1
|
Szychowski KA, Skóra B, Wójtowicz AK. Engagement of peroxisome proliferator-activated receptor gamma (PPARγ) and mammalian target of rapamycin (mTOR) in the triclosan-induced disruption of Cyp450 enzyme activity in an in vitro model of mouse embryo fibroblasts (3T3-L1). Toxicology 2024; 511:154031. [PMID: 39653182 DOI: 10.1016/j.tox.2024.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Triclosan (TCS) is commonly used worldwide due to its bactericidal and antifungal properties. There are data suggesting the involvement of aryl hydrocarbon receptors (AhR) and peroxisome proliferator-activated receptors (PPARγ). Since the effect of TCS on mouse fibroblasts has not been described so far, we decided to investigate the mechanism of action of this compound in the mouse embryonic fibroblast cell line (3T3-L1). Our results showed that high µM concentrations of TCS increased caspase-3 activity and decreased cell viability after 24-h exposure. The molecular analysis confirmed that 1 µM TCS decreased Ki67 mRNA expression and PCNA protein expression with a similar tendency to that of AhR. The analyses of mRNA levels after treatment with αNF or βNF alone and αNF in combination with TCS showed an increase in Ki67 mRNA expression. TCS alone increased AhR mRNA but had different effects on Cyp1a1 and Cyp1b1 expression. These results suggest the involvement of the PPARγ pathway in the inhibition of Cyp1b1 by TCS. After the TCS exposure, we observed a decrease in PPARγ, and this effect was enhanced in the presence of an AhR agonist and antagonist. These results support the theory about the interaction between the AhR and PPARγ pathways. In the experiments, the strongest increase in PI3K protein expression was observed in the group treated simultaneously with TCS and βNF. Changes in the PI3K level were reflected in changes in the examined mTOR protein. TCS caused a decrease in both mTOR and Cyp1b1 after 24 hours, while opposite effects were observed after 48 hours. Given the crucial role of Cyp1b1, PPARγ, and mTOR in cellular metabolism, we can conclude that TCS is able to disrupt a number of cellular processes. Our data suggest that TCS reduces the metabolism of this xenobiotic in mouse preadipocytes.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, Rzeszów 35-225, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, Rzeszów 35-225, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture, Rędzina 1B, Kraków 30-248, Poland
| |
Collapse
|
2
|
Zhou HM, Yang XY, Yue SJ, Wang WX, Zhang Q, Xu DQ, Li JJ, Tang YP. The identification of metabolites from gut microbiota in coronary heart disease via network pharmacology. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:145-155. [PMID: 38412071 DOI: 10.1080/21691401.2024.2319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Although the gut microbial metabolites exhibit potential effects on coronary heart disease (CHD), the underlying mechanism remains unclear. In this study, the active gut microbial metabolites acting on CHD and their potential mechanisms of action were explored through a network pharmacological approach. We collected a total of 208 metabolites from the gutMgene database and 726 overlapping targets from the similarity ensemble approach (SEA) and SwissTargetPrediction (STP) database, and ultimately identified 610 targets relevant to CHD. In conjunction with the gutMGene database, we identified 12 key targets. The targets of exogenous substances were removed, and 10 core targets involved in CHD were eventually retained. The microbiota-metabolites-targets-signalling pathways network analysis revealed that C-type lectin receptor signalling pathway, Lachnospiraceae, Escherichia, mitogen-activated protein kinase 1, prostaglandin-endoperoxidase synthase 2, phenylacetylglutamine and alcoholic acid are notable components of CHD and play important roles in the development of CHD. The results of molecular docking experiments demonstrated that AKT1-glycocholic acid and PTGS2-phenylacetylglutamine complexes may act on C-type lectin receptor signalling pathways. In this study, the key substances and potential mechanisms of gut microbial metabolites were analysed via network pharmacological methods, and a scientific basis and comprehensive idea were provided for the effects of gut microbial metabolites on CHD.
Collapse
Affiliation(s)
- Hao-Ming Zhou
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Xin-Yu Yang
- Department of Pharmacy, Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wen-Xiao Wang
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
3
|
Shi W, Zhang J, Zhao W, Yue M, Ma J, Zeng S, Tang J, Wang Y, Zhou Z. Intracellular Iron Deficiency and Abnormal Metabolism, Not Ferroptosis, Contributes to Homocysteine-Induced Vascular Endothelial Cell Death. Biomedicines 2024; 12:2301. [PMID: 39457614 PMCID: PMC11504269 DOI: 10.3390/biomedicines12102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Homocysteine (Hcy) and iron are factors co-related with the progression of cardiovascular diseases. The vascular endothelium is an important barrier for physiological homeostasis, and its impairment initiates cardiovascular injury. However, the mechanism underlying Hcy-caused vascular endothelial cell injury and the participation of iron are not fully elucidated. This study aims to investigate the Hcy-induced vascular endothelial injury and iron metabolism dysfunction as well as the underlying molecular mechanism. Methods: Human umbilical vein endothelial cells (HUVECs) were employed as the experimental model to examine the Hcy-induced endothelial injury and its underlying mechanism via various biochemical assays. Results: Hcy suppressed the cell viability and proliferation and caused cell death in a concentration-dependent manner. Hcy induced cell cycle arrest, apoptosis, and autophagy as well as impairment of intracellular energy metabolism. Hcy disrupted the intracellular antioxidant system and mitochondrial function by increasing intracellular ROS, MDA and mitochondrial content, and decreasing the SOD activity and mitochondrial membrane potential. Hcy significantly reduced the GSH-Px activity along with the accumulation of intracellular GSH in a concentration-dependent manner. Ferroptosis inhibitors, Ferrostatin-1 (Fer-1), and Deferoxamine (DFO) significantly decreased the Hcy-caused cytotoxicity accompanied by a reduction in dysregulated mitochondria content, but only DFO ameliorated the elevation of intracellular ROS, and neither Fer-1 nor DFO affected the Hcy-caused reduction in intracellular ATP. In addition, Hcy decreased the intracellular concentration of iron, and supplementing Hcy with various concentrations of Fe3+ increased the cell viability and decreased the LDH release in a concentration-dependent manner. Hcy dramatically decreased the mRNA expression level of transferrin receptor while increasing the mRNA expression levels of transferrin, ferritin light chain, ferritin heavy chain, ferroportin, and SLC7A11. Moreover, Hcy suppressed the protein expression of phospho-Akt, phospho-mTOR, Beclin-1, LC3A/B, Nrf2, HO-1, phospho-MEK1/2, phospho-ERK1/2, and Caspase-3 in concentration- and time-dependent manners. Conclusions: Hcy-induced vascular endothelial injury is likely to be associated with apoptosis and autophagy, but not ferroptosis. The key underlying mechanisms are involved in the disruption of the intracellular antioxidant system and iron metabolism via regulation of PI3K/Akt/mTOR, MAPKs, Nrf2/HO-1, and iron metabolism.
Collapse
Affiliation(s)
- Wenting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
| | - Jing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China;
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wairong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
| | - Meiyan Yue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Silu Zeng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
| | - Jingyi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China;
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongyan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (W.S.); (W.Z.); (M.Y.); (J.M.); (S.Z.); (J.T.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China;
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Jiang Y, Liu L, Jin B, Liu Y, Liang X. Critical review on the environmental behaviors and toxicity of triclosan and its removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173013. [PMID: 38719041 DOI: 10.1016/j.scitotenv.2024.173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
As a highly effective broad-spectrum antibacterial agent, triclosan (TCS) is widely used in personal care and medical disinfection products, resulting in its widespread occurrence in aquatic and terrestrial environments, and even in the human body. Notably, the use of TCS surged during the COVID-19 outbreak, leading to increasing environmental TCS pollution pressure. From the perspective of environmental health, it is essential to systematically understand the environmental occurrence and behavior of TCS, its toxicological effects on biota and humans, and technologies to remove TCS from the environment. This review comprehensively summarizes the current knowledge regarding the sources and behavior of TCS in surface water, groundwater, and soil systems, focusing on its toxicological effects on aquatic and terrestrial organisms. Effluent from wastewater treatment plants is the primary source of TCS in aquatic systems, whereas sewage application and/or wastewater irrigation are the major sources of TCS in soil. Human exposure pathways to TCS and associated adverse outcomes were also analyzed. Skin and oral mucosal absorption, and dietary intake are important TCS exposure pathways. Reducing or completely degrading TCS in the environment is important for alleviating environmental pollution and protecting public health. Therefore, this paper reviews the removal mechanisms, including adsorption, biotic and abiotic redox reactions, and the influencing factors. In addition, the advantages and disadvantages of the different techniques are compared, and development prospects are proposed. These findings provide a basis for the management and risk assessment of TCS and are beneficial for the application of treatment technology in TCS removal.
Collapse
Affiliation(s)
- Yanhong Jiang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| | - Biao Jin
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yi Liu
- Shandong Vocational College of Light Industry, Zibo 255300, PR China.
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
5
|
Kosińska K, Szychowski KA. Current state of knowledge of triclosan (TCS)-dependent reactive oxygen species (ROS) production. ENVIRONMENTAL RESEARCH 2024; 250:118532. [PMID: 38401681 DOI: 10.1016/j.envres.2024.118532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Triclosan (TCS) is widely used in a number of industrial and personal care products. This molecule can induce reactive oxygen species (ROS) production in various cell types, which results in diverse types of cell responses. Therefore, the aim of the present study was to summarize the current state of knowledge of TCS-dependent ROS production and the influence of TCS on antioxidant enzymes and pathways. To date, the TCS mechanism of action has been widely investigated in non-mammalian organisms that may be exposed to contaminated water and soil, but there are also in vivo and in vitro studies on plants, algae, mammalians, and humans. This literature review has revealed that mammalian organisms are more resistant to TCS than non-mammalian organisms and, to obtain a toxic effect, the effective TCS dose must be significantly higher. The TCS-dependent increase in the ROS level causes damage to DNA, protein, and lipids, which together with general oxidative stress leads to cell apoptosis or necrosis and, in the case of cancer cells, faster oncogenesis and even initiation of oncogenic transformation in normal human cells. The review presents the direct and indirect TCS action through different receptor pathways.
Collapse
Affiliation(s)
- Karolina Kosińska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
6
|
Zhu K, Liu C, Guo X, Zhang X, Xie J, Xie S, Qi Q, Yang B. Exosomal miR-126-3p: Potential protection against vascular damage by regulating the SLC7A5/mTOR Signalling pathway in human umbilical vein endothelial cells. Scand J Immunol 2024; 99:e13354. [PMID: 39008522 DOI: 10.1111/sji.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease. Vascular damage is one of the important features of SSc, which affects the progression and prognosis of the disease. MiR-126-3p is an important microRNA (miRNA) that regulates vascular structure and function, which can be transported through exosomes. However, the role of miR-126-3p in vascular damage in SSc is still unclear. Therefore, we focused on the connection between miR-126-3p and vascular damage in SSc, as well as investigated the potential role of miR-126-3p in vascular damage in SSc. First, this study successfully extracted extracellular vesicles from clinical plasma samples and characterized the exosomes within them. Then, we predicted and screened the target pathway mammalian/mechanistic target of rapamycin (mTOR) and the target gene SLC7A5 of miR-126-3p through online databases. Next, we constructed SSc mice for in vivo studies. The results showed that the expression of miR-126-3p was decreased in the plasma exosomes, while the SLC7A5 expression, autophagy, and lipid peroxidation were increased in the aorta. Luciferase reporter gene assays demonstrated that miR-126-3p can bind to SLC7A5, resulting in a decrease in its expression. In vitro experiments have shown that exosomal miR-126-3p can be internalized by human umbilical vein endothelial cells (HUVECs). The miR-126-3p group exhibited enhanced cell viability and tube formation ability, along with increased expression of the vascular formation marker CD31. Additionally, miR-126-3p downregulated the protein expression of SLC7A5 and LC3 in HUVECs, while upregulating the protein expression of mTOR, P62, PPARγ, and CPT-1. However, the effects of miR-126-3p on HUVECs were counteracted by mTOR inhibitors and enhanced by mTOR activators. The results indicated that exosomal miR-126-3p has the potential to protect against vascular injury in SSc by regulating the SLC7A5/mTOR signalling pathway in HUVECs.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofang Guo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuting Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Songmiao Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Qi
- Department of Dermatology, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
8
|
Li Y, Xiang S, Hu L, Qian J, Liu S, Jia J, Cui J. In vitro metabolism of triclosan and chemoprevention against its cytotoxicity. CHEMOSPHERE 2023; 339:139708. [PMID: 37536533 DOI: 10.1016/j.chemosphere.2023.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 μM, 20 ± 10 μM and 60 ± 20 μM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.
Collapse
Affiliation(s)
- Yubei Li
- School of China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Shouyan Xiang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Qian
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Shuoguo Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China; School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
9
|
Ling X, Wang W. A-80426 suppresses CFA-induced inflammatory pain by suppressing TRPV1 activity via NFκB and PI3K pathways in mice. Clinics (Sao Paulo) 2023; 78:100213. [PMID: 37269788 DOI: 10.1016/j.clinsp.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVES Pain is associated with many circumstances, including inflammatory reactions, which arise from modification of the features of signaling pathways. α2-adrenergic receptor antagonists are widely utilized in narcosis. Here, the authors focused on the narcotic effect of A-80426 (A8) on Complete Freund's Adjuvant (CFA) injections-triggered chronic inflammation pain in WT and TRPV1-/- mice and explored whether its antinociceptive impact was modulated via Transient Receptor Potential Vanilloid 1 (TRPV1). METHOD CFA with or without A8 was co-administered to the mice, which were categorized randomly into four groups: CFA, A8, control, and vehicle. Pain behaviors underwent evaluation through mechanical withdrawal threshold, abdominal withdrawal reflex, and thermal withdrawal latency of WT animals. RESULTS Quantitative polymerase chain reaction revealed that inflammation-promoting cytokines (IL-1β, IL-6, and TNF-α) were upregulated in Dorsal Root Ganglion (DRG) and Spinal Cord Dorsal Horn (SCDH) tissues of WT animals. A8 administration reduced the pain behaviors and production of pro-inflammatory cytokines; however, this effect was significantly reduced in TRPV1-/- mice. Further analysis showed that CFA treatment reduced the TRPV1 expression in WT mice and A8 administration increased its expression and activity. The co-administration of SB-705498, a TRPV1 blocker, did not influence the pain behaviors and inflammation cytokines in CFA WT mice; however, SB-705498 the effect of A8 in WT mice. In addition, the TRPV1 block decreased the NFκB and PI3K activation in the Dorsal Root Ganglia (DRG) and Spinal Cord Dorsal Horn (SCDH) tissues of WT mice. CONCLUSIONS Together, A8 exerted a narcotic impact on CFA-supplemented mice via the TRPV1-modulated NFκB and PI3K pathway.
Collapse
Affiliation(s)
- Xiaomei Ling
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Zhang D, Liu X, Xiao Q, Han L, Yang J, Li X, Xu J, Zheng Q, Ma J, Chen J, Lu S. Co-Exposure to Bisphenols, Parabens, and Antimicrobials and Association with Coronary Heart Disease: Oxidative Stress as a Potential Mediating Factor? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:531-538. [PMID: 36534741 DOI: 10.1021/acs.est.2c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coronary heart disease (CHD) is the leading cause of global morbidity, but the effect of plasticizers and antimicrobial additives on CHD is unknown. Here, we conducted a case-control study to investigate the mediating role of oxidative stress in the association between co-exposure to seven bisphenols, four parabens, triclosan (TCS), triclocarban, and CHD risk in Guangzhou, China. Quantile-based g-computation and weighted quantile sum regression were used to analyze mixture-outcome associations. Quantile-based g-computation showed a positive joint effect of a decile increase in exposure to all examined pollutants on CHD risk (OR: 1.52, 95% CI: 1.25-1.84), with bisphenol A (BPA), bisphenol F (BPF), n-butyl paraben (BuP), and TCS representing major contributors. The results also showed a decile nonmonotonic increase in the exposure mixtures, positively correlated with a 2.22 ng/mL (95% CI: 1.21-3.23 ng/mL) elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), with BuP, TCS, bisphenol AP (BPAP), and BPF contributing dominantly. Mediation analysis showed that 8-OHdG mediated the relationship between BPA, BPF, BPAP, and TCS, and CHD risk. Moreover, the mediating role of high-density lipoprotein (HDL) between several bisphenols and CHD was also identified. It is yet to be verified, but bisphenols may elevate CHD risk by reducing HDL status and increasing oxidative stress.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
11
|
Marques AC, Mariana M, Cairrao E. Triclosan and Its Consequences on the Reproductive, Cardiovascular and Thyroid Levels. Int J Mol Sci 2022; 23:ijms231911427. [PMID: 36232730 PMCID: PMC9570035 DOI: 10.3390/ijms231911427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Hygiene is essential to avoid diseases, and this is thanks to daily cleaning and disinfection habits. Currently, there are numerous commercial products containing antimicrobial agents, and although they are efficient in disinfecting, it is still not known the effect of the constant use of these products on human health. In fact, a massive use of disinfectants has been observed due to COVID-19, but the possible adverse effects are not yet known. Triclosan is one of the antimicrobial agents used in cosmetic products, toothpaste, and disinfectants. This compound is an endocrine disruptor, which means it can interfere with hormonal function, with its estrogenic and androgenic activity having already been stated. Even if the use of triclosan is well-regulated, with the maximum allowed concentration in the European Union of 0.3% (m/m), its effects on human health are still uncertain. Studies in animals and humans suggest the possibility of harmful health outcomes, particularly for the reproductive system, and in a less extent for the cardiovascular and thyroid functions. Thus, the purpose of this review was to analyse the possible implications of the massive use of triclosan, mainly on the reproductive and cardiovascular systems and on the thyroid function, both in animals and humans.
Collapse
Affiliation(s)
- Ana C. Marques
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-049
| |
Collapse
|
12
|
Rutin Inhibits Ox-LDL-Mediated Macrophage Inflammation and Foam Cell Formation by Inducing Autophagy and Modulating PI3K/ATK Signaling. Molecules 2022; 27:molecules27134201. [PMID: 35807447 PMCID: PMC9268239 DOI: 10.3390/molecules27134201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis (AS) is one of the leading causes of death among the elderly, and is primarily caused by foam cell generation and macrophage inflammation. Rutin is an anti-inflammatory, anti-oxidant, anti-allergic, and antiviral flavonoid molecule, known to have anti-atherosclerotic and autophagy-inducing properties, but its biological mechanism remains poorly understood. In this study, we uncovered that rutin could suppress the generation of inflammatory factors and reactive oxygen species (ROS) in ox-LDL-induced M2 macrophages and enhance their polarization. Moreover, rutin could decrease foam cell production, as shown by oil red O staining. In addition, rutin could increase the number of autophagosomes and the LC3II/I ratio, while lowering p62 expression. Furthermore, rutin could significantly inhibit the PI3K/ATK signaling pathway. In summary, rutin inhibits ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling, showing potential in treating atherosclerosis.
Collapse
|
13
|
Zhao S, Wu Y, Wei Y, Xu X, Zheng J. Identification of Biomarkers Associated With CD8+ T Cells in Coronary Artery Disease and Their Pan-Cancer Analysis. Front Immunol 2022; 13:876616. [PMID: 35799780 PMCID: PMC9254733 DOI: 10.3389/fimmu.2022.876616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo identify biomarkers associated with CD8+ T cells in coronary artery disease (CAD) and initially explore their potential role in the tumor immune microenvironment.Materials and MethodsCAD-related datasets GSE12288, GSE34198, and GSE66360, were downloaded from the GEO database. First, GSVA was performed based on the GSE12288 dataset. Then WGCNA analysis was performed to identify the most relevant module and candidate hub gene for CD8+ T cells, followed by GO and KEGG analysis of this module. Secondly, the relationship between candidate hub genes and CD8+ T cells was verified using GSE34198 and GSE66360, which led to the identification of hub genes. The relationship of hub genes with CD8+ T cells in cancer was analyzed using the TIMER database. Methylation analysis of hub genes was performed using the DiseaseMeth database. CAD, pan-cancer, pan-cell lines, and pan-normal tissues, correlations between hub genes. In addition, potential drugs and TFs associated with hub genes were predicted, and the ceRNA network was constructed. Finally, GSEA was performed separately for hub genes.ResultsCAD was shown to be associated with immune response by GSVA analysis. WGCNA identified the blue module as most related to CD8+ T cells and identified nine candidate hub genes. The relevance of CAD to immunity was further confirmed by GO and KEGG analysis of the module. Two additional datasets validated and identified three hub genes (FBXO7, RAD23A, and MKRN1) that significantly correlated with CD8+ T cells. In addition, we found that hub genes were positively associated with CD8+ T cells in TGCT, THCA, and KICH cancers by our analysis. Moreover, the hub gene was differentially methylated. We also analyzed the correlation between hub genes in CAD, different cancers, different cell lines, and different normal tissues. The results of all the analyses showed a positive correlation between them. Finally, we successfully constructed hub gene-associated TF-gene and ceRNA networks and predicted 11 drugs associated with hub genes. GSEA suggests that hub genes are related to multiple immune response processes.ConclusionFBXO7, RAD23A, and MKRN1 are significantly associated with CD8+ T cells in CAD and multiple cancers and may act through immune responses in CAD and cancer.
Collapse
Affiliation(s)
- Shijian Zhao
- Department of Cardiology, the Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yantao Wei
- Department of Cardiology, the Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, China
| | - Xiaoyu Xu
- Department of Cardiology, the Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, China
| | - Jialin Zheng
- Department of Cardiology, the Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, China
- *Correspondence: Jialin Zheng,
| |
Collapse
|
14
|
Huo W, Wang Y, Chen T, Cao T, Zhang Y, Shi Z, Hou S. Triclosan activates c-Jun/miR-218-1-3p/SLC35C1 signaling to regulate cell viability, migration, invasion and inflammatory response of trophoblast cells in vitro. BMC Pregnancy Childbirth 2022; 22:470. [PMID: 35668364 PMCID: PMC9172191 DOI: 10.1186/s12884-022-04791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spontaneous abortion is considered as the commonest complication of pregnancy. Triclosan (TCS) is an antimicrobial agent, which participates in the process of multiple human diseases, including spontaneous abortion. Our study aimed to evaluate the effect of TCS on spontaneous abortion and disclose the possible regulatory mechanism in vitro. RESULTS RT-qPCR analyzed that miR-218-1-3p derived from abortion-associated factor slit guidance ligand 2 (SLIT2) was up-regulated in trophoblast cells under TCS treatment. Supported by western blot analysis, functional experiments demonstrated that miR-218-1-3p overexpression impeded the proliferation, migration and invasion while exacerbating the inflammatory response of trophoblast cells. Moreover, mechanism assays revealed that TCS modulated c-Jun production to promote MIR218-1 transcription and enhance miR-218-1-3p expression. Moreover, solute carrier family 35 member C1 (SLC35C1) was validated as a target gene of miR-218-1-3p, and miR-218-1-3p was sustained to negatively modulate SLC35C1 expression in trophoblast cells. Rescue assays validated the role of TCS/miR-218-1-3p/SLC35C1 axis in regulating the viability, migration, invasion and inflammatory response of trophoblast cells. CONCLUSIONS TCS regulated miR-218-1-3p/SLC35C1 axis to modulate the proliferation, migration, invasion and inflammatory response of trophoblast cells in vitro, which might provide novel insights for spontaneous abortion prevention.
Collapse
Affiliation(s)
- Weiwei Huo
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ying Wang
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu, China
| | - Ting Chen
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Tianyue Cao
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yue Zhang
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Shunyu Hou
- Department of Obstetrics and Gynecology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
16
|
Szychowski KA, Skóra B, Bar M, Piechowiak T. Triclosan (TCS) affects the level of DNA methylation in the human oral squamous cell carcinoma (SCC-15) cell line in a nontoxic concentration. Biomed Pharmacother 2022; 149:112815. [PMID: 35286965 DOI: 10.1016/j.biopha.2022.112815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
The oral cancer is presumably caused by genetic factors and exposure to substances derived from cosmetics and disinfectants. Triclosan (TCS) is widely spread in many consumer products and oral care products. Since TCS can affect DNA methylation, which is one of the key mechanisms of gene expression that may lead to cancerogenesis, it is necessary to study this mechanism in oral cell carcinoma. The aim of the present study was to evaluate the impact of TCS on metabolic parameters, oxidative stress, gene expression, and DNA methylation and hydroxymethylation in the SCC-15 cell line. The experiments have shown TCS toxicity to SCC-15 cells only in the highest concentrations of 50 and 100 µM. TCS in a wide range of concentrations increases ROS production and caspase-3 activity. Our experiments have shown that TCS in the nontoxic concentrations of 10 µM exerts an impact on SOD2 mRNA expression and SOD activity in the SCC-15 cell line. Finally, our experiments have demonstrated that 6-h treatment with TCS decreases the mRNA expression of DNMT3A and DNMT3B. After 72-h exposure to TCS, an increased level of 5-methylcytosine and 5-hydroxymethylcytosine was observed in the SCC-15 cell line, but it was abolished by the NAC treatment. However, it is very likely that these results can be an effect of TET enzyme activity, especially in the case of the decrease in 5mC and the increase in 5hmC after the 48-h exposure to TCS, which was accompanied with a decrease in the mRNA expression of DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| |
Collapse
|
17
|
Hu Q, Zheng J, Xu XN, Gu C, Li W. Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture. ENVIRONMENTAL TOXICOLOGY 2022; 37:899-909. [PMID: 35044038 DOI: 10.1002/tox.23453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 05/20/2023]
Abstract
Uranium (U) induces generation of excessive intracellular reactive oxygen species (ROS), which is generally considered as a possible mediator of U-triggered kidney tubular cells injury and nephrotoxicity. Our goal is designed to elucidate that the precise molecular mechanism in ROS downstream is association with U-induced NRK-52E cells apoptosis. The results show that U intoxication in NRK-52E cells reduced cell activity and triggered apoptosis, as demonstrated by flow cytometry and apoptotic marker cleaved Caspase-3 expression. U exposure triggered endoplasmic reticulum (ER) stress, which is involvement of apoptosis determined by marker molecules including GRP78, PERK, IRE1, ATF6, CHOP, cleaved Caspase-12, and Caspase-3. Administration of antioxidant N-acetylcysteine (NAC) effectively blocked U-triggered ROS generation, ER stress, and apoptosis. U contamination evidently decreased the expression of phosphorylation PI3K, AKT, and mTOR and ratios of their respective phosphorylation to the corresponding total proteins. Application of a PI3K activator IGF-1 significantly abolished these adverse effects of U intoxication on PI3K/AKT/mTOR signaling and subsequently abrogated U-triggered apoptosis. NAC also effectively reversed down-regulation of phosphorylated PI3K induced by U exposure. Taken together, these data strongly suggest that U treatment induces NRK-52E cells apoptosis through ROS production, ER stress, and down-regulation of PI3K/AKT/mTOR signaling. Targeting ROS formation-, ER stress-, and PI3K/AKT/mTOR pathway-mediated apoptosis could be a novel approach for attenuating U-triggered nephrotoxicity.
Collapse
Affiliation(s)
- Qiaoni Hu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jifang Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xiao Na Xu
- Department of Health Inspection and Quarantine, School of Public Health, Guilin Medical University, Guilin, China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Feng ZH, Chen J, Yuan PT, Ji ZY, Tao SY, Zheng L, Wei XA, Zheng ZY, Zheng BJ, Chen B, Chen J, Zhao FD. Urolithin A Promotes Angiogenesis and Tissue Regeneration in a Full-Thickness Cutaneous Wound Model. Front Pharmacol 2022; 13:806284. [PMID: 35359856 PMCID: PMC8964070 DOI: 10.3389/fphar.2022.806284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022] Open
Abstract
The treatment of chronic wound is an important topic of current clinical issue. Neovascularization plays a crucial role in skin wound healing by delivering fresh nutrients and oxygen to the wound area. The aim of this study was to investigate the mechanisms of urolithin A (UA) in angiogenesis during wound healing. The results of in vitro experiments showed that treatment with UA (5–20 μM) promoted the proliferation, migration, and angiogenic capacity of HUVECs. Furthermore, we investigated the effect of UA in vivo using a full-thickness skin wound model. Subsequently, we found that UA promoted the regeneration of new blood vessels, which is consistent with the results of accelerated angiogenesis in vitro experiments. After UA treatment, the blood vessels in the wound are rapidly formed, and the deposition and remodeling process of the collagen matrix is also accelerated, which ultimately promotes the effective wound healing. Mechanistic studies have shown that UA promotes angiogenesis by inhibiting the PI3K/AKT pathway. Our study provides evidence that UA can promote angiogenesis and skin regeneration in chronic wounds, especially ischemic wounds.
Collapse
Affiliation(s)
- Zhen-hua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jia Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Pu-tao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhong-yin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Si-yue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiao-an Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ze-yu Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bing-jie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Chen
- Department of Orthopedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Feng-dong Zhao, ; Jian Chen, ; Bin Chen,
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Feng-dong Zhao, ; Jian Chen, ; Bin Chen,
| | - Feng-dong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Feng-dong Zhao, ; Jian Chen, ; Bin Chen,
| |
Collapse
|
19
|
PPARγ Regulates Triclosan Induced Placental Dysfunction. Cells 2021; 11:cells11010086. [PMID: 35011648 PMCID: PMC8750171 DOI: 10.3390/cells11010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to the antibacterial agent triclosan (TCS) is associated with abnormal placenta growth and fetal development during pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) is crucial in placenta development. However, the mechanism of PPARγ in placenta injury induced by TCS remains unknown. Herein, we demonstrated that PPARγ worked as a protector against TCS-induced toxicity. TCS inhibited cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells. Furthermore, TCS downregulated expression of PPARγ and its downstream viability, migration, angiogenesis-related genes HMOX1, ANGPTL4, VEGFA, MMP-2, MMP-9, and upregulated inflammatory genes p65, IL-6, IL-1β, and TNF-α in vitro and in vivo. Further investigation showed that overexpression or activation (rosiglitazone) alleviated cell viability, migration, angiogenesis inhibition, and inflammatory response caused by TCS, while knockdown or inhibition (GW9662) of PPARγ had the opposite effect. Moreover, TCS caused placenta dysfunction characterized by the significant decrease in weight and size of the placenta and fetus, while PPARγ agonist rosiglitazone alleviated this damage in mice. Taken together, our results illustrated that TCS-induced placenta dysfunction, which was mediated by the PPARγ pathway. Our findings reveal that activation of PPARγ might be a promising strategy against the adverse effects of TCS exposure on the placenta and fetus.
Collapse
|
20
|
Liu J, Feng R, Wang D, Huo T, Jiang H. Triclosan-induced glycolysis drives inflammatory activation in microglia via the Akt/mTOR/HIF 1α signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112664. [PMID: 34416638 DOI: 10.1016/j.ecoenv.2021.112664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Exposure to triclosan (TCS) has been implicated in neurotoxicity including autism spectrum disorders in vivo and oxidative stress and cell apoptosis in vitro. Thus, the molecular mechanisms underlying TCS-induced neurotoxicity warrants further research. In this study, we try to address the mode of action that TCS induced the expression of inflammatory cytokines by shifting metabolism to glycolysis. BV-2 cells were treated with 20 μM TCS for 24 h, and the conditional medium from TCS-induced activated microglia reduced the viability of the murine hippocampal neurons cell line HT22. Protein expression levels in the nuclear factor kappa B (NF-κB) signaling pathway were measured through Western blotting, and the expression levels of inflammatory cytokine were measured using quantitative real-time PCR. The results showed that exposure to TCS enhanced NF-κB activation, increased inflammatory cytokine expression including interleukin (IL) 1β, IL-6, and tumor necrosis factor (TNF) α in the BV-2 cells. The glucose consumption and lactate production in BV2 cell increased sharply after exposure to TCS for 24 h. Based on our qPCR and Western blotting results, the expression of the key glycolysis enzymes-namely hexokinase 1, pyruvate kinase M2, and lactate dehydrogenase A-increased after treatment with 20 μM TCS. Furthermore, inhibiting glycolysis by 2-deoxy-D-glucose reduced the activation of NF-κB and the mRNA expression of the inflammatory cytokines in the TCS-activated BV-2 microglia. The expression of the proteins of the Akt/mTOR/HIF1α pathway examined through Western blotting, which regulates glycolysis, also increased in the BV2 cells exposed to TCS. Moreover, Akt and mTOR inhibition by using LY294002 and rapamycin, respectively, blocked inflammatory cytokine overexpression induced by TCS. In conclusion, TCS can induce glycolysis and directly drive inflammatory activation in microglia; with the mediation of the Akt/mTOR/HIF1α pathway.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Dan Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, PR China.
| |
Collapse
|
21
|
Wang J, Cai Y, Lu H, Zhang F, Zheng J. LncRNA APOA1-AS facilitates proliferation and migration and represses apoptosis of VSMCs through TAF15-mediated SMAD3 mRNA stabilization. Cell Cycle 2021; 20:1642-1652. [PMID: 34382908 DOI: 10.1080/15384101.2021.1951940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coronary atherosclerosis (CAS) is a major cause of cardiovascular disease. Long non-coding RNAs (lncRNAs) have been implicated as novel biomarkers in coronary artery disease (CAD). APOA1 antisense RNA (APOA1-AS) was proven to show high expression during atherosclerotic development, but no report has uncovered the detailed mechanism of APOA1-AS in CAS. Thus, this paper aims to explore the role of APOA1-AS in CAS. Vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to mimic atherosclerosis-like injury. Quantitative real-time PCR (RT-qPCR) and western blot analysis analyzed gene expression. Cell counting kit-8 (CCK-8), wound healing assay, and flow cytometry were implemented to assess the function of APOA1-AS in modulating pathological phenotype of VSMCs. Results demonstrated that APOA1-AS was notably up-regulated in ox-LDL treated VSMCs (ox-LDL-VSMCs). The deficiency of APOA1-AS hindered proliferation and migration and stimulated apoptosis in ox-LDL-VSMCs. Mechanistically, APOA1-AS recruited TATA-box binding protein associated factor 15 (TAF15) protein to stabilized SMAD family member 3 (SMAD3) mRNA and activate the TGF-β/SMAD3 signaling pathway. In conclusion, APOA1-AS contributed to proliferation and migration and repressed apoptosis of VSMCs through TAF15-mediated SMAD3 mRNA stabilization, indicating that APOA1-AS could be a promising target for CAS.
Collapse
Affiliation(s)
- Jixiang Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Fugeng Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
22
|
Khan R, Yee AL, Gilbert JA, Haider A, Jamal SB, Muhammad F. Triclosan-containing sutures: safety and resistance issues need to be addressed prior to generalized use. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01979-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Shi J, Wang X, Chen L, Deng H, Zhang M. HBCD, TBECH, and BTBPE exhibit cytotoxic effects in human vascular endothelial cells by regulating mitochondria function and ROS production. ENVIRONMENTAL TOXICOLOGY 2021; 36:1674-1682. [PMID: 33974337 DOI: 10.1002/tox.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Brominated flame retardants (BFRs), such as, 1,2,5,6-tetrabromocyclooctane (HBCD), 1,2-dibromo-4-(1,2-dibromopropyl)cyclohexane (TBECH), and 1 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE), have garnered increasing attention due to their potent biological effects. In the present study, the toxicity of HBCD, TBECH, and BTBPE in human vascular endothelial cells (ECs) was explored. The data showed that HBCD, TBECH, and BTBPE induced cytotoxicity, namely dose-dependent cell viability reduction, cell membrane permeability and apoptosis increase, migration, and lumen formation inhibition. Moreover, HBCD was found to be more toxic than BTBPE or TBECH. Exposure to HBCD, TBECH, and BTBPE led to the production of reactive oxygen species, mitochondrial superoxide generation, and mitochondrial membrane potential collapse, implying that reactive stress caused the cytotoxicity. The ATP content, glutathione content, superoxide dismutase, and MDA activities were reduced, indicating that mitochondrial dysfunction may be the key mechanisms responsible for apoptosis. The present study suggested that mitochondria are a new target of BFRs in ECs and further deepened our understanding of the developmental toxicity of BFRs.
Collapse
Affiliation(s)
- Jun Shi
- Shanghai East Hospital, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xueting Wang
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Chen
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Deng
- Shanghai East Hospital, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Yu J, Li W, Zhao L, Qiao Y, Yu J, Huang Q, Yang Y, Xiao X, Guo D. Quyu Shengxin capsule (QSC) inhibits Ang-II-induced abnormal proliferation of VSMCs by down-regulating TGF-β, VEGF, mTOR and JAK-STAT pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114112. [PMID: 33905820 DOI: 10.1016/j.jep.2021.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quyu Shengxin capsule (QSC) is an herbal compound commonly used to treat blood stasis syndrome in China, and blood stasis syndrome is considered to be the root of cardiovascular diseases (CVD) in traditional Chinese medicine. However, the potential molecular mechanism of QSC is still unknown. AIM OF STUDY To study the therapeutic effect of QSC on the abnormal proliferation of VSMCs induced by Ang-II, and to explore its possible mechanism of action. MATERIALS AND METHODS Qualitative analysis and quality control of QSC through UPLC-MS/MS and UPLC. The rat thoracic aorta vascular smooth muscle cells (VSMCs) were cultured in vitro, and then stimulated with Angiotensin Ⅱ (Ang-II) (10-7 mol/L) for 24 h to establish a cardiovascular cell model. The cells were then treated with different concentrations of QSC drug-containing serum or normal goat serum. MTT assay was used to detect the viability of VSMCs and abnormal cell proliferation. In order to analyze the possible signal transduction pathways, the content of various factors in the supernatant of VSMCs was screened and determined by means of the Luminex liquid suspension chip detection platform, and the phosphoprotein profile in VSMCs was screened by Phospho Explorer antibody array. RESULTS Compared with the model group, serum cell viability and inflammatory factor levels with QSC were significantly decreased (P < 0.001). In addition, the expression levels of TGF-β, VEGF, mTOR and JAK-STAT in the QSC-containing serum treatment group were significantly lower than those in the model group. QSC may regulate the pathological process of CVD by reducing the levels of inflammatory mediators and cytokines, and protecting VSMCs from the abnormal proliferation induced by Ang-II. CONCLUSION QSC inhibits Ang-II-induced abnormal proliferation of VSMCs, which is related to the down-regulation of TGF-β, VEGF, mTOR and JAK-STAT pathways.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Lintao Zhao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China
| | - Yuan Qiao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dong Guo
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, PR China.
| |
Collapse
|
25
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
26
|
Lu YB, Shi C, Yang B, Lu ZF, Wu YL, Zhang RY, He X, Li LM, Hu B, Hu YW, Zheng L, Wang Q. Long noncoding RNA ZNF800 suppresses proliferation and migration of vascular smooth muscle cells by upregulating PTEN and inhibiting AKT/mTOR/HIF-1α signaling. Atherosclerosis 2020; 312:43-53. [PMID: 32971395 DOI: 10.1016/j.atherosclerosis.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs (lncRNAs) have recently been implicated in many biological and disease processes, but the exact mechanism of their involvement in atherosclerosis is unclear. The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor to the development of atherosclerotic lesions. This study aimed to investigate the potential effects of lncRNA ZNF800, a previously uncharacterized lncRNA, on VSMC proliferation and migration. METHODS The expression of lncRNA ZNF800 in atherosclerotic plaque tissues was detected using reverse transcription-quantitative PCR (RT-qPCR), while the role and mechanism of lncRNA ZNF800 in proliferation and migration of VSMCs were investigated by CCK8 assay, transwell assay, scratch wound assay, RT-qPCR and Western blot. RESULTS We found that lncRNA ZNF800 was significantly more abundant in atherosclerotic plaque tissues, and substantially suppressed the proliferation and migration of VSMCs. LncRNA ZNF800 had no effect on phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mRNA expression but dramatically increased the levels of PTEN protein. Enhanced lncRNA ZNF800 expression inhibited the activity of the AKT/mTOR/HIF-1α signaling pathway, downregulated the expression of vascular endothelial growth factor α (VEGF-α) and matrix metalloproteinase 1 (MMP1), and suppressed VSMC proliferation and migration. These inhibitory effects of lncRNA ZNF800 were abolished by knockdown of PTEN. The inhibitory effects of lncRNA ZNF800 on cell proliferation and migration and the expression of VEGF-α and MMP1 were exacerbated by HIF-1α knockdown in VSMCs. CONCLUSIONS These findings demonstrated that lncRNA ZNF800 suppressed VSMC proliferation and migration by interacting with PTEN through a mechanism involving AKT/mTOR/HIF-1α signaling. Therefore, it may play a key atheroprotective role and represent a potential therapeutic target for atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Yuan-Bin Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Shi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Yang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Feng Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Lin Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ru-Yi Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Min Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|