1
|
Kizgin A, Schmidt D, Bosshard J, Singer H, Hollender J, Morgenroth E, Kienle C, Langer M. Integrating Biological Early Warning Systems with High-Resolution Online Chemical Monitoring in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39692315 DOI: 10.1021/acs.est.4c07316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Detection of micropollutants (MPs) in wastewater effluents using traditional toxicity tests or chemical analysis with discrete samples is challenging due to concentration dynamics. This study evaluates a continuous monitoring approach for detecting MPs in wastewater effluents using a combination of biological early warning systems (BEWS). Three BEWS with Chlorella vulgaris, Daphnia magna, and Gammarus pulex were operated in parallel in a full-scale municipal wastewater treatment plant. Concentrations of MPs were monitored by simultaneous online chemical analysis using high performance liquid chromatography-high resolution mass spectrometry (MS2Field). Over 5 weeks, behavioral changes observed in the BEWS occasionally exceeded acute toxicity thresholds, triggering alarms. These changes were related to MPs identified by the MS2Field, to abiotic factors, or to operational parameters of the BEWS. For one toxic event, behavioral responses were linked to a pesticide, not authorized in Switzerland, at concentrations close to literature EC50 values. Verification tests confirmed that the pesticide in the effluent was the most likely cause for the organism response. The study demonstrates the potential of BEWS as a stand-alone technique for detecting contamination peaks in wastewater, and identifies key limitations and critical factors that need to be addressed to optimize the use of BEWS in wastewater monitoring.
Collapse
Affiliation(s)
- Ali Kizgin
- Swiss Centre for Applied Ecotoxicology, Dübendorf, 8600 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
| | - Danina Schmidt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8647 Kastanienbaum, Switzerland
- University of Tübingen, Animal Physiological Ecology, 72074 Tübingen, Germany
| | - Julian Bosshard
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
- Institute of Environmental Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology, Dübendorf, 8600 Zürich, Switzerland
| | - Miriam Langer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600 Zürich, Switzerland
- Institute for Ecopreneurship, FHNW Muttenz, 4132 Muttenz, Switzerland
| |
Collapse
|
2
|
Zhuo M, Wang X, Shi Y, Chen K, Qiu X. Time-series variation in the locomotor behavior and vocal traits of Japanese medaka (Oryzias latipes) acutely exposed to organophosphorus pesticide chlorpyrifos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109954. [PMID: 38838796 DOI: 10.1016/j.cbpc.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Organophosphorus pesticides (OPs), such as chlorpyrifos (CPF), are the most commonly used pesticides worldwide. Considering that OPs will eventually enter aquatic ecosystems due to runoff from agricultural lands, accidental leakage, and other unforeseen emergencies, monitoring water pollution of those substances is crucial for environmental protection and public health. In this study, Japanese medaka (Oryzias latipes) were exposed to CPF (0.03, 0.06, and 0.12 mg/L) for 6 h, and the time-series variations in their locomotor behavior and vocal traits were investigated. Compared with that measured before exposure, significantly changed locomotor behavior and vocal traits in Japanese medaka exposed to CPF could be observed at 4 h after exposure and thereafter, and the pattern of behavioral changes depends on the CPF concentrations. Exposure to CPF also changed the frequency-sound pressure level curve of Japanese medaka at 6 h after exposure, especially at 0.12 mg/L. Moreover, CPF exposure could significantly inhibit the acetylcholinesterase (AChE) activity in the brains and eyes of medaka, which exhibited significant correlations with the variation of locomotor behavioral and vocal traits. Considering that inhibiting the AChE activity is the primary mechanism underlying the neurobehavioral toxicity of all OPs, our finding suggested that simultaneously monitoring changes in the locomotor behavioral and vocal traits has a high potential to reflect the pollution of organophosphorus substances.
Collapse
Affiliation(s)
- Mengcheng Zhuo
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xi Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Kizgin A, Schmidt D, Joss A, Hollender J, Morgenroth E, Kienle C, Langer M. Application of biological early warning systems in wastewater treatment plants: Introducing a promising approach to monitor changing wastewater composition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119001. [PMID: 37812901 DOI: 10.1016/j.jenvman.2023.119001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are a major source of micropollutants to surface waters. Currently, their chemical or biological monitoring is realized by using grab or composite samples, which provides only snapshots of the current wastewater composition. Especially in WWTPs with industrial input, the wastewater composition can be highly variable and a continuous assessment would be advantageous, but very labor and cost intensive. A promising concept are automated real-time biological early warning systems (BEWS), where living organisms are constantly exposed to the water and an alarm is triggered if the organism's responses exceed a harmful threshold of acute toxicity. Currently, BEWS are established for drinking water and surface water but are seldom applied to monitor wastewater. This study demonstrates that a battery of BEWS using algae (Chlorella vulgaris in the Algae Toximeter, bbe Moldaenke), water flea (Daphnia magna in the DaphTox II, bbe Moldaenke) and gammarids (Gammarus pulex in the Sensaguard, REMONDIS Aqua) can be adapted for wastewater surveillance. For continuous low-maintenance operation, a back-washable membrane filtration system is indispensable for adequate preparation of treated wastewater. Only minor deviations in the reaction of the organisms towards treated and filtered wastewater compared to surface waters were detected. After spiking treated wastewater with two concentrations of the model compounds diuron, chlorpyrifos methyl, and sertraline, the organisms in the different BEWS showed clear responses depending on the respective compound, concentration and mode of action. Immediate effects on photosynthetic activity of algae were detected for diuron exposure, and strong behavioral changes in water flea and gammarids after exposure to chlorpyrifos methyl or sertraline were observed, which triggered automated alarms. Different types of data analysis were applied to extract more information out of the specific behavioral traits, than only provided by the vendors algorithms. To investigate, whether behavioral movement changes can be linked to impact other endpoints, the effects on feeding activity of G. pulex were evaluated and results indicated significant differences between the exposures. Overall, these findings provide an important basis indicating that BEWS have the potential to act as alarm systems for pollution events in the wastewater sector.
Collapse
Affiliation(s)
- Ali Kizgin
- Swiss Centre for Applied Ecotoxicology, 8600, Dübendorf, Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Danina Schmidt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8647, Kastanienbaum, Switzerland; University of Tübingen, Animal Physiological Ecology, 72074, Tübingen, Germany
| | - Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology, 8600, Dübendorf, Zürich, Switzerland
| | - Miriam Langer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute for Ecopreneurship, FHNW Muttenz, 4132 Muttenz, Switzerland
| |
Collapse
|
4
|
Chang Y, Tsai JF, Chen PJ, Huang YT, Liu BH. Thallium exposure interfered with heart development in embryonic zebrafish (Danio rerio): From phenotype to genotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162901. [PMID: 36948317 DOI: 10.1016/j.scitotenv.2023.162901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
Thallium (Tl) is a rare trace metal element but increasingly detected in wastewater produced by coal-burning, smelting, and more recently, high-tech manufacturing industries. However, the adverse effects of Tl, especially cardiotoxicity, on aquatic biota remain unclear. In this study, zebrafish model was used to elucidate the effects and mechanisms of Tl(I) cardiotoxicity in developing embryos. Exposure of embryonic zebrafish to low-dose Tl(I) (25-100 μg/L) decreased heart rate and blood flow activity, and subsequently impaired swim bladder inflation and locomotive behavior of larvae. Following high-level Tl(I) administration (200-800 μg/L), embryonic zebrafish exhibited pericardial edema, incorrect heart looping, and thinner myocardial layer. Based on RNA-sequencing, Tl(I) altered pathways responsible for protein folding and transmembrane transport, as well as negative regulation of heart rate and cardiac jelly development. The gene expression of nppa, nppb, ucp1, and ucp3, biomarkers of cardiac damage, were significantly upregulated by Tl(I). Our findings demonstrate that Tl(I) at environmentally relevant concentrations interfered with cardiac development with respect to anatomy, function, and transcriptomic alterations. The cardiotoxic mechanisms of Tl(I) provide valuable information in the assessment of Tl-related ecological risk in freshwater environment.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Liu H, Fu R, Zhang Y, Mao L, Zhu L, Zhang L, Liu X, Jiang H. Integrate transcriptomic and metabolomic analysis reveals the underlying mechanisms of behavioral disorders in zebrafish (Danio rerio) induced by imidacloprid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161541. [PMID: 36731560 DOI: 10.1016/j.scitotenv.2023.161541] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, poses a significant threat to aquatic ecosystems. Behavior is a functional indicator of the net sensory, motor, and integrative processes of the nervous system and is presumed to be more sensitive in detecting toxicity. In the present study, we investigated the behavioral effects of imidacloprid at the level of environmental concentrations (1, 10 and 100 μg/L) for a constant exposure to zebrafish adults, and performed the integrated transcriptomic and metabolomic analysis to analyze the molecular mechanism underlying behavioral effects of imidacloprid. Our results show that imidacloprid exposure significantly induce behavioral disruptions characterized by anxiety, depression, and reduced physiological function including exploratory, decision, social interaction and locomotor activity. Integrated transcriptomic and metabolomic analysis indicate that the disruption of circadian rhythm, metabolic imbalance of arginine and proline, and neurotransmitter disorder are the underlying molecular mechanisms of behavioral impairment induced by imidacloprid. The "gene-metabolite-disease" network consisted by 11 metabolites and 15 genes is associated human disease Alzheimer's disease (AD) and schizophrenia. Our results confirm the behavioral impairment induced by imidacloprid at environmental concentrations for constant exposure. The identified genes and metabolites can be used not only to illustrate the underlying mechanisms, but also can be developed as biomarkers in determining the ecological risk of imidacloprid to aquatic organisms even Homo sapiens.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Wang Q, Gu X, Liu Y, Liu S, Lu W, Wu Y, Lu H, Huang J, Tu W. Insights into the circadian rhythm alterations of the novel PFOS substitutes F-53B and OBS on adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130959. [PMID: 36860044 DOI: 10.1016/j.jhazmat.2023.130959] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS), 6:2 Cl-PFESA (F-53B) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) are frequently detected in aquatic environments, but little is known about their neurotoxicity, especially in terms of circadian rhythms. In this study, adult zebrafish were chronically exposed to 1 μM PFOS, F-53B and OBS for 21 days taking circadian rhythm-dopamine (DA) regulatory network as an entry point to comparatively investigate their neurotoxicity and underlying mechanisms. The results showed that PFOS may affect the response to heat rather than circadian rhythms by reducing DA secretion due to disruption of calcium signaling pathway transduction caused by midbrain swelling. In contrast, F-53B and OBS altered the circadian rhythms of adult zebrafish, but their mechanisms of action were different. Specifically, F-53B might alter circadian rhythms by interfering with amino acid neurotransmitter metabolism and disrupting blood-brain barrier (BBB) formation, whereas OBS mainly inhibited canonical Wnt signaling transduction by reducing cilia formation in ependymal cells and induced midbrain ventriculomegaly, finally triggering imbalance in DA secretion and circadian rhythm changes. Our study highlights the need to focus on the environmental exposure risks of PFOS alternatives and the sequential and interactive mechanisms of their multiple toxicities.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yongming Wu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Huiqiang Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jing Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Estela SLB, Carolina MT, Manuel MA. The daily locomotor activity profile of Zebrafish Danio rerio is affected when exposed to polluted water from Lerma River (Guanajuato, Mexico). BIOL RHYTHM RES 2023. [DOI: 10.1080/09291016.2023.2196467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Sánchez-López Blanca Estela
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Muñoz-Torres Carolina
- Centro de Geociencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Miranda-Anaya Manuel
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| |
Collapse
|
8
|
Wei X, Li X, Liu P, Li L, Chen H, Li D, Liu J, Xie L. Integrated physiological, biochemical, and transcriptomic analysis of thallium toxicity in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160265. [PMID: 36403832 DOI: 10.1016/j.scitotenv.2022.160265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Although several studies have evaluated the effects of Thallium (Tl) in adult species of fish, the developmental toxicity of Tl has not been previously explored. In this study, zebrafish embryos (<4 h post fertilization (hpf)) were exposed to Tl at concentrations from 0.8 to 400 μg L-1 for 7 d. The results showed that the decreased hatching rate and increased malformation rate were observed in the larvae. The swimming velocity of larvae from 200 and 400 μg L-1 treatments was respectively reduced by ~26 % and 15 %. Histopathological analysis of liver indicated the number of cells of karyolysis (143 % and 202 %) and pyknosis (170 % and 131 %) were respectively increased in 200 and 400 μg L-1 Tl treatments. Meanwhile, the Tl body burden and metallothionein (MT) levels in the larvae were increased with elevated Tl concentrations. The level of malondialdehyde (MDA) was increased by ~20 to 51 % in all Tl treatments and total antioxidant capacity (TAC) was decreased by ~12 % at 200 μg L-1. The activities of Na+/K+-ATPase and protease were inhibited in 200 and 400 μg L-1 Tl treatments. Moreover, the transcripts of genes (Nrf2, HO-1, TNF-α, IL-1β, IL-8, IL-10, TGF) were significantly altered. In addition, a total of 930 differentially expressed genes (DEGs) and 1549 DEGs were found in the 200 and 400 μg L-1 treatments with 458 overlapped DEGs by transcriptomic analysis. The protein digestion and absorption, ECM-receptor interaction, and complement and coagulation cascades pathways were shown to be the most significantly enriched pathways. This study helps better understand the molecular mechanisms of Tl toxicity in fish.
Collapse
Affiliation(s)
- Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lixia Li
- 810 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan 250014, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
9
|
Ren Z, Yu Y, Ramesh M, Li B, Poopal RK. Assessment of eco-toxic effects of commonly used water disinfectant on zebrafish (Danio rerio) swimming behaviour and recovery responses: an early-warning biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41849-41862. [PMID: 35098459 PMCID: PMC8801285 DOI: 10.1007/s11356-021-18333-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Eco-toxicity profiles for commonly used disinfectants were lacking. Available traditional toxicity techniques have some limitations (assessments and ethical issues). Behaviour toxicology is a promising research area towards early warning and non-invasive approaches. We studied the potential eco-toxic effects of sodium hypochlorite (NaOCl) on the swimming behaviour of zebrafish. Zebrafish were exposed to different concentrations (Treatment I, Treatment II, Treatment III, and Treatment IV) of NaOCl for 360 h. Recovery study (144 h) was conducted for NaOCl treatment groups. The swimming behaviour of zebrafish was quantified efficiently using an online monitoring system (OMS). OMS dataset was processed for determination of behavioural differences by MATLAB and SPSS. Compared to the control group, the swimming strength of zebrafish under NaOCl treatments declined significantly (p < 0.001). Avoidance behaviour has occurred on zebrafish under NaOCl exposure periods. Furthermore, NaOCl toxicity also adjusted circadian rhythms on zebrafish. Zebrafish swimming strength was significantly (p < 0.001) improved under-recovery periods. Moreover, normal diurnal patterns have occurred. NaOCl could cause behavioural abnormalities in non-target organisms. Continuous exposure to common disinfectants could cause external and internal stress on non-target organisms, resulting in behavioural changes and circadian rhythm adjustments. Continuous changes in behavioural and circadian rhythms might reduce organisms' fitness and adaptation capacity. This study highlights (1) the importance of computer-based toxicity assessments, and (2) swimming behaviour is an early warning biomarker for eco-toxicity studies.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Yaxin Yu
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
10
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Magnetic Fluctuations Entrain the Circadian Rhythm of Locomotor Activity in Zebrafish: Can Cryptochrome Be Involved? BIOLOGY 2022; 11:biology11040591. [PMID: 35453790 PMCID: PMC9025847 DOI: 10.3390/biology11040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Most physiological processes are subject to biological circadian rhythms maintained by a complex cascade of biochemical events. The circadian rhythmicity of behavior allows organisms to use energy and resources optimally under changing environmental conditions. To that end, endogenous circadian rhythms are synchronized with external pacemakers (zeitgebers), especially daily changes in illumination. In the 1960s, it was assumed that, in addition to this primary photic cue, animals can use diurnal geomagnetic variation as a secondary zeitgeber. Earlier research found that slow magnetic fluctuations can affect some behavioral endpoints of circadian rhythms by modulating an organism’s physiological state. However, no direct experiments to test such an entrainment of biological clocks by artificial magnetic fields were performed due to the technical difficulty of eliminating natural geomagnetic variation. For the first time, we carried out such tests in a fully controlled magnetic environment using zebrafish as a research model. The experimental treatments included various light/dark cycles and continuous illumination coupled with pre-recorded natural geomagnetic variations. The obtained results indicate that slow magnetic fluctuations can entrain endogenous rhythmical activity in vertebrates. Probably, cryptochromes play a key role in this process. This research provides promising opportunities for the magnetic control of circadian processes, e.g., correcting circadian dysfunctions. Abstract In the 1960s, it was hypothesized that slow magnetic fluctuations could be a secondary zeitgeber for biological circadian rhythms. However, no comprehensive experimental research has been carried out to test the entrainment of free-running circadian rhythms by this zeitgeber. We studied the circadian patterns of the locomotor activity of zebrafish (Danio rerio) under different combinations of light regimes and slow magnetic fluctuations, based on a record of natural geomagnetic variation. A rapid synchronization of activity rhythms to an unusual 24:12 light/dark cycle was found under magnetic fluctuations with a period of 36 h. Under constant illumination, significant locomotor activity rhythms with 26.17 h and 33.07 h periods were registered in zebrafish exposed to magnetic fluctuations of 26.8 h and 33.76 h, respectively. The results reveal the potential of magnetic fluctuations for entrainment of circadian rhythms in zebrafish and genuine prospects to manipulate circadian oscillators via magnetic fields. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.
Collapse
Affiliation(s)
- Viacheslav V. Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia
- Correspondence:
| | - Evgeny I. Izvekov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Vera V. Pavlova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Natalia A. Pankova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Elena A. Osipova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| |
Collapse
|
11
|
Krylov VV. Influence of Geomagnetic Disturbances at Different Times of Day on Locomotor Activity in Zebrafish (Danio Rerio). Clocks Sleep 2021; 3:624-632. [PMID: 34940024 PMCID: PMC8700499 DOI: 10.3390/clockssleep3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
The influence of magnetic fields and natural geomagnetic storms on biological circadian rhythms are actively studied. This study reveals an impact of local natural perturbations in the geomagnetic field that occurred at different times of the day on circadian patterns of locomotor activity of zebrafish. A decrease in zebrafish swimming speed was observed during the geomagnetic disturbances before or after the fluctuations of diurnal geomagnetic variation. However, if the geomagnetic perturbations coincided with the fluctuations of diurnal geomagnetic variation, the decrease in zebrafish swimming speed was insignificant. This result suggests that the biological effects of geomagnetic disturbances may depend on synchronization with the diurnal geomagnetic variation. It implies that the previously published correlations between geomagnetic activity and medical or biological parameters could result from a disruption in circadian biorhythms.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
12
|
Ren Z, Poopal RK, Ramesh M. Synthetic organic chemicals (flame retardants and pesticides) with neurotoxic potential induced behavioral impairment on zebrafish (Danio rerio): a non-invasive approach for neurotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37534-37546. [PMID: 33713268 DOI: 10.1007/s11356-021-13370-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Behavior responses of organisms can be used as a non-invasive method for neurotoxicology studies since it directly links the nervous system's functioning and biochemical activities. Among different behavioral activities, aquatic organisms' swimming behavior (fitness) is the essential factor for health assessment; thus, it is practiced routinely in neurotoxicological studies. Zebrafish (Danio rerio) are excellent models for neurotoxicology studies. Based on the above information, we hypothesized that zebrafish's swimming behavior is a potential biomarker for neurotoxic effect assessment. We exposed zebrafish (length, 3-4 cm; weight, 0.2-0.3 g) to different synthetic organic chemicals (organophosphorus flame retardants (tri-cresyl phosphate and cresyl diphenyl phosphate) and neurotoxic pesticides (cypermethrin and methomyl) for 15 days. For each test chemical, we chose two different concentrations (Treatment-I 5 μL/L and Treatment-II 25 μL/L) to study their eco-toxicity. The swimming strength of zebrafish was quantified using an online monitoring system. The swimming strength of zebrafish decreased under different treatments (Treatment-I (5 μL/L) and -II (25 μL/L)) of target chemicals. The circadian rhythm of zebrafish was predominantly not affected in this study. Higher neurotoxic effect (behavioral impairment) was observed in Treatment-II when compare to Treatment-I of organophosphorus flame retardants and pesticides groups. Responses of zebrafish under organophosphorus flame retardant (tri-cresyl phosphate and cresyl diphenyl phosphate) treatments were identical with pesticide (cypermethrin and methomyl) treatments. Based on the results, we conclude that swimming behavior could be an ideal non-invasive biomarker to assess waterborne contaminants' neurotoxic effect.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
13
|
Zheng X, Zhang K, Zhao Y, Fent K. Environmental chemicals affect circadian rhythms: An underexplored effect influencing health and fitness in animals and humans. ENVIRONMENT INTERNATIONAL 2021; 149:106159. [PMID: 33508534 DOI: 10.1016/j.envint.2020.106159] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Circadian rhythms control the life of virtually all organisms. They regulate numerous aspects ranging from cellular processes to reproduction and behavior. Besides the light-dark cycle, there are additional environmental factors that regulate the circadian rhythms in animals as well as humans. Here, we outline the circadian rhythm system and considers zebrafish (Danio rerio) as a representative vertebrate organism. We characterize multiple physiological processes, which are affected by circadian rhythm disrupting compounds (circadian disrupters). We focus on and summarize 40 natural and anthropogenic environmental circadian disrupters in fish. They can be divided into six major categories: steroid hormones, metals, pesticides and biocides, polychlorinated biphenyls, neuroactive drugs and other compounds such as cyanobacterial toxins and bisphenol A. Steroid hormones as well as metals are most studied. Especially for progestins and glucocorticoids, circadian dysregulation was demonstrated in zebrafish on the molecular and physiological level, which comprise mainly behavioral alterations. Our review summarizes the current state of knowledge on circadian disrupters, highlights their risks to fish and identifies knowledge gaps in animals and humans. While most studies focus on transcriptional and behavioral alterations, additional effects and consequences are underexplored. Forthcoming studies should explore, which additional environmental circadian disrupters exist. They should clarify the underlying molecular mechanisms and aim to better understand the consequences for physiological processes.
Collapse
Affiliation(s)
- Xuehan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
14
|
Qiao L, Chen X, Ren B, Poopal RK, Zhao R, Ren Z. The specification of zebrafish (Danio rerio) heart electrocardiogram index characteristic responses to different types of pollutants. CHEMOSPHERE 2021; 267:129199. [PMID: 33316622 DOI: 10.1016/j.chemosphere.2020.129199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Water quality was highly affected by common pollutants. Metals, pesticides and small molecules are ubiquitous pollutants. Advancement in engineering technology (computer-based monitoring systems) increased the efficiency of quantifying toxicity of different chemicals in an organism. The cardiovascular system reflects internal and external stress of an organism, and electrocardiogram (ECG) data reliably measure external stress. As ECG data can accurately reflect the physiological conditions of organisms, and zebrafish (Danio rerio) are considered to be good models for cardiovascular research, it is hypothesized that ECG parameters of zebrafish could indicate the toxicity of water-borne chemicals. To achieve this, we treated zebrafish with different concentrations of target chemicals (CuSO4, C10H19O6PS2 and NH4Cl) for 48 h and ECG data were measured. P-wave, R-wave, T-wave, PR-interval, QRS-complex and QT-interval data were the focus of this study. The results of self-organizing maps and Pearson correlation analysis indicate that the QRS-complex can be used as an indicator for CuSO4 stress. The QT-interval could be used to assess the C10H19O6PS2 stress. The QT-interval and P-wave can be used to evaluate the NH4Cl stress. Responses of zebrafish ECG parameters were identical with other vertebrate model, and were specific to toxicant types. It is proved that zebrafish heart ECG index could be used as a potential indicator in early detection of environmental stress.
Collapse
Affiliation(s)
- Linlin Qiao
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Xinyu Chen
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Baixiang Ren
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Rama-Krishnan Poopal
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China
| | - Rusong Zhao
- , Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Zongming Ren
- , Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, PR China.
| |
Collapse
|
15
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol Rev Camb Philos Soc 2020; 96:785-797. [PMID: 33331134 DOI: 10.1111/brv.12678] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Evgeny I Izvekov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Vera V Pavlova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Natalia A Pankova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Elena A Osipova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| |
Collapse
|
16
|
Poopal RK, He Y, Zhao R, Li B, Ramesh M, Ren Z. Organophosphorus-based chemical additives induced behavioral changes in zebrafish (Danio rerio): Swimming activity is a sensitive stress indicator. Neurotoxicol Teratol 2020; 83:106945. [PMID: 33333156 DOI: 10.1016/j.ntt.2020.106945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Organophosphorus flame retardants (OPFRs) have been extensively used as chemical additives in polymer based consumer products. Among them, Isopropylphenyl phosphate (IPPP) and tripropyl phosphate (TPP) are predominant, which have potential to cause neuro-toxic effects on non-target organisms. As behavior (swimming activity) response is the first adjustment due to neurotoxic stress on the fitness of fish. In this study, the quantified swimming activity of zebrafish (Danio rerio) under IPPP and TPP exposure in an online monitoring system was investigated to assess the neurotoxin effects under long-term exposure periods, no swimming anomalies were observed in the control group. Whereas, in the OPFR exposures ((treatment I: 5 μg/L and treatment II: 25 μg/L), a series of anomalies were identified. Hyperactivity was shown in IPPP treatment I group (5 μg/L), whereas zebrafish swimming activity was declined throughout the study period in IPPP treatment II (25 μg/L), and TPP groups (5 μg/L and 25 μg/L) when compared to the control group. Circadian rhythm was not affected in the present study. The results of the present study indicated that the fitness of test individuals was a valid biomarker for eco-toxicity assessment under unescapable conditions. Hypoactivity of zebrafish signified the neurotoxic effects of IPPP and TPP. A concentration based improvement in swimming activity was observed under recovery conditions, which suggested that recovery capacity along with toxicity responses could be a comprehensive non-invasive technique to assess the eco-toxicity of waterborne chemicals.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Yaqi He
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, TamilNadu, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
17
|
Ramesh M, Angitha S, Haritha S, Poopal RK, Ren Z, Umamaheswari S. Organophosphorus flame retardant induced hepatotoxicity and brain AChE inhibition on zebrafish (Danio rerio). Neurotoxicol Teratol 2020; 82:106919. [DOI: 10.1016/j.ntt.2020.106919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
|
18
|
Hu Y, Zhao R, Poopal RK, Ren Z. Simultaneous eco-toxicity assessment technique using an online monitoring system: effects of different environmental factors on swimming behavior of zebrafish (Danio rerio). CHEMOSPHERE 2020; 255:126934. [PMID: 32387730 DOI: 10.1016/j.chemosphere.2020.126934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Environmental factors, such as photoperiod and temperature were the main limiting factors for the survival of organisms in the nature environment. Changes in environmental factors are well predicted but determining their effects on organisms are challenging hot topic in the field of eco-toxicology. Thus, technology based eco-toxicity assessment was focused worldwide. In this research, the effects of different temperatures (15 °C, 22 °C, 30 °C, 32 °C, and 35 °C) and photoperiods (dark and light periods) on the continuous behavior responses of Zebrafish (Danio rerio) were investigated using an online monitoring system (OMS). We designed a new fish chamber with sensors to measure the behavior responses of zebrafish under different conditions. Data obtained from the OMS could be assessed for factors such as difference in swimming behavior, circadian rhythm, and avoidance behavior using latest software (MATLAB). The observed behavior anomalies on zebrafish under different temperatures and continuous photoperiods were statically significant (p < 0.05). We conclude that the new designed fish chamber (behavior sensors) is good in sensing behavioral responses of zebrafish under different conditions. The fish behavior strength could be a potential biomarker to assess the effects of environmental factors. The present study would be a basic platform for assessing the effects of different stressors simultaneously on swimming behavior of zebrafish.
Collapse
Affiliation(s)
- Yongyuan Hu
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, 250358, Jinan, PR China.
| |
Collapse
|
19
|
Poopal RK, Zhang J, Zhao R, Ramesh M, Ren Z. Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish. CHEMOSPHERE 2020; 252:126498. [PMID: 32197170 DOI: 10.1016/j.chemosphere.2020.126498] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 05/22/2023]
Abstract
Both Diheptyl-phthalate (DHpP) and Diisodecyl-phthalate (DIDP) were used extensively as plasticizers. Recently, their occurrence in the environmental matrices and human body fluids have been reported. Unfortunately, these phthalate congeners are without basic toxicity profiles. Hence, we studied the toxic effects of both DHpP and DIDP in the median lethal concentration (LC50 96-h) on zebrafish (Danio rerio). We assessed swimming behavior strength and tissues biomarker responses including total antioxidants capacity (TAOC), transaminases, and acetylcholinesterase (AChE) enzyme. Fish exposed to phthalate congeners (Treatment-I and-II) for 15-days showed alterations on fish swimming behavior and circadian rhythm. At the end of the exposure period, both liver and heart tissue transaminases activities were found to be accelerated in DHpP and DIDP treated fish, when compared to control group. TAOC and AChE activities were found to be decreased in brain, gills, intestine, and muscle tissues of phthalate congeners treated fish than the control group. Alterations observed in the studied biomarkers were concentration-based response. Among treatment groups DHpP showed higher effects. Comparative studies on swimming behavior and biochemical activities were reasonable to know the swimming responses are mediated due to external stress or internal stress. More studies on molecular and biomarkers assessments are warranted on toxicity of emerging contaminants.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Jingxuan Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Ruibin Zhao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250358, China.
| |
Collapse
|
20
|
Li B, Zhang J, Ma J, Qiao L, Ren B, Chen M, Ren Z. The continuous physiological changes of zebrafish (Danio rerio) based on metabolism under controlled thallium stress. CHEMOSPHERE 2020; 240:124974. [PMID: 31726613 DOI: 10.1016/j.chemosphere.2019.124974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
In this research, the continuous physiological changes of zebrafish (Danio rerio) in 0.1 μg/L thallium (Tl) in 15 days were investigated. The results showed that Tl(I) stress had a significant positive linear correlation with zebrafish ammonia nitrogen excretion (ANE) (p < 0.001), and the mean value of ANE in Tl(I) treatment (435 ± 227 mg/kg/h) was approximately 2 times higher than in the control group (239 ± 168 mg/kg/h), which suggested that ANE was suitable for Tl(I) stress assessment. A substantial difference based on oxygen consumption rate (OCR) between the control group (587 ± 112 mg/kg/h) and Tl(I) treatment (260 ± 88 mg/kg/h) with a high significance p < 0.001 could be observed, and the results indicated that Tl(I) played a negative role in OCR of zebrafish. The characteristics of both ANE and OCR changes under slight Tl(I) stress could be reflected by the ammonia quotient (AQ). It was noteworthy that AQ increased rapidly in first 6 h from 0.66 to 4.50, which was 3 times higher than 1.2, indicating rapid increase in both anaerobic energy utilization and protein metabolism in 0.1 μg/L Tl(I) exposure. It is concluded that the physiological changes of zebrafish based on metabolism can be regarded as a sensitive biological indicator of Tl(I) pollution, which could work as a substitute of potassium that disrupts the normal biological metabolism in the process of transport.
Collapse
Affiliation(s)
- Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Jingxuan Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Jingchun Ma
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Linlin Qiao
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Baixiang Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China
| | - Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan, 250014, PR China.
| |
Collapse
|
21
|
de Albuquerque FP, de Oliveira JL, Moschini-Carlos V, Fraceto LF. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134868. [PMID: 31706089 DOI: 10.1016/j.scitotenv.2019.134868] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Atrazine is a pre- and post-emergence herbicide used to control weeds in many crops. It was introduced in the late 1950s, but its use has been controversial because of its high potential for environmental contamination. In agriculture, the implementation of sustainable practices can help in reducing the adverse effects atrazine. This review addresses aspects related to the impacts of atrazine in the environment, with focus on its effects on aquatic species, as well as the potential use of nanoencapsulation to decrease the impacts of atrazine. The application of atrazine leads to its dispersal beyond the immediate area, with possible contamination of soils, sediments, plantations, pastures, public supply reservoirs, groundwater, streams, lakes, rivers, seas, and even glaciers. In aquatic ecosystems, atrazine can alter the biota, consequently interfering in the food chains of many species, including benthic organisms. Nanoformulations loaded with atrazine have been developed as a way to reduce the adverse impacts of this herbicide in aquatic and terrestrial ecosystems. Ecotoxicological bioassays have shown that this nanoformulations can improve the targeted delivery of the active ingredient, resulting in decreased dosages to obtain the same effects as conventional formulations. However, more detailed analyses of the ecotoxicological potential of atrazine-based nanoherbicides need to be performed with representative species of different ecosystems.
Collapse
Affiliation(s)
- Felícia Pereira de Albuquerque
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil.
| | - Jhones Luiz de Oliveira
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil
| | - Viviane Moschini-Carlos
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil.
| |
Collapse
|