1
|
Thuy Nguyen TT, Vuong TX, Ha Pham TT, Hoang QA, Tu BM, Nguyen TH, Phuong Nguyen TT. Insight into heavy metal chemical fractions in ash collected from municipal and industrial waste incinerators in northern Vietnam. RSC Adv 2024; 14:16486-16500. [PMID: 38774620 PMCID: PMC11106652 DOI: 10.1039/d4ra01465k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
This investigation involved the collection of fly ash and bottom ash specimens from seven waste incinerators situated in the northern provinces of Vietnam, aimed at assessing the composition and distribution patterns of five chemical fractions of heavy metals (Pb, Cr, As, Cd Cu, and Zn) present in incinerator waste ash. The outcomes reveal that fly ash exhibited a relatively elevated concentration of industrial waste metals (25-66%) such as As, Cd, and Pb primarily in exchangeable (F1) and carbonate fractions (F2), which are mobile forms susceptible to environmental dissolution and consequential bioaccumulation posing health risks to humans. The predominant states of the metals Cr, Cu, and Zn were identified as residual, Fe-Mn oxide, and carbonate, respectively, with their relative proportions showing minimal variation. Conversely, heavy metals were predominantly present in residual residue and Fe-Mn bound form (F3) in bottom ash derived from both residential and commercial waste incineration operations. The non-carcinogenic hazard indices (HI) associated with the examined metals, ranked for both adults and children, were as follows: Pb > Cr > As > Cd > Cu > Zn. Notably, the HI values for Pb, Cr, and As exceeded the permissible threshold (HI > 1) for children. However, the risk of As, Cd, and Pb-related cancer via exposure pathways remained within acceptable limits for both age groups. Conversely, the probability of carcinogenic effects attributable to Cr surpassed the permissible threshold (>10-4), indicating significant health concerns associated with heavy metals in waste incinerators for humans, particularly children.
Collapse
Affiliation(s)
- Thi Thu Thuy Nguyen
- Faculty of Chemistry, TNU-University of Science Tan Thinh Ward Thai Nguyen City 24000 Vietnam
| | - Truong Xuan Vuong
- Faculty of Chemistry, TNU-University of Science Tan Thinh Ward Thai Nguyen City 24000 Vietnam
| | - Thi Thu Ha Pham
- Faculty of Chemistry, TNU-University of Science Tan Thinh Ward Thai Nguyen City 24000 Vietnam
| | - Quoc Anh Hoang
- University of Science, Vietnam National University Hanoi, 19 Le Thanh Tong Hanoi 11000 Vietnam
| | - Binh Minh Tu
- University of Science, Vietnam National University Hanoi, 19 Le Thanh Tong Hanoi 11000 Vietnam
| | - Thi Hue Nguyen
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Hanoi Vietnam
| | - Thi Thu Phuong Nguyen
- Faculty of Chemical Technology, Hanoi University of Industry 298 Cau Dien Street Bac Tu Liem District Hanoi Vietnam
| |
Collapse
|
2
|
Yuan W, She J, Liu J, Zhang Q, Wei X, Huang L, Zeng X, Wang J. Insight into microbial functional genes' role in geochemical distribution and cycling of uranium: The evidence from covering soils of uranium tailings dam. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132630. [PMID: 37774604 DOI: 10.1016/j.jhazmat.2023.132630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
There exists a research gap on microbial functional genes' role in U geochemical behavior and cycling in U contaminated soils, which has been poorly understood. Herein, 16S rRNA sequencing gene amplifiers and metagenome analysis were applied to probe microbial community structure and functional metabolism of different depth layers of covering soils in U tailings dam. Results showed that the soils were highly enriched with U (47.5-123.3 mg/kg) and a remarkable portion of 35-70% was associated with the labile fractions. It was found that U geochemical distribution was notably interacted with functional genes from N, S, Fe and P related microbes. Importantly, diminution in gene NirK and amplification in nrfH involving in nitrate reduction could induce microbial tolerance to U. Moreover, gene Sat in microbial sulfate reduction, NosZ and NorB in nitrate reduction, phnD, upgA and upgC in P transportation and phnI, phnK, phoA and opd in microbial organic P mineralization, were all closely linked to U geochemical distribution, species and cycling. All these findings disclose the functional genes that may control the transfer and transformation behavior of U in soil environment, which provides important and novel indications for the bio-remediation strategies towards U polluted sites.
Collapse
Affiliation(s)
- Wenhuan Yuan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingye She
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qiong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xudong Wei
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Liting Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xuan Zeng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
3
|
Solidification of uranium mill tailings by MBS-MICP and environmental implications. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Experimental study of different admixture effects on the porosity and U(VI) leaching characteristics of uranium tailing solidified bodies in acid rain environments. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Yin M, Sun J, He H, Liu J, Zhong Q, Zeng Q, Huang X, Wang J, Wu Y, Chen D. Uranium re-adsorption on uranium mill tailings and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126153. [PMID: 34492934 DOI: 10.1016/j.jhazmat.2021.126153] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Uranium mill tailings (UMTs) are one critical source of environmental U pollution. Leaching test has been extensively used to reveal U release capacity and mechanism from UMTs, while little attention has been paid to the effects of re-adsorption process on U release. In this study, the role of U re-adsorption behaviors during leaching test with UMTs was comprehensively investigated. Through paired data on mineralogical composition and aqueous U speciation, the influence of environmentally relevant factors on U re-absorption capacity and mechanism on UMTs with different particle sizes was revealed. Significant amounts of U re-adsorption were observed and primarily attributed to the adsorption on chlorite, albite and muscovite as well as combined reduction-sequestration by muscovite. Uranium re-adsorption predominantly occurred via inner-sphere complexation and surface precipitation depending on leachant pH. Coexisting sulfate or phosphate could further enhance U re-adsorption. The enhanced re-adsorption from sulfate occurred when inner-sphere complexation governed the re-adsorption process. These findings suggest that the environmental hazards and ecological risks of the U containing (waste) solids might have been underestimated due to the ignorance of the re-adsorption process, since the re-adsorbed U could be easily re-mobilized. The insights from this study are also helpful in developing effective in-situ remediation strategies.
Collapse
Affiliation(s)
- Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hongping He
- Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qingyi Zeng
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xianfeng Huang
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Yingjuan Wu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China
| |
Collapse
|
6
|
He W, Zhang X, Wu X, Li M, Zhang J, Peng Y, Wang H. Effects of ageing on the occurrence form of uranium in vertical soil layers near an uranium tailing reservoir. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07552-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Zhou W, Xian D, Su X, Li Y, Que W, Shi Y, Wang J, Liu C. Macroscopic and spectroscopic characterization of U(VI) sorption on biotite. CHEMOSPHERE 2020; 255:126942. [PMID: 32387732 DOI: 10.1016/j.chemosphere.2020.126942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the geochemical behavior of uranium is critical for the safe disposal of radioactive wastes. Biotite, a Fe(II)-rich phyllosilicate, is a common rock-forming mineral and a major component of granite or granodiorite. This work comprehensively studied the sorption of U(VI) on biotite surface with batch experiments and analyzed the uranium speciation with various spectroscopic techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and time-resolved fluorescence spectra (TRFS). Our results indicated that uranyl ions could penetrate into the interlayer of biotite, this ion-exchange process was pH-dependent and only favorable under acidic condition. Instead of precipitation or reduction to uraninite, the TRFS results strongly suggests U(VI) forms surface complexes under the neutral and alkaline condition, though the number and structure of surface species could not be identified accurately. Besides, the oxidation of biotite with peroxide hydrogen showed that structural Fe(II) would have a very low redox reactivity. With leaching experiments, zeta potential analysis and thermodynamics calculation, we discussed the possible reasons for inhibition of U(VI) reduction at the biotite-water interface. Our results may provide insight on interaction mechanism of uranium at mineral-water interface and help us understand the migration behavior of uranium in natural environments.
Collapse
Affiliation(s)
- Wanqiang Zhou
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dongfan Xian
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuebin Su
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing, 101149, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weimin Que
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC, Beijing, 101149, China
| | - Yanlin Shi
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jingyi Wang
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chunli Liu
- Beijing National Laboratory for Molecular Sciences, Fundamental Science Laboratory on Radiochemistry and Radiation Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Tong L, He J, Wang F, Wang Y, Wang L, Tsang DCW, Hu Q, Hu B, Tang Y. Evaluation of the BCR sequential extraction scheme for trace metal fractionation of alkaline municipal solid waste incineration fly ash. CHEMOSPHERE 2020; 249:126115. [PMID: 32045756 DOI: 10.1016/j.chemosphere.2020.126115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The BCR sequential extraction scheme (SES), initially developed for soils and sediments, is frequently adopted to evaluate the environmental risks of municipal solid waste incineration (MSWI) fly ash. Within the procedure, metals are liberated from the matrix hosting them relying on the selectivity of the chosen chemical reagents or operation conditions. However, the effect of the high content of alkaline substances in MSWI fly ash on the selectivity of acetic acid to acid-soluble fraction metals was ignored. In this study, the feasibility of the BCR SES for evaluating MSWI fly ash was assessed by adjusting the acetic acid washing times in the acid-soluble extraction step. The metal fractionation, as well as mineralogy, morphology, and surface chemistry of the residues after three successive acid washing processes, were analyzed. The results reveal that only easily soluble salts, but not hydroxides, are entirely extracted after the first acid washing (pH∼12.0). Importantly, carbonates (generally reported as an indicator of the complete release of acid-soluble metals) are mostly decomposed only after the third acid washing (pH∼3.8). The incomplete dissolution of calcium carbonates in a single-step acid washing may convey misleading results of metal fractionation and underestimates the environmental risk of potentially toxic elements. Therefore, complete removal of carbonates should be employed as the endpoint of the acid-soluble fraction extraction step in the evaluation of MSWI fly ash. This work can help in selecting proper strategies for fly ash management and developing proper sequential extraction schemes for similar high-alkalinity hazardous waste risk assessment.
Collapse
Affiliation(s)
- Lizhi Tong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinyong He
- Beijing Huan Ding Environmental Data Research Institute, Beijing, 100083, China
| | - Feng Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China
| | - Yan Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, DE-01062, Dresden, Germany
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Beijing Huan Ding Environmental Data Research Institute, Beijing, 100083, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China.
| | - Bin Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China
| | - Yi Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Engineering Innovation Center, Southern University of Science and Technology, Beijing, 100083, China
| |
Collapse
|