1
|
Bakos V, Qiu Y, Nierychlo M, Nielsen PH, Plósz BG. Biokinetic soft-sensing using Thiothrix and Ca. Microthrix bacteria to calibrate secondary settling, aeration and N 2O emission digital twins. WATER RESEARCH 2025; 275:123164. [PMID: 39881474 DOI: 10.1016/j.watres.2025.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Climate resilience in water resource recovery facilities (WRRFs) necessitates improved adaptation to shock-loading conditions and mitigating greenhouse gas emission. Data-driven learning methods are widely utilised in soft-sensors for decision support and process optimization due to their simplicity and high predictive accuracy. However, unlike for mechanistic models, transferring machine-learning-based insights across systems is largely infeasible, which limits communication and knowledge sharing. To harness the benefits of both approaches, this study introduces a mechanistic online soft-sensor (MOSS) developed to calibrate digital twins of secondary settling tanks (hydraulic shock), aeration systems and nitrous oxide (N2O) greenhouse gas emission. MOSS integrates biokinetic models of filamentous microbial predictors to calibrate digital twins through meta-models (data-driven part), updated using offline settling column tests and amplicon sequencing data for microbial analysis. For the first time, this approach employs multi-filamentous-community predictors for dynamic calibration, i.e., Thiothrix and Ca. Microthrix. The calibration and early-warning capabilities of MOSS are demonstrated using experimental data from a laboratory-scale WRRF.
Collapse
Affiliation(s)
- Vince Bakos
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Yuge Qiu
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Benedek Gy Plósz
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; SWING - Department of Built Environment, Oslo Metropolitan University, St Olavs plass 0130, Oslo, Norway.
| |
Collapse
|
2
|
Zhao Q, Peng Y, Li J, Jia T, Zhang Q, Zhang L. Pilot-scale implementation of mainstream anammox for municipal wastewater treatment against cold temperature. Nat Commun 2024; 15:10314. [PMID: 39609403 PMCID: PMC11604950 DOI: 10.1038/s41467-024-54805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Applying anammox to municipal wastewater treatment promises enormous energy and resource savings; however, seasonally cold conditions pose a considerable challenge, impeding its future applications towards non-tropical regions. In this study, we establish a pilot-scale wastewater treatment plant (50 m3/d) in northern China and implement the partial denitrification coupling anammox process on actual municipal wastewater. Despite seasonal cooling, the nitrogen removal efficiency remains high, ranging from 75.0 ± 4.6% at 27.8-20.0 °C to 70.4 ± 4.5% at 10-7.5 °C. This process exhibits remarkable low-temperature tolerance, achieving an in-situ anammox rate of 32.7 ± 4.7 g-N/(m3·d) at 10-7.5 °C and contributing up to 39.7 ± 6.7% to nitrogen removal. Further 15N stable isotope tracing and kinetic tests reveal that the partial denitrification is capable of supplying increasingly abundant NO2- to anammox with decreasing temperature, enabling robust mainstream anammox against seasonal cooling. From 27.8 °C to 7.5 °C, anammox bacteria not only survive but thrive under mainstream conditions, with absolute and relative abundances increasing by 429.1% and 343.5%, respectively. This pilot-scale study sheds fresh light on extending mainstream anammox towards non-tropical regions, taking a necessary step forward toward the sustainability goals of the wastewater treatment sector.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
3
|
Wang W, Zhang X, Ma B, Zhang H, Wang Q, Song Y, Ma Y. Rapid achievement of partial nitrification process by adopting the combined strategy of anoxic starvation and free ammonia inhibition. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39258836 DOI: 10.1080/09593330.2024.2401645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Partial nitrification (PN) is a prerequisite step for the short-cut nitrogen removal process, which is crucial to provide stable nitrite accumulation for subsequent units. The present study innovatively proposed a new strategy for the rapid establishment of PN by adopting short-term anoxic starvation combined with high free ammonia inhibition. The sludge obtained from the secondary sedimentation tank of a municipal wastewater treatment plant was starved for 7 days under anoxic conditions, and then wastewater with high ammonia nitrogen (400 mg L-1) was introduced. Within 17 days, stable nitrite accumulation was achieved in the sequencing batch reactor, and the nitrite accumulation rate reached more than 95.0%. The activity of ammonia monooxygenase enzyme increased from 0.0364 ± 0.0074 to 0.1275 ± 0.0021 μg NO2--N·mg-1 protein min-1, while that of hydroxylamine oxidoreductase enzyme increased from 1.5350 ± 0.0208 to 6.3852 ± 0.0400 EU g-1 SS. The relative abundance of Nitrosomonas increased from 0.10% to 25.90%, while that of Nitrospira consistently remained below 0.04%. And the relative abundance of short-cut denitrifying bacteria, including Truepera, OLB8, and OLB13 all increased. The results proved that the short-term anoxic starvation combined with high free ammonia inhibition was an effective strategy for rapid establishment of PN.
Collapse
Affiliation(s)
- Wenxiao Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Bingbing Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Han Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Li M, Duan L, Li S, Wang D, Gao Q, Yu H, Zhang J, Jia Y. Differences in greenhouse gas emissions and microbial communities between underground and conventionally constructed wastewater treatment plants. BIORESOURCE TECHNOLOGY 2024; 396:130421. [PMID: 38320713 DOI: 10.1016/j.biortech.2024.130421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Large quantities of greenhouse gases (GHGs) are emitted into the atmosphere during wastewater treatment. In this study, GHG and microbial samples were collected from four wastewater treatment plants (WWTPs), and their differences and relationships were assessed. The study showed that, compared with conventionally constructed WWTPs, well-established gas collection systems in underground WWTPs facilitate comprehensive collection and accurate accounting of GHGs. In aboveground WWTPs, capped anoxic ponds promote methane production releasing it at 2-8 times the rate of uncapped emissions, in contrast to nitrous oxide emissions. Moreover, a stable subsurface environment allows for smaller fluctuations in daily GHG emissions and higher microbial diversity and abundance. This study highlights differences in GHG emission fluxes and microbial communities in differently constructed WWTPs, which are useful for control and accurate accounting of GHG emissions.
Collapse
Affiliation(s)
- Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Dawei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juanjuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
5
|
Zhen ZG, Luo JX, Su Y, Xia ZY, An T, Sun ZY, Gou M, Tang YQ. Different responses of mesophilic and thermophilic anaerobic digestion of waste activated sludge to PVC microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121584-121598. [PMID: 37957495 DOI: 10.1007/s11356-023-30935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The effect of microplastics (MPs) retained in waste activated sludge (WAS) on anaerobic digestion (AD) performance has attracted more and more attention. However, their effect on thermophilic AD remains unclear. Here, the influence of polyvinyl chloride (PVC) MPs on methanogenesis and active microbial communities in mesophilic (37 °C) and thermophilic (55 °C) AD was investigated. The results showed that 1, 5, and 10 mg/L PVC MPs significantly promoted the cumulative methane yield in mesophilic AD by 5.62%, 7.36%, and 8.87%, respectively, while PVC MPs reduced that in thermophilic AD by 13.30%, 18.82%, and 19.99%, respectively. Moreover, propionate accumulation was only detected at the end of thermophilic AD with PVC MPs. Microbial community analysis indicated that PVC MPs in mesophilic AD enriched hydrolytic and acidifying bacteria (Candidatus Competibacter, Lentimicrobium, Romboutsia, etc.) together with acetoclastic methanogens (Methanosarcina, Methanosaeta). By contrast, most carbohydrate-hydrolyzing bacteria, propionate-oxidizing bacterium (Pelotomaculum), and Methanosarcina were inhibited by PVC MPs in thermophilic AD. Network analysis further suggested that PVC MPs significantly changed the relationship of key microorganisms in the AD process. A stronger correlation among the above genera occurred in mesophilic AD, which may promote the methanogenic performance. These results suggested that PVC MPs affected mesophilic and thermophilic AD of WAS via changing microbial activities and interaction.
Collapse
Affiliation(s)
- Zhao-Gan Zhen
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Jun-Xiao Luo
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Yang Su
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Tong An
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1 First Ring Road, Chengdu, 610065, Sichuan Province, China
| |
Collapse
|
6
|
Tsukamoto H, Phan HV, Suenaga T, Yasuda S, Kuroiwa M, Riya S, Ogata A, Hori T, Terada A. Microaerophilic Activated Sludge System for Ammonia Retention toward Recovery from High-Strength Nitrogenous Wastewater: Performance and Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13874-13886. [PMID: 37676844 DOI: 10.1021/acs.est.3c03002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A transition to ammonia recovery from wastewater has started; however, a technology for sustainable nitrogen retention in the form of ammonia and organic carbon removal is still in development. This study validated a microaerophilic activated sludge (MAS) system to efficiently retain ammonia from high-strength nitrogenous wastewater. The MAS is based on conventional activated sludge (CAS) with aerobic and settling compartments. Low dissolved oxygen (DO) concentrations (<0.2 mg/L) and short solids retention times (SRTs) (<5 days) eliminated nitrifying bacteria. The two parallel MASs were successfully operated for 300 days and had ammonia retention of 101.7 ± 24.9% and organic carbon removal of 85.5 ± 8.9%. The MASs mitigated N2O emissions with an emission factor of <0.23%, much lower than the default value of CAS (1.6%). A short-term step-change test demonstrated that N2O indicated the initiation of nitrification and the completion of denitrification in the MAS. The parallel MASs had comparable microbial diversity, promoting organic carbon oxidation while inhibiting ammonia-oxidizing microorganisms (AOMs), as revealed by 16S rRNA gene amplicon sequencing, the quantitative polymerase chain reaction of functional genes, and fluorescence in situ hybridization of β-proteobacteria AOB. The microbial analyses also uncovered that filamentous bacteria were positively correlated with effluent turbidity. Together, controlling DO and SRT achieved organic carbon removal and successful ammonia retention, mainly by suppressing AOM activity. This process represents a new nitrogen management paradigm.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Hop V Phan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi- Hiroshima, Hiroshima 739-8527, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| | - Megumi Kuroiwa
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Shohei Riya
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| |
Collapse
|
7
|
Lu X, Yan G, Fu L, Cui B, Wang J, Zhou D. A review of filamentous sludge bulking controls from conventional methods to emerging quorum quenching strategies. WATER RESEARCH 2023; 236:119922. [PMID: 37098319 DOI: 10.1016/j.watres.2023.119922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Filamentous bulking, which results from the overgrowth of filamentous microorganisms, is a common issue that frequently disrupts the stable operation of activated sludge processes. Recent literature has paid attention to the relationship between quorum sensing (QS) and filamentous bulking highlighting that the morphological transformations of filamentous microbes are regulated by functional signal molecules in the bulking sludge system. In response to this, a novel quorum quenching (QQ) technology has been developed to control sludge bulking effectively and precisely by disturbing QS-mediated filamentation behaviors. This paper presents a critical review on the limitations of classical bulking hypotheses and traditional control methods, and provides an overview of recent QS/QQ studies that aim to elucidate and control filamentous bulking, including the characterization of molecule structures, the elaboration of QS pathways, and the precise design of QQ molecules to mitigate filamentous bulking. Finally, suggestions for further research and development of QQ strategies for precise bulking control are put forward.
Collapse
Affiliation(s)
- Xin Lu
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Ge Yan
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Liang Fu
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Bin Cui
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Dandan Zhou
- Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
8
|
Fei X, Xi X, Gao J, Zhu S, Jiao X, Cao L, Liu L. Effects of silica fume powder modified by oleic acid on the settleability of bulking sludge. ENVIRONMENTAL TECHNOLOGY 2023; 44:2473-2480. [PMID: 35084288 DOI: 10.1080/09593330.2022.2034979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/15/2022] [Indexed: 06/08/2023]
Abstract
Modified silica fume powder with oleic acid through coupling agent was prepared based on the in situ utilizing long-chain fatty acids (LCFA) properties of Microthrix parvicella (M. parvicella) in the activated sludge system. The modification was confirmed by XRD and infrared spectrum. The contact angle analysis showed that the modification gave the silica fume powder a hydrophobic surface. The modified silica fume powder had a good combination with M. parvicella from the SEM and Gram staining measurements. The addition of modified silica powder has a certain effect on the settling capacity of sludge, but has little effect on the sludge treatment capacity, while the SVI dropped from 400.1 to 100.0 mL/g. These suggested that the modified silica fume powder could be used as an excellent weight-increasing agent to inhibit sludge bulking.
Collapse
Affiliation(s)
- Xuening Fei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Xuzhao Xi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Jing Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, People's Republic of China
| | - Sen Zhu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Xiumei Jiao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Lingyun Cao
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Lijuan Liu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Xu L, Zhao J, Wang J, Gu R, Qu Y, Yin J, Yu D, Yu Z, Feng J, Wang X. Elucidating performance failure in the use of an Anaerobic-Oxic-Anoxic (AOA) plug-flow system for biological nutrient removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163320. [PMID: 37028655 DOI: 10.1016/j.scitotenv.2023.163320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
The Anaerobic-oxic-anoxic (AOA) process is a carbon-saving and high-efficiency way to treat municipal wastewater and gets more attention. Recent reports suggest that in the AOA process, well-performed endogenous denitrification (ED), conducted by glycogen accumulating organisms (GAOs), is crucial to advanced nutrient removal. However, the consensuses about starting up and optimizing AOA, and in-situ enriching GAOs, are still lacking. Hence, this study tried to verify whether AOA could be established in an ongoing anaerobic-oxic (AO) system. For this aim, a lab-scale plug-flow reactor (working volume of 40 L) previously operated under AO mode for 150 days, during that 97.87 % of ammonium was oxidized to nitrate and 44.4 % of orthophosphate was absorbed. Contrary to expectations, under AOA mode, little nitrate reduction (only 6.3 mg/L within 5.33 h) indicated the failure of ED. According to high-throughput sequencing analysis, GAOs (Candidatus_Competibacter and Defluviicoccus) were enriched within the AO period (14.27 % and 3 %) and then still dominated during the AOA period (13.9 % and 10.07 %) but contributed little to ED. Although apparent alternate orthophosphate variations existed in this reactor, no typical phosphorus accumulating organisms were abundant (< 2 %). More than that, within the long-term AOA operation (109 days), the nitrification weakened (merely 40.11 % of ammonium been oxidized) since the dual effects of low dissolved oxygen and long unaerated duration. This work reveals the necessity of developing practical strategies for starting and optimizing AOA, and then three aspects in future studying are pointed out.
Collapse
Affiliation(s)
- Lingna Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jimiao Wang
- Qingdao Water Group Co. Ltd., Qingdao 266100, China
| | - Ruihuan Gu
- Qingdao Water Group Co. Ltd., Qingdao 266100, China
| | - Yong Qu
- Qingdao Shuangyuan Water Co. Ltd., Qingdao 266109, China
| | - Jianhui Yin
- Qingdao Shuangyuan Water Co. Ltd., Qingdao 266109, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhengda Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Juan Feng
- Science and Technology Department, Qingdao University, Qingdao 266071, China.
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
10
|
Li L, Liu C, Xu L, Zhuang H, He J, He Q, Zhang J. Acclimation of anaerobic fermentation microbiome with acetate and ethanol for chain elongation and the biochemical response. CHEMOSPHERE 2023; 320:138083. [PMID: 36754309 DOI: 10.1016/j.chemosphere.2023.138083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Medium chain fatty acids (MCFAs) production is a promising method for resource recovery from organic wastes. In this study, the microbial community structure shift along the long-term acclimation experiment and the concomitant effect of H2 level on chain elongation performance was investigated. Chain elongation microbiome could be rapidly acclimated from traditional anaerobic fermentation consortia. Genera Caproiciproducens, Clostridium sensu stricto 12, Rummeliibacillus and Oscillibacter was found to be dominant during the operation. The H2 was accumulated in the headspace by increasing the ethanol input, which inhibited oxidation of caproate and butyrate immediately, while its inhibition effect on chain elongation was delayed. H2 level in the headspace was positively correlated to the MCFAs production related bacteria. However, too much H2 accumulated might be suppressive for MCFAs production in the long term. It might result from the thermodynamic barrier for discarding excess reducing equivalents under high H2 level, which further gave rise to ethanol accumulation in this system.
Collapse
Affiliation(s)
- Lin Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chang Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Linji Xu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Junguo He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Qiang He
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Zhao Y, Gao J, Wang Z, Cui Y, Zhang Y, Dai H, Li D. Distinct bacterial communities and resistance genes enriched by triclocarban-contaminated polyethylene microplastics in antibiotics and heavy metals polluted sewage environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156330. [PMID: 35640752 DOI: 10.1016/j.scitotenv.2022.156330] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Knowledge gaps still surround the question of what biofilms form on contaminated microplastics (MPs) in the antibiotics and (or) heavy metals polluted sewage. In this work, the clean polyethylene microplastics (PE MPs) and triclocarban (TCC)-contaminated PE MPs were cultured in the sewage containing only ampicillin (AMP), only copper (Cu) and both AMP and Cu for 28 days. The results showed that the TCC on PE MPs (with concentration of 2.48 mg/g PE MPs) did not impede the adhesion of the bacteria and the formation of biofilm. Moreover, many potential pathogenic bacteria (Aquabacterium and Pseudoxanthomonas) and potential resistant bacteria (Stenotrophomonas) were more likely to attach on TCC-contaminated PE MPs compared with clean PE MPs. In addition, biofilms of TCC-contaminated PE MPs had highest potential pathogenic functions. TCC-contaminated PE MPs also caused the increases of various resistance genes in both biofilm and sewage. The co-occurrence of TCC, AMP and Cu might exert a stronger selective pressure on bacterial communities and promote the co-selection of resistance genes. In addition, TCC-contaminated PE MPs resulted in higher abundance of five mobile genetic elements (MGEs) (intI1, intI3, tnpA-04, IS613 and trb-C) in sewage, which might further promote the transmission of resistance genes.
Collapse
Affiliation(s)
- Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
13
|
Syamimi Zaidi N, Syafiuddin A, Sillanpää M, Burhanuddin Bahrodin M, Zhang Zhan L, Ratnasari A, Kadier A, Aamer Mehmood M, Boopathy R. Insights into the potential application of magnetic field in controlling sludge bulking and foaming: A review. BIORESOURCE TECHNOLOGY 2022; 358:127416. [PMID: 35660656 DOI: 10.1016/j.biortech.2022.127416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The formation of bulking and foaming in biological wastewater treatment could cause a series of operational issues with biomass and effluent quality, ultimately affect the treatment performance of the system. The essential parameters influencing the growth of bulking and foaming bacteria are comprehensively summarised in this paper. Existing bulking and foaming control approached are critically reviewed and addressed, as well as their drawbacks and limitations. Despite the abundance of information and implementation, a complete control technique for limiting filamentous sludge bulking and foaming remains insufficient. Magnetic field application is emphasised as a viable control strategy in this regard. The present review study provides new insight of this application by comparing the use of magnetic fields to conventional treatments. Future outlooks on the use of magnetic fields to prevent BFB proliferation were also highlighted.
Collapse
Affiliation(s)
- Nur Syamimi Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia; Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Achmad Syafiuddin
- Environmental Health Division, Department of Public Health, Universitas Nahdlatul Ulama Surabaya, 60237 Surabaya, East Java, Indonesia
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, Miami, USA
| | - Muhammad Burhanuddin Bahrodin
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Loh Zhang Zhan
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Anisa Ratnasari
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Raj Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
14
|
Muñoz-Palazon B, Mikola A, Rosa-Masegosa A, Vilchez-Vargas R, Link A, Gonzalez-Lopez J, Gonzalez-Martinez A. Novel application of aerobic granular biofilm systems for treating nitrate-polluted groundwater at low temperature: Microbial community and performance. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107818. [DOI: 10.1016/j.jece.2022.107818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
|
15
|
Wágner DS, Peces M, Nierychlo M, Mielczarek AT, Thornberg D, Nielsen PH. Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs. WATER RESEARCH 2022; 216:118340. [PMID: 35364352 DOI: 10.1016/j.watres.2022.118340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The activated sludge wastewater treatment process has been thoroughly researched in more than 100 years, yet there are still operational challenges that have not been fully resolved. Such a challenge is the control of filamentous bulking caused by the overgrowth of certain filamentous bacteria. In this study, we tested different mitigation strategies to reduce filamentous bulking, caused by two common filamentous genera found in full-scale water resource recovery facilities (WRRF), Candidatus Microthrix and Candidatus Amarolinea. PAX dosing, ozone addition, hydrocyclone implementation, and the addition of nano-coagulants were tested as mitigation strategies in four parallel treatment lines in a full-scale WRRF over three consecutive years. Unexpectedly, the activated sludge settleability was not affected by any of the mitigation strategies. Some of the strategies appeared to have a strong mitigating effect on the two filamentous species. However, detailed analyses of the microbial communities revealed strong recurrent seasonal variations in all four lines, including the control line which masked the real effect. After removing the effect of the seasonal variation by using a time-series decomposition approach, it was clear that the filamentous bacteria were mostly unaffected by the mitigation strategies. Only PAX dosing had some effect on Ca. Microthrix, but only on one species, Ca. Microthrix subdominans, and not on the most common Ca. Microthrix parvicella. Overall, our study shows the importance of long-term monitoring of microbial communities at species level to understand the normal seasonal pattern to effectively plan and execute full-scale experiments. Moreover, the results highlight the importance of using parallel reference treatment lines when evaluating the effect of mitigation strategies in full-scale treatment plants.
Collapse
Affiliation(s)
- Dorottya S Wágner
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark; Biofos, Copenhagen, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | | | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
16
|
Petrovski S, Batinovic S, Rose JJ, Seviour RJ. Biological control of problem bacterial populations causing foaming in activated sludge wastewater treatment plants - phage therapy and beyond. Lett Appl Microbiol 2022; 75:776-784. [PMID: 35598184 DOI: 10.1111/lam.13742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The production of a stable foam on the surfaces of reactors is a global operating problem in activated sludge plants. In many cases these foams are stabilized by hydrophobic members of the Mycolata, a group of Actinobacteria whose outer membranes contains long chain hydroxylated mycolic acids. There is currently no single strategy which works for all foams. One attractive approach is to use lytic bacteriophages specific for the foam stabilizing Mycolata population. Such phages are present in activated sludge mixed liquor, and can be recovered readily from it. However, no phage has been recovered which lyses Gordonia amarae and Gordonia pseudoamarae, probably the most common foaming Mycolata members. Whole genome sequencing revealed that both G. amarae and G. pseudoamarae from plants around the world are particularly well endowed with genes encoding anti-viral defence mechanisms. However, both these populations were lysed rapidly by a parasitic nanobacterium isolated from a plant in Australia. This organism, a member of the Saccharibacteria was also effective against many other Mycolata, thus providing a potential agent for control of foams stabilized by them.
Collapse
Affiliation(s)
- Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Jayson Ja Rose
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
17
|
Chen Y, Sun Y, Zhang J, Li J, Peng Y. A novel control strategy to strengthen nitrogen removal from domestic wastewater through eliminating nitrite oxidizing bacteria in a plug-flow process. BIORESOURCE TECHNOLOGY 2022; 350:126856. [PMID: 35183731 DOI: 10.1016/j.biortech.2022.126856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, intermittent aeration strategy was investigated in a plug-flow reactor on real municipal wastewater. Over 200 days of operation, the total inorganic nitrogen (TIN) removal efficiency of 72.43 ± 7.56% was achieved with a total aerobic hydraulic retention time in the range 2.4-3.0 h under a low C/N ratio of 3.19. The batch tests showed that the activity of nitrite oxidizing bacteria (NOB) was effectively inhibited, and simultaneous nitrification and denitrification via nitrite were observed under double intermittent aeration mode. The Illumina MiSep sequencing revealed that the relative abundance of the Nitrospira as the only detected NOB, decreased from 2.22% (day 0) to 0.91% (day 207) at the genus level. Overall, this study provides a new strategy for NOB suppression to strengthen nitrogen removal from low C/N domestic wastewater through the continuous process.
Collapse
Affiliation(s)
- Yanhui Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yawen Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianhua Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
18
|
Begmatov S, Dorofeev AG, Kadnikov VV, Beletsky AV, Pimenov NV, Ravin NV, Mardanov AV. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow. Sci Rep 2022; 12:3458. [PMID: 35236881 PMCID: PMC8891259 DOI: 10.1038/s41598-022-07132-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
Microbial communities in wastewater treatment plants (WWTPs) play a key role in water purification. Microbial communities of activated sludge (AS) vary extensively based on plant operating technology, influent characteristics and WWTP capacity. In this study we performed 16S rRNA gene profiling of AS at nine large-scale WWTPs responsible for the treatment of municipal sewage from the city of Moscow, Russia. Two plants employed conventional aerobic process, one plant-nitrification/denitrification technology, and six plants were operated with the University of Cape Town (UCT) anaerobic/anoxic/oxic process. Microbial communities were impacted by the technology and dominated by the Proteobacteria, Bacteroidota and Actinobacteriota. WWTPs employing the UCT process enabled efficient removal of not only organic matter, but also nitrogen and phosphorus, consistently with the high content of ammonia-oxidizing Nitrosomonas sp. and phosphate-accumulating bacteria. The latter group was represented by Candidatus Accumulibacter, Tetrasphaera sp. and denitrifiers. Co-occurrence network analysis provided information on key hub microorganisms in AS, which may be targeted for manipulating the AS stability and performance. Comparison of AS communities from WWTPs in Moscow and worldwide revealed that Moscow samples clustered together indicating that influent characteristics, related to social, cultural and environmental factors, could be more important than a plant operating technology.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Alexander G Dorofeev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071.
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071.
| |
Collapse
|
19
|
Szypulska D, Miodoński S, Janiak K, Muszyński-Huhajło M, Jurga A. Filamentous foam disintegration with free nitrous acid: Effect on anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:199-207. [PMID: 34974314 DOI: 10.1016/j.wasman.2021.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Sludge foaming is a common problem in wastewater treatment plants negatively affecting operation of anaerobic digestion reactors. Therefore, in common practice, foam is removed from reactors without being fermented, leading to increase in sludge mass for disposal. However, foam is rich in lipids and can be a good source of methane if operational problems can be overcome. In this paper, in a two-stage experiment, we show that foam disintegration with free nitrous acid (FNA) can boost methane production and decrease foaming potential. In the first stage, the biochemical methane potential (BMP) of foam was evaluated to be higher by 19-63% (191-263NmL/gVS) than the BMP of waste activated sludge (WAS) (161 ± 1NmL/gVS) confirming previous assumptions. The main findings of the second stage (continuous experiments) are: (1) foam and WAS co-digestion leads to sludge stratification and thickened biomass accumulation in the upper part of the reactor, (2) FNA disintegration destroyed foam structure, resulting in lower biomass stratification and 14% higher methane production (134 mL/gVS) than observed in the reference reactor, (3) FNA disintegration of both substrates (foam and WAS) does not provide noticeable benefits in terms of biomass stratification. However, it does enhance methane production to 140 mL/gVS and sludge mineralization efficiency. A significantly higher impact of FNA on methane yield from foam than WAS was attributed to the high content of M.parvicella and the ability of these bacteria to adsorb and accumulate lipids. Anaerobic digestion of FNA disintegrated foam leads to substantial benefits in terms of methane production, reactor volume, and reagents consumption.
Collapse
Affiliation(s)
- Dorota Szypulska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Stanisław Miodoński
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 14/16 50-421 Wroclaw, Poland.
| | - Mateusz Muszyński-Huhajło
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
20
|
Song X, Yu D, Qiu Y, Qiu C, Xu L, Zhao J, Wang X. Unexpected phosphorous removal in a Candidatus_Competibacter and Defluviicoccus dominated reactor. BIORESOURCE TECHNOLOGY 2022; 345:126540. [PMID: 34902483 DOI: 10.1016/j.biortech.2021.126540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Competition between polyphosphate- and glycogen-accumulating organisms (PAOs and GAOs) is problematic in the enhanced biological phosphorus removal (EBPR) process. Aiming at a high phosphorus removal efficiency (PRE), the phosphorus release amount (PRA) is considered an essential evaluating indicator. However, the correlations between PRE and PRA and the abundance of PAOs are not clear. In this study, the EBPR was established and optimized via adjusting influent carbon to phosphorus ratio (C/P). After 110-day operation, 17.67 mg/L of PRA and 75.86% of PRE simultaneously achieved with influent C/P of 40 mgCOD/mgP. As for PAOs, Candidatus_Accumulibacter and Tetrasphaera were absent, while Hypomicrobium (3.69%), Pseudofulvimonas (1.02%), and unclassified_f_Rhodobacteraceae (2.41%) were found at a low level. On the contrary, Candidatus_Competibacter and Defluviicoccus were unexpectedly enriched with high abundance (24.94% and 16.04%, respectively). These results also suggested that it was difficult to distinguish whether PAOs were enriched merely based on the variations of PRA and PRE.
Collapse
Affiliation(s)
- Xia Song
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chenguang Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Lingna Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
21
|
Cui Y, Gao J, Zhang D, Li D, Dai H, Wang Z, Zhao Y. Responses of performance, antibiotic resistance genes and bacterial communities of partial nitrification system to polyamide microplastics. BIORESOURCE TECHNOLOGY 2021; 341:125767. [PMID: 34419884 DOI: 10.1016/j.biortech.2021.125767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Polyamide (PA), a prevalent microplastics (MPs), is often collected from wastewater treatment plants. However, the responses of partial nitrification system to PA MPs are unclear. The short-term and long-term effect of PA MPs on the partial nitrification system was slight, but the ammonia oxidation rate decreased slowly with the increase of PA MPs concentration. Meantime, the PA MPs addition could decrease the microbial diversity, alter microbial community structure of the system and facilitate the propagation of antibiotic resistance genes (ARGs) including fabI, intI1 and Tn916/1545. Correlation analysis and network analysis indicated that Ferruginibacter, Hyphomicrobium, Terrimonas, Brevundimonas and Plasticicumulans in the system might be the dominant hosts of ARGs. In addition, oligotyping analysis indicated not all oligotypes of the relevant genus showed positive correlation with ARGs. In general, PA MPs had almost no effect on performance but altered community structure and increased ARGs spread risk of the partial nitrification system.
Collapse
Affiliation(s)
- Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Liu W, Li J, Peng Y. Impact of starvation conditions on the nitrifying performance and sludge properties in SBR system with a limited filamentous bulking state. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148997. [PMID: 34346374 DOI: 10.1016/j.scitotenv.2021.148997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Limited filamentous bulking (LFB) induced by low dissolved oxygen in activated sludge system is an effective energy saving process. However, starvation environment is liable to result in the unbalance between filaments and flocs, affecting the LFB system performance. The variations in nitrifying performance and properties of LFB sludge during 14 days of four starvation conditions (aerobic, alternating anaerobic/aerobic, anaerobic and anoxic) and their subsequent recovery were investigated in sequencing batch reactor (SBR) system. The results showed that the highest activity decay rates of ammonia- and nitrite-oxidizing bacteria (AOB and NOB) were observed under aerobic starvation condition, followed by anoxic, anaerobic, and alternating anaerobic/aerobic starvation conditions. In the reactivation period, the faster recovery of AOB activity and cell number, relative to NOB, particularly in aerobic case, led to temporary nitrite accumulation. Besides, the sludge settleability rapidly improved (SVI of ~30 mL/g) due to filamentous bacteria suppression under aerobic starvation, while the filaments (e.g. Type 0092) overgrew (SVI of ~250 mL/g) under anoxic starvation, triggering unexpected biomass loss and going against the nitrifying performance recovery of the system. In contrast, alternating anaerobic/aerobic and anaerobic starvations avoid pure aerobic or anoxic starvation condition, effectively maintaining the nitrifying performance and LFB state, and therefore are the best storage strategies for LFB sludge.
Collapse
Affiliation(s)
- Wenlong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
23
|
Banti DC, Mitrakas M, Samaras P. Membrane Fouling Controlled by Adjustment of Biological Treatment Parameters in Step-Aerating MBR. MEMBRANES 2021; 11:membranes11080553. [PMID: 34436316 PMCID: PMC8399131 DOI: 10.3390/membranes11080553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
A promising solution for membrane fouling reduction in membrane bioreactors (MBRs) could be the adjustment of operating parameters of the MBR, such as hydraulic retention time (HRT), food/microorganisms (F/M) loading and dissolved oxygen (DO) concentration, aiming to modify the sludge morphology to the direction of improvement of the membrane filtration. In this work, these parameters were investigated in a step-aerating pilot MBR that treated municipal wastewater, in order to control the filamentous population. When F/M loading in the first aeration tank (AT1) was ≤0.65 ± 0.2 g COD/g MLSS/d at 20 ± 3 °C, DO = 2.5 ± 0.1 mg/L and HRT = 1.6 h, the filamentous bacteria were controlled effectively at a moderate filament index of 1.5-3. The moderate population of filamentous bacteria improved the membrane performance, leading to low transmembrane pressure (TMP) at values ≤ 2 kPa for a great period, while at the control MBR the TMP gradually increased reaching 14 kPa. Soluble microbial products (SMP), were also maintained at low concentrations, contributing additionally to the reduction of ΤΜP. Finally, the step-aerating MBR process and the selected imposed operating conditions of HRT, F/M and DO improved the MBR performance in terms of fouling control, facilitating its future wider application.
Collapse
Affiliation(s)
- Dimitra C. Banti
- Laboratory of Technologies of Environmental Protection and Utilization of Food By-Products, Department of Food Science and Technology, International Hellenic University, GR-57400 Thessaloniki, Greece;
- Correspondence:
| | - Manassis Mitrakas
- Laboratory of Analytical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Petros Samaras
- Laboratory of Technologies of Environmental Protection and Utilization of Food By-Products, Department of Food Science and Technology, International Hellenic University, GR-57400 Thessaloniki, Greece;
| |
Collapse
|
24
|
Kolakovic S, Freitas EB, Reis MAM, Carvalho G, Oehmen A. Accumulibacter diversity at the sub-clade level impacts enhanced biological phosphorus removal performance. WATER RESEARCH 2021; 199:117210. [PMID: 34004444 DOI: 10.1016/j.watres.2021.117210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Accumulibacter is a well-known group of organisms, typically considered to be polyphosphate accumulating organisms (PAOs), but potentially capable of glycogen accumulating organism (GAO) metabolism under limiting influent phosphate levels. Metabolic features of Accumulibacter are typically linked to its phylogenetic identity at the Type or clade level, though it is unclear the extent to which Accumulibacter diversity can correlate with its capacity to perform P removal. This paper investigates the fine-scale diversity of Accumulibacter and its link with enhanced biological phosphorus removal (EBPR) performance under various operating conditions, to understand the conditions and community structure leading to successful and unsuccessful EBPR operation. For this purpose, the organic carbon feeding rate and total organic carbon concentration were varied during three distinct operational periods, where influent phosphate was never limiting. Accumulibacter was always the dominant microbial group (>80% of all bacteria according to quantitative fluorescence in situ hybridisation - FISH) and low levels of Competibacter and other GAOs were consistently observed (<15% of all bacteria). Steady state was achieved in each of the three periods, with average phosphorus removal levels of 36%, 99% and >99%, respectively. Experimentally determined stoichiometric activity supported the expression of a mixed PAO/GAO metabolism in the first steady state period and the typical PAO metabolism in the other two steady state periods. FISH quantification and amplicon sequencing of the polyphosphate kinase (ppk1) functional gene indicated that Accumulibacter clade IIC was selected in the first steady state period, which shifted to clade IA after decreasing the carbon feeding rate in steady state period 2, and finally shifted back to clade IIC in the third steady state period. Fine-resolution Ppk-based phylogenetic analysis revealed three different clusters within Accumulibacter clade IIC, where clusters IICii and IICiii were linked to poor EBPR performance in period 1, and cluster IICi was linked to good EBPR performance in period 3. This study shows that the deterioration of EBPR processes through GAO activity at non-limiting P concentrations can be linked to organisms that are typically classified as PAOs, not only to known GAOs such as Competibacter. Intra-clade phylogenetic diversity within Accumulibacter showed that some clusters actually behave similarly to GAOs even without influent phosphate limitation. This study highlights the need to closely re-examine traditional interpretations regarding the link between the microbial community composition and identity with the performance and metabolism of EBPR systems.
Collapse
Affiliation(s)
- Srdana Kolakovic
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Elisabete B Freitas
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Gilda Carvalho
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
25
|
Nierychlo M, Singleton CM, Petriglieri F, Thomsen L, Petersen JF, Peces M, Kondrotaite Z, Dueholm MS, Nielsen PH. Low Global Diversity of Candidatus Microthrix, a Troublesome Filamentous Organism in Full-Scale WWTPs. Front Microbiol 2021; 12:690251. [PMID: 34248915 PMCID: PMC8267870 DOI: 10.3389/fmicb.2021.690251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Candidatus Microthrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species, Ca. M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigate Ca. Microthrix spp. diversity, distribution, and factors affecting their global presence. Only two species were abundant across the world confirming low diversity of the genus: the dominant Ca. M. parvicella and an unknown species typically present along with Ca. M. parvicella, although usually in lower abundances. Both species were mostly found in Europe at low-to-moderate temperatures and their growth was favored in municipal WWTPs with advanced process designs. As no isolate is available for the novel species, we propose the name "Candidatus Microthrix subdominans." Ten high-quality metagenome-assembled genomes recovered from Danish WWTPs, including 6 representing the novel Ca. M. subdominans, demonstrated high genetic similarity between the two species with a likely preference for lipids, a putative capability to reduce nitrate and nitrite, and the potential to store lipids and poly-P. Ca. M. subdominans had a potentially more versatile metabolism including additional sugar transporters, higher oxygen tolerance, and the potential to use carbon monoxide as energy source. Newly designed fluorescence in situ hybridization probes revealed similar filamentous morphology for both species. Raman microspectroscopy was used to quantify the in situ levels of intracellular poly-P. Despite the observed similarities in their physiology (both by genomes and in situ), the two species showed different seasonal dynamics in Danish WWTPs through a 13-years survey, possibly indicating occupation of slightly different niches. The genomic information provides the basis for future research into in situ gene expression and regulation, while the new FISH probes provide a useful tool for further characterization in situ. This study is an important step toward understanding the ecology of Ca. Microthrix in WWTPs, which may eventually lead to optimization of control strategies for its growth in this ecosystem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
26
|
Li BB, Peng ZY, Zhi LL, Li HB, Zheng KK, Li J. Distribution and diversity of filamentous bacteria in wastewater treatment plants exhibiting foaming of Taihu Lake Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115644. [PMID: 33254706 DOI: 10.1016/j.envpol.2020.115644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Foaming caused by filamentous bacteria in activated sludge (AS) is a common phenomenon in municipal wastewater treatment plants (WWTPs) in Taihu Lake Basin of South China. In this study, total bacterial and filamentous bacterial communities were comprehensively characterized in AS and foams from eight municipal WWTPs by high-throughput sequencing technology. Results showed that alpha diversities of total bacterial communities in foams were obviously lower than those in AS samples. The bacterial community structures were significantly different between WWTPs rather than sample types (AS vs. foam). For most WWTPs, the Actinobacteria phylum was highly enriched in foams and the most abundant genera in foams were common mycolata. Sixteen filamentous bacteria were identified against the improved bulking and foaming bacteria (BFB) database. Abundance and composition of BFB in different WWTPs and different sample types were significantly different. 'Nostocoida limicola' I Trichococcus and Microthrix were generally dominant in AS samples. The dominant BFB in foams were associated with Microthrix, Skermania, Gordonia, and Mycobacterium. A new Defluviicoccus spp. in cluster III was identified in severe and continuous foams. Moreover, dominant BFB in stable and continuous foams with light level in one typical WWTP were diverse, even, and dynamic. Bacterial co-occurrence network analysis implied that the bacterial community of AS was more sensitive to disturbance than that of foam.
Collapse
Affiliation(s)
- Bing-Bing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Ying Peng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li-Ling Zhi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Huai-Bo Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai-Kai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
27
|
Usage of textile dyes BB41 and BR46 for microscopic examination of filamentous bacteria in activated sludge reactor: a new staining method. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The existence of certain filamentous organisms may indicate one or more operation and control problems in activated sludge reactors. Microscopic evaluation of these filamentous organisms needs staining methods that can be achieved after some steps. This study is the first to show that textile dyes such as Astrazon Blue FGGL (BB41) and Astrazon Red FBL (BR46) can be used to identify filamentous organisms. Both dyes were used as a new, effective, and easy method for detecting the presence of filamentous bacteria. When contacted with BB41 and BR46, the filamentous bacteria and their characteristics were easily observed under the microscope. According to sources, textile dyes used in this study have not been used to diagnose filamentous bacteria before. According to the findings of this study, important morphological properties of filamentous bacteria were easily observed using BB41 and BR46. “Attached growth, branching, septa, and granules of various nutrients” were clearly seen by the stains (BB41 and BR46) with the help of this method. This method may allow the examiners to examine the specimens of filamentous bacteria in the activated sludge reactors. Detailed information has been presented in this paper.
Collapse
|