
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Bo Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jichao Peng
- Bureau of Natural Resources of Qianxinan Prefecture, Xingyi 562400, China
| | - Xuejiao Jin
- Guizhou Province Research Institute of Coal Mine Design Co., Ltd, Guiyang 550025, China
| |
Collapse
|
6
|
Wang C, Liao F, Wang G, Qu S, Mao H, Bai Y. Hydrogeochemical evolution induced by long-term mining activities in a multi-aquifer system in the mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158806. [PMID: 36115401 DOI: 10.1016/j.scitotenv.2022.158806] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The hydrogeochemical evolution of groundwater is related to and affected by long-term mining activities, which may deteriorate the quality of groundwater. The Fengfeng mine in Handan, North China has a 30-y history of coal mining with long-term mining activities and complex geological conditions, resulting in a complex hydrogeochemical environment in the mining region. In this study, the hydrogeochemical evolution mechanism of groundwater in a multi-aquifer system in the Fengfeng Mining Area was investigated using machine learning (self-organizing maps combined with K-means clustering) and sulfur and oxygen isotopes (δ34SSO4 and δ18OSO4). The hydrogeochemical characteristics of different aquifers in the mining area changed to different degrees after mining compared with the characteristics before mining. The spatiotemporal variations in groundwater components were found to be controlled by pyrite oxidation, gypsum dissolution, and carbonate dissolution, which are affected by mining activities. Pyrite oxidation primarily occurred in the Carboniferous thin-layer limestone aquifer (CLA) and Permian sandstone aquifer (PSA). The hydrogeochemical evolution in the Ordovician limestone aquifer (OLA), the main aquifer in the study area, was affected by leakage recharge from CLA and PSA caused by mining activities. The results showed that owing to the effects of long-term mining, the altered groundwater flow system affected the evolution of groundwater components in each aquifer, particularly the sulfate concentration. This study reveals a distinct hydrogeochemical evolution induced by mining activities, which can provide a basis for groundwater resource management in mining areas.
Collapse
Affiliation(s)
- Chenyu Wang
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Shen Qu
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yunfei Bai
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
7
|
Chen X, Zheng L, Zhu M, Jiang C, Dong X, Chen Y. Quantitative identification of nitrate and sulfate sources of a multiple land-use area impacted by mine drainage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116551. [PMID: 36283198 DOI: 10.1016/j.jenvman.2022.116551] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid increase in urbanization and intensive coal mining activities have accelerated the deterioration of surface water quality. Environmental problems caused by the accumulation of nitrate and sulfate from natural, urban, and agricultural sources have attracted extensive attention. Information on nitrate and sulfate sources and their transformations is crucial for understanding the nitrogen and sulfur cycles in surface water. In this study, we monitored nitrate and sulfate in three representative rivers in mining cities in northern China. The main pollution sources and biogeochemical processes were identified by using stable isotopes (δD, δ18OH2O, δ15N, δ18ONO3, δ34S and δ18OSO4) and hydrochemistry. The contribution of natural and anthropogenic sources was quantitatively estimated based on a Bayesian mixed model. The results indicated a large variation in sulfate and nitrate sources between the different rivers. Nitrate in the Tuohe River mainly derived from manure/sewage (57.9%) and soil N (26.9%), while sulfate mainly derived from manure/sewage (41.7%) and evaporite dissolution (26.8%). For the Suihe River, nitrate was primarily sourced from chemical fertilizer (37.9%) and soil nitrogen (34.8%), while sulfate was mainly sourced from manure/sewage (33.1%) and chemical fertilizer (21.4%). For the Huihe River, nitrate mainly derived from mine drainage (56.6%) and manure/sewage (30.6%), while sulfate predominantly originated from mine drainage (58.3%) and evaporite dissolution (12.9%). Microbial nitrification was the major pathway for the migration and transformation of nitrate in the surface water. However, denitrification and bacterial sulfate reduction (BSR) did not play a significant role as aerobic conditions prevailed. In this study, we elucidated the sources and transformation mechanisms of nitrate and sulfate. Additionally, we provided a reference for formulating a comprehensive strategy for effective management and remediation of surface water contaminated with nitrate and sulfate in mining cities.
Collapse
Affiliation(s)
- Xing Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China; School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China.
| | - Manzhou Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, 230601, Anhui, China
| | - Xianglin Dong
- Geological Survey Division, Huaibei Coal Mining Group Corporation, Huaibei, 235001, Anhui, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, 232001, Anhui, China
| |
Collapse
|
8
|
Jiang C, Cheng L, Li C, Zheng L. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114286. [PMID: 36371885 DOI: 10.1016/j.ecoenv.2022.114286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Coal mining cities are universally confronted with the degradation of groundwater quality, and the sulfate pollution of groundwater has become a widely studied environmental problem. In this study, we combined multi-isotope (δ34S, δ18O-SO42- and 87Sr/86Sr) approach with hydrochemical technique and a Bayesian mixed model to clarify sources and transformations and to quantitatively assess the contribution of sulfate from potential sources. The concentrations of SO42- in groundwater ranged from 7.7 mg/L to 172.9 mg/L, and the high-value areas were located in coal mining area and residential area. The total values of δ34S and δ18O-SO42- varied from 10.6‰ to 26.9‰ and 6.9‰ to 14.1‰, respectively, in the groundwater. Analyses of SO42- and Sr isotopes and water chemistry indicated that SO42- in groundwater originated from various sources, such as atmospheric precipitation, sulfide mineral oxidation, evaporite dissolution, sewage and mine drainage. The oxidation of pyrite and bacterial sulfate reduction (BSR) had no significant impact on the stable isotopes of groundwater. At the same time, the calculation results of the Bayesian mixed model showed that the sources of SO42- in groundwater mainly include evaporite dissolution in aquifer and mine drainage in the mixture of shallow and deep groundwater, with high contribution proportions of 39.8 ± 10.9% and 31.9 ± 5.7%, respectively, while the contributions of sewage (13.9 ± 8.5%), atmospheric precipitation (9.6 ± 8.6%) and the oxidation of sulfide (4.7 ± 3.3%) to SO42- were lower. The research results revealed the source of SO42- pollution in shallow groundwater in the coal mine area and provided an important scientific basis for the effective management and protection of groundwater resources.
Collapse
Affiliation(s)
- Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China.
| | - Lili Cheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| | - Chang Li
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| | - Liugen Zheng
- School of Resources and Environmental Engineering, Anhui University, Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei 230601, Anhui, China
| |
Collapse
|
9
|
Cheng L, Jiang C, Li C, Zheng L. Tracing Sulfate Source and Transformation in the Groundwater of the Linhuan Coal Mining Area, Huaibei Coalfield, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14434. [PMID: 36361314 PMCID: PMC9656132 DOI: 10.3390/ijerph192114434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mining activities cause surface sulfate enrichment, which has negative impacts on human health and ecosystems. These high concentrations of sulfate may enter groundwater through the unsaturated zone (UZ), threatening groundwater quality. Therefore, we combined hydrochemical and dual isotopic analyses of sulfate in surface water, soil water and groundwater with evaluations of the UZ to identify the groundwater sulfate source and transformation in the coal mining area. Soil profile samples were collected near gangue heaps (UZ-1, UZ-2) and the mean sulfate concentrations of the UZ-1 profile and UZ-2 profile were 35.4 mg/L and 69.63 mg/L, respectively. The shallow groundwater sulfate was mainly from dissolution of evaporite, sulfide oxidation and sewage. Different sulfate contaminated areas showed different characteristics of sulfate sources. The sulfate source to groundwater near the coal gangue heaps was sulfide oxidation. The groundwater sulfate near the gangue heaps and industrial park compound contamination area was mainly derived from industrial and domestic sewage and sulfide oxidation. In addition, the role of bacterial sulfate reduction (BSR) in the groundwater was not obvious. This research result is of great significance for promoting the safe mining of coal resources and sustainable utilization of groundwater in the Huaibei coal mining area and other coal mining areas in China.
Collapse
Affiliation(s)
| | - Chunlu Jiang
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | | | | |
Collapse
|
10
|
Yu S, Ding H, Zeng Y. Evaluating water-yield property of karst aquifer based on the AHP and CV. Sci Rep 2022; 12:3308. [PMID: 35228591 PMCID: PMC8885745 DOI: 10.1038/s41598-022-07244-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn order to ensure the safety of mine production, it is of great practical significance to make a reasonable evaluation of the water-yield property (WYP) of a karst aquifer. In this paper, we selected fault-lines distribution, fault-scale index, aquifer thickness, water pressure, consumption of rinsing liquid, and hydraulic conductivity as the evaluation indexes to analyze the WYP of a karst aquifer. Meanwhile, the analytic hierarchy process (AHP) is used to calculate the subjective weight of indexes, and the coefficient of variation (CV) is used to calculate the objective weight of indexes. Combined with GIS, a multi-factor composite superposition is carried out to evaluate the WYP of a karst aquifer. The reliability of the research results is verified by the specific yield. Besides, for improving the reliability of evaluation results, the chemical composition of karst water was discussed. The results show that the selection of indexes is reasonable and the AHP–CV method is effective to evaluate the WYP of a karst aquifer. Therefore, on the premise of reasonable index selection, the evaluation models of AHP and CV can be used to evaluate the WYP of a karst aquifer and provide reference for coal mine water control measures.
Collapse
|
11
|
Ren K, Zeng J, Liang J, Yuan D, Jiao Y, Peng C, Pan X. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143223. [PMID: 33160668 DOI: 10.1016/j.scitotenv.2020.143223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The pollution of karst aquifers by acid mine drainage (AMD) waters is increasing. Major and minor ions (Ca2+, Mg2+, HCO3-, SO42-, F-, and Fe), stable sulfur and oxygen isotopes of dissolved sulfates (δ34SSO4 and δ18OSO4) and oxygen isotope of water (δ18OH2O), were analyzed in rainwater, surface water, groundwater, and AMD water sampled from the Babu subterranean stream watershed, in Southwest China. The principal aim of this study was to explore the impact of AMD waters on the evolution of karst aquifers. Based on hydrogeochemistry and stable isotopes (δ18OH2O, δ18OSO4 and δ34SSO4): (1) the chemistry of AMD waters was primarily controlled by pyrite oxidation, karst conduit water by AMD waters and mixing with calcite and dolomite dissolution, and spring water by atmospheric precipitation and carbonate dissolution; (2) contamination of the karst conduit water was mainly attributed to the input of AMD waters, resulting in a shift of δ34SSO4 towards more negative values (from 3.4‰ to -13.2‰); (3) the quality of karst conduit water changed from suitable to unsuitable for irrigation and drinking, particularly due to the increase in total Fe, SO42-, and F- concentrations, reflecting the cumulative effect of AMD waters derived from tailings dumps; this influence was enhanced during rainstorm/drought and anthropogenic activities; and (4) the flow of contaminated groundwater through the conduit promoted the dissolution of carbonates, especially during the dry season due to the greater proportion of AMD in the groundwater. This released more CO2 to the atmosphere. We believe that analysis of stable isotopes (δ18OH2O, δ18OSO4, and δ34SSO4), combined with hydrogeochemistry, is effective for exploring the impact of AMD on karst aquifers. Therefore, reasonable treatment methods should be taken to reduce the negative impacts of tailings dumps on karst aquifers.
Collapse
Affiliation(s)
- Kun Ren
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Guilin 541004, China
| | - Jie Zeng
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Jiapeng Liang
- Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, Guilin 541004, China
| | - Daoxian Yuan
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Youjun Jiao
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Cong Peng
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Xiaodong Pan
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China.
| |
Collapse
|
12
|
Sun J, Takahashi Y, Strosnider WHJ, Kogure T, Wang B, Wu P, Zhu L, Dong Z. Identification and quantification of contributions to karst groundwater using a triple stable isotope labeling and mass balance model. CHEMOSPHERE 2021; 263:127946. [PMID: 33297017 DOI: 10.1016/j.chemosphere.2020.127946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/12/2023]
Abstract
Although karst groundwater systems provide critical ecosystem services in many regions worldwide, anthropogenic contamination has seriously degraded groundwater quality. Properly elucidating geochemical processes, quantifying contributions of natural and anthropogenic end members, and then protecting karst aquifer systems remain challenging from scientific and engineering aspects. To identify the hydrochemical processes and quantifying contributions of end members (especially, contamination end members), 49 samples were collected from cave waters (CW), artesian springs (AS), and gravity springs (GS) in a karst watershed in Guiyang, China. With increased anthropogenic contamination, the CW, AS, and GS characterized by a Ca-Mg-SO42--HCO3- composition often had pH and SO42- concentrations exceeding USEPA secondary drinking water standards. That is attributed to the influence of water-rock interaction, rainfall, and anthropogenic sources (mainly, sewage and fertilizers), in agreement with the compositions of δ34SSO4, δ18OSO4, and 87Sr/86Sr as well as the results of principal component analysis and correlation coefficients. Based on an end-member mixing model, contributions of rainfall and anthropogenic sources were 47% and 33% of GS, 52% and 41% of CW, and 58% and 35% of AS, respectively. It suggests that the karst groundwater quality is predominantly controlled by rainfall and anthropogenic sources (especially, land use). Results may be applied to properly evaluate the impacts of natural and anthropogenic sources on karst aquifers, coupled with actions to efficiently control potential contamination end members.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550003, China; Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - William H J Strosnider
- Baruch Marine Field Laboratory, University of South Carolina, 2306 Crab Hall Road, Georgetown, SC, 29440, USA
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550003, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China.
| | - Lijun Zhu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550003, China
| | - Zhifen Dong
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550003, China
| |
Collapse
|
13
|
Gao S, Wang Z, Wu Q, Zeng J. Multivariate statistical evaluation of dissolved heavy metals and a water quality assessment in the Lake Aha watershed, Southwest China. PeerJ 2020. [DOI: 10.7717/peerj.9660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heavy metals are of public concern in aquatic ecosystems due to their growing release from industries and mining activities. This study investigated the sources, temporal-spatial distributions and water quality of dissolved heavy metals (Mn, Co, Al, Ni, Ba, V, Sb, Fe, Sr) in the Lake Aha watershed, an area under the influence of sewage and acid mining drainage. These heavy metals displayed significant spatial and temporal variabilities. The water quality index results (WQI values ranged from 3.21 to 15.64) and health risk assessment (all hazard indexes are below 1) indicated that dissolved heavy metals in this study pose a low risk for human health. Correlation analysis and principal component analysis indicated that Fe and Sr mainly presented a natural geological feature in the study area, and Mn, Co, Al and Ni were influenced by the acid coal mine drainage, whereas Ba, V and Sb were under the impact of local industrial or medical activities. This study provides new insights into the risk assessment of heavy metals in small watersheds.
Collapse
Affiliation(s)
- Shilin Gao
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhuhong Wang
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qixin Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, China
| |
Collapse
|
14
|
Zhu J, Zhang P, Yuan S, Tong M. Arsenic oxidation and immobilization in acid mine drainage in karst areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138629. [PMID: 32330720 DOI: 10.1016/j.scitotenv.2020.138629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of arsenic (As) occur in acid mine drainage (AMD), while the mechanisms governing its distribution along the flow of AMD are not fully understood. In this study, As species distribution was surveyed along the flow of an AMD in Jiaole coal mine in a typical kast area, in which length of creek is about 1100 m. AMD from the discharging source contained 1754.2 μg/L As (1570.0 μg/L in As (III)) and 644.1 mg/L Fe (all in Fe (II)) at pH 3.45. Both As and Fe concentrations decreased drastically to trace levels along the flow in the creek. As(III) oxidation to As(V) and Fe(II) oxidation to Fe(III) were discovered in a short distance from the discharging source. Lab experiments were performed to unveil the mechanisms governing As and Fe species distribution. Biological mechanism governed As(III) and Fe(II) oxidation in the AMD phase without contact with solid matrix, while different mechanisms governed the oxidation in the presence of solid matrix at different stages of AMD flow. At the beginning of AMD discharge, its contact with the soil matrix in rich of carbonate minerals in the karst area facilitated Fe(II) oxidation by O2 due to pH rise, which generated reactive oxidants for As(III) oxidation and iron oxyhydroxides for As adsorption or co-precipitation. Along the AMD flow, bacteria in the underlying sediments profoundly accelerated the biological oxidation of As(III) and Fe(II) as well as the co-precipitation into the sediments. Findings of this study deepen the understanding of As transport and transformation along the AMD flow, particularly in karst areas.
Collapse
Affiliation(s)
- Jian Zhu
- College of Resource and Environmental Engineering, Guizhou University, Huaxi District, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China.
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| |
Collapse
|
15
|
Gao J, Zou C, Li W, Ni Y, Liao F, Yao L, Sui J, Vengosh A. Hydrochemistry of flowback water from Changning shale gas field and associated shallow groundwater in Southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136591. [PMID: 31955095 DOI: 10.1016/j.scitotenv.2020.136591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The worldwide expansion of shale gas production and increased use of hydraulic fracturing have raised public concerns about safety and risks of groundwater resources in shale gas extraction areas. China has the largest shale gas resources in the world, most of which are located in the Sichuan Basin. Shale gas extraction in the Sichuan Basin has been increasing rapidly in recent years. However, the potential impact on shallow groundwater quality has not yet been systematically investigated. In order to evaluate the possible impact of shale gas extraction on groundwater quality, we present, for the first time, the hydrochemistry and Sr isotopic data of shallow groundwater, as well as flowback and produced water (FP water) in the Changning shale gas field in Sichuan Basin, one of the major shale gas fields in China. The Changning FP water is characterized by high salinity (TDS of 13,100-53,500 mg/L), Br/Cl (2.76 × 10-3) and 87Sr/86Sr (0.71849), which are distinguished from the produced waters from nearby conventional gas fields with higher Br/Cl (4.5 × 10-3) and lower 87Sr/86Sr (0.70830-0.71235). The shallow groundwater samples were collected from a Triassic karst aquifer in both active and nonactive shale gas extraction areas. They are dominated by low salinity (TDS of 145-1100 mg/L), Ca-HCO3 and Ca-Mg-HCO3 types water, which are common in carbonate karst aquifers. No statistical difference of the groundwater quality was observed between samples collected in active versus nonactive shale gas extraction areas. Out of 66 analyzed groundwater, three groundwater samples showed relatively higher salinity above the background level, with low 87Sr/86Sr (0.70824-0.7110) and Br/Cl (0.5-1.8 × 10-3) ratios relatively to FP water, excluding the possibility of contamination from FP water. None of the groundwater samples had detected volatile organic compounds (VOCs). The integration of geochemical and statistical analysis shows no direct evidence of groundwater contamination caused by shale gas development.
Collapse
Affiliation(s)
- Jinliang Gao
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Caineng Zou
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Wei Li
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Yunyan Ni
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China.
| | - Fengrong Liao
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Limiao Yao
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
| | - Jianli Sui
- Institute of Geology, China Earthquake Administration, Beijing, 100029
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| |
Collapse
|