1
|
Yuan J, Pang Z, Liu Q, Huang L, Liu Y, Liao J, Luo L, Feng Y. Plant endophyte immobilization technology: A promising approach for chromium-contaminated water and soil remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135320. [PMID: 39067294 DOI: 10.1016/j.jhazmat.2024.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microbial immobilization technology is considered an efficient bioremediation method for chromium (Cr) pollution. However, it is currently unclear which strain is more beneficial for the remediation of Cr-contaminated water and soil. Therefore, corn straw biochar was used as a carrier to prepare materials for fixing the endophytes Serratia sp. Y-13 (BSR1), Serratia nematodiphila (BSR2), Lysinibacillus sp. strain SePC-36 (BLB1), Lysinibacillus mangiferihumi strain WK63 (BLB2) and the commercial bacteria Shewanella oneidensis MR-1 (BSW). The results demonstrated that, compared with BSW, endophyte-loaded biochar (especially BSR1) was more effective at remediating Cr pollution in water and soil. Endophyte-loaded biochar reduced the abundance of soil pathogenic bacteria, enhanced the number of beneficial plant endophytes, reduced the soil Cr(VI) concentration, improved soil fertility, reduced the plant Cr concentration and improved the yield of lettuce. Redundancy analysis (RDA) and structural equation modelling (PLS-PM) suggested that soil microbes are closely related to soil Cr(VI), plant fresh weight and soil organic matter, whereas endophyte-loaded biochar directly influences plant cell motility pathways by altering plant microbes. This study represents a pioneering investigation into the efficacy of endophyte-loaded biochar as a remediation strategy for Cr pollution.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Pang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayuan Liao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lishan Luo
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Nawab J, Ghani J, Ullah S, Ahmad I, Akbar Jadoon S, Ali S, Hamidova E, Muhammad A, Waqas M, Din ZU, Khan S, Khan A, Ur Rehman SA, Javed T, Luqman M, Ullah Z. Influence of agro-wastes derived biochar and their composite on reducing the mobility of toxic heavy metals and their bioavailability in industrial contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1824-1838. [PMID: 38832561 DOI: 10.1080/15226514.2024.2357640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (p < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (p < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.
Collapse
Affiliation(s)
- Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Junaid Ghani
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sajid Ullah
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Imran Ahmad
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sultan Akbar Jadoon
- Department of Plant Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shaukat Ali
- Department of Environmental Sciences, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Emiliya Hamidova
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy
| | - Asim Muhammad
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Zia Ud Din
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, Pakistan
| | - Ajmal Khan
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Syed Aziz Ur Rehman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tehseen Javed
- Department of Environmental Sciences, Kohat University of Science and Technology Kohat, Kohat, Pakistan
| | - Muhammad Luqman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| |
Collapse
|
3
|
Akbar WA, Rahim HU, Irfan M, Sehrish AK, Mudassir M. Assessment of heavy metal distribution and bioaccumulation in soil and plants near coal mining areas: implications for environmental pollution and health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:97. [PMID: 38153601 DOI: 10.1007/s10661-023-12258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Monitoring heavy metals (HMs) across source distance and depth distribution near coal mining sites is essential for preventing environmental pollution and health risks. This study investigated the distribution of selected HMs, cadmium (Cd2+), chromium (Cr2+), copper (Cu2+), manganese (Mn2+), nickel (Ni2+), lead (Pb2+), and zinc (Zn2+), in soil samples collected from ten sites (S-1-S-10) at two different depths (0-15 and 15-30 cm) and distances of 50, 100, and 200 m from a mining source. Additionally, three plant species, Prosopis spp., Justicia spp., and wheat, were collected to assess HM bioavailability and leaf accumulation. Coal mine activities' impact on soil properties and their HM associations were also explored. Results reveal HM concentrations except for Cr2+ exceeding World Health Organization (WHO) limits. In surface soil, Cd2+ (58%), Cu2+ (93%), Mn2+ (68%), Ni2+ (80%), Pb2+ (35%), and Zn2+ (88%) surpassed permissible limits. Subsurface soil also exhibited elevated Cd2+ (53%), Cu2+ (83%), Mn2+ (60%), Ni2+ (80%), Pb2+ (35%), and Zn2+ (77%). Plant species displayed varying HM levels, exceeding permissible limits, with average concentrations of 1.4, 1.34, 1.42, 4.1, 2.74, 2.0, and 1.98 mg kg-1 for Cd2+, Pb2+, Cr2+, Cu2+, Mn2+, Ni2+, and Zn2+, respectively. Bioaccumulation factors were highest in wheat, Prosopis spp., and Justicia spp. Source distance and depth distribution significantly influenced soil pH, electrical conductivity (EC), and soil organic carbon (SOC). Soil pH and EC increased with an increase in soil depth, while SOC decreased. Pearson correlation analysis revealed varying relationships between soil properties and HMs, showing a considerably negative correlation. Concentrations of HMs decreased with increasing depth and distance from mining activities, validated by regression analysis. Findings suggest crops from these soils may pose health risks for consumption.
Collapse
Affiliation(s)
- Waqas Ali Akbar
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121, Ferrara, Italy.
| | - Muhammad Irfan
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University (Xianlin Campus), 163 Xianlin Road, Jiangsu Province, Qixia District, Nanjing, 210023, People's Republic of China
| | - Muhammad Mudassir
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| |
Collapse
|
4
|
Jehan S, Khattak SA, Khan S, Ali L, Waqas M, Kamran A. Comparative efficacy of Parthenium hysterophorus (L.) derived biochar and iron doped zinc oxide nanoparticle on heavy metals (HMs) mobility and its uptake by Triticum aestivum (L.) in chromite mining contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1890-1900. [PMID: 37114297 DOI: 10.1080/15226514.2023.2204968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this study we investigated the efficacy of a novel material parthenium weed (Parthenium hysterophorus L.) biochar (PBC), iron doped zinc oxide nanoparticles (nFe-ZnO), and biochar modified with nFe-ZnO (Fe-ZnO@BC) to adsorb heavy metals (HMs) and reduce their uptake by wheat (Triticum aestivum L.) in a highly chromite mining contaminated soil. The co-application of the applied soil conditioners exhibited a positive effect on the immobilization and restricted the HMs uptake below their threshold levels in shoot content of wheat. The maximum adsorption capacity was because of large surface area, cation exchange capacity, surface precipitation, and complexation of the soil conditioners. The scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) showed porous smooth structure of parthenium weed derived biochar that helped in HMs adsorption, increase the efficiency of soil fertilizers and nutrients retention which help in the enhancement soil condition. Under different application rates the highest translocation factor (TFHMs) was obtained at 2 g nFe-ZnO rate followed the descending order: Mn > Cr > Cu > Ni > Pb. The overall TFHMs was found <1.0 indicating that low content of HMs accumulation in roots from soil slight transferred to shoot, thus satisfying the remediation requirements.
Collapse
Affiliation(s)
- Shah Jehan
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
- Department of Earth Sciences, IN University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Seema A Khattak
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, Pakistan
| | - Liaqat Ali
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Asad Kamran
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
5
|
Wen Z, Liu Q, Yu C, Huang L, Liu Y, Xu S, Li Z, Liu C, Feng Y. The Difference between Rhizosphere and Endophytic Bacteria on the Safe Cultivation of Lettuce in Cr-Contaminated Farmland. TOXICS 2023; 11:371. [PMID: 37112598 PMCID: PMC10146757 DOI: 10.3390/toxics11040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.
Collapse
Affiliation(s)
- Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock Industrial Development Center of Shengzhou, Shaoxing 312400, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun’an Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Bibi K, Shah MH. Investigation of imbalances in essential/toxic metal levels in the blood of laryngeal cancer patients in comparison with controls. Biometals 2023; 36:111-127. [PMID: 36370262 DOI: 10.1007/s10534-022-00464-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Laryngeal carcinoma is one of the common types of head and neck cancer, with men being more likely than women to develop it. Diet, age, gender, smoking habits, and environmental factors play important roles in its development. The goal of this study was to ascertain if there were imbalances in essential and toxic trace metals owing to the initiation and progression of laryngeal cancer. Atomic absorption spectrometry was employed to quantify selected macroelements, and essential/toxic trace metals in blood of the cancerous patients and matching controls. Significantly higher concentrations of Pb, Cu, Fe, and Sr while substantially lower levels of Na, K, Ca, and Mg were observed in the cancer patients compared with the controls. Considerably disparate mutual relationships among the macroelements, and essential/toxic trace metals in the patients and controls were manifested by their correlation coefficients. Similarly, multivariate apportionment of the metal levels showed appreciably diverse associations and grouping in the patients and controls. The laryngeal cancer patients exhibited significant disparities in the metal levels among various sub-types (supraglottic, subglottic, transglottic, and glottic cancer) and stages (I, II, III, and IV) of the disease. Most of the metals revealed distinct differences based on the gender, habitat, age, eating preferences, and smoking habits in both donor groups. Overall, the study demonstrated significant imbalances among the macroelements, and essential/toxic trace metal levels in the blood of laryngeal cancer patients compared to the controls.
Collapse
Affiliation(s)
- Kalsoom Bibi
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Liu Q, Chen Z, Wu Y, Huang L, Munir MAM, Zhou Q, Wen Z, Jiang Y, Tao Y, Feng Y. Inconsistent effects of a composite soil amendment on cadmium accumulation and consumption risk of 14 vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71810-71825. [PMID: 35604595 DOI: 10.1007/s11356-022-20939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.
Collapse
Affiliation(s)
- Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lukuan Huang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mehr Ahmed Mujtaba Munir
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiyao Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zheyu Wen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yugen Jiang
- Hangzhou Fuyang Agricultural Technology Extension Center, Fuyang, 311400, People's Republic of China
| | - Yi Tao
- Huzhou Ruibosi Testing Technology Co., Ltb, Huzhou, 313000, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
8
|
Giri A, Bharti VK, Kalia S, Acharya S, Kumar B, Chaurasia OP. Health Risk Assessment of Heavy Metals Due to Wheat, Cabbage, and Spinach Consumption at Cold-Arid High Altitude Region. Biol Trace Elem Res 2022; 200:4186-4198. [PMID: 34750742 DOI: 10.1007/s12011-021-03006-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Soil and water from the trans-Himalayan high-altitude region contain high concentrations of various heavy metals. Vegetables and cereals such as cabbage, spinach, and wheat are most prone to heavy metal accumulation from soil and water which can be toxic for human consumption. It has yet to be studied how consumption of vegetables and cereal with excess heavy metal content can affect human health in high altitude areas. To this end, the objectives of this study are (a) quantify the concentrations of Aluminum (Al), Iron (Fe), Cobalt (Co), Boron (B), Lead (Pb), Arsenic (As), Cadmium (Cd), Selenium (Se), Copper (Cu), and Zinc (Zn) in three crops (wheat, cabbage, and spinach), and (b) evaluate the health risk of excess dietary heavy metal consumption in the local adult population using non-carcinogenic and carcinogenic parameters. A total of 60 samples were analyzed for minerals and potentially toxic elements using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Results found that spinach has a high mineral content than wheat and cabbage. The estimated daily intake (EDI) of each metal in each crop was less than the limit of permissible value. The hazard index (HI) of three plant species, and target hazard quotient (THQ) were less than the threshold level (< 1). The carcinogenic risk (CR) value in all the crops was less than the unacceptable risk level (1 × 10-4). These findings suggest that consumption of wheat, spinach, and cabbage does not have any significant effect on human health due to presence of elevated heavy metals at this high altitude region. .
Collapse
Affiliation(s)
- Arup Giri
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh UT, India.
- Department of Zoology, Baba Masthnath University, Rohtak, Haryana, 124021, India.
| | - Vijay K Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh UT, India
| | - Sahil Kalia
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh UT, India
| | - Somen Acharya
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh UT, India.
| | - Bhuvnesh Kumar
- DRDO-Defence Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - O P Chaurasia
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh UT, India
| |
Collapse
|
9
|
Chen Y, Su J, Zhao H, Li JY, Wang J, Wang Q, Yin J, Jin L. In-situ biochar amendment mitigates dietary risks of heavy metals and PAHs in aquaculture products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119615. [PMID: 35705152 DOI: 10.1016/j.envpol.2022.119615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are two common contaminant groups of concern in aquaculture products. While biochar amendment can be one of the solutions to immobilize these contaminant in pond sediment, its in situ effectiveness in mitigating the bioavailability, tissue residue, and dietary risk of these contaminants is yet to be tested. In this study, we added wheat straw biochar in sediments of three aquaculture ponds with polyculture of fish and shrimps and employed passive sampling techniques (i.e., diffusive gradient in thin film for HMs and polydimethylsiloxane for PAHs) to assess the diffusion flux and bioavailability throughout the culturing cycle. Reduction in HM concentrations in organisms by biochar after 28 weeks ranged from 17% to 65% for benthic organisms and from 6.0% to 47% for fish. ΣTHQs values of HMs dropped from 2.5 to 2.1 and 1.2 to 0.91 for the two organisms with the initial ΣTHQs value above 1.0. The decrease rates of both the concentrations and ΣTHQs values followed the order of Cu > Cr > Pb > Cd, which was closely correlated with the speciation of HMs in the sediments. ΣPAHs values dropped significantly at the growth stage (20th week) and the mature stage (28th week), and, on average, by 34% across all the organisms. Carcinogenic PAHs in aquaculture products decreased dramatically at the seedling stage (12th week), while there was no significant change observed for the Incremental Lifetime Cancer Risk values. By comparing the freely-dissolved concentrations in pore water of sediments and the overlying water, consistently enhanced diffusion fluxes of HMs and PAHs from water to sediment over the whole culturing cycle were obtained. Our results demonstrated the in situ applicability of biochar amendment to remediating chemical pollution in aquaculture environment and safeguarding quality of aquatic products.
Collapse
Affiliation(s)
- Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Junrong Su
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Hanyin Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jian Wang
- Shanghai Shentian Industrial Co., Ltd., Shanghai, 200090, China
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Health Technology and Informatics and Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
10
|
Qin J, Wang X, Ying J, Lin C. Biochar Is Not Durable for Remediation of Heavy Metal-Contaminated Soils Affected by Acid-Mine Drainage. TOXICS 2022; 10:462. [PMID: 36006141 PMCID: PMC9416525 DOI: 10.3390/toxics10080462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Biochar is a soil conditioner for enhancing plant growth and reducing plants' uptake of heavy metals. However, the protonation of biochar surfaces in acid soils can weaken the capacity of biochar to reduce the phytoavailability of soil-borne heavy metals over time. The aim of this study was to test this hypothesis by performing a plant-growth experiment with five harvest cycles to examine the durability of rice-straw biochar for the remediation of an acidic-mine-water-contaminated soil. The application of the biochar significantly reduced the phytoavailability of the heavy metals and inhibited the plant uptake of cationic heavy metals but not anionic Cr. The beneficial effects of the biochar were weakened with the increasing number of harvest cycles caused by the gradual protonation of the biochar surfaces, which resulted in the desorption of the adsorbed heavy metals. The weakening capacity of the biochar to reduce the heavy-metal uptake by the vegetable plants was more evident for Cu, Zn, and Pb compared to Ni and Cd. The experimental results generally confirmed the hypothesis. It was also observed that the bioaccessible amount of various metals in the edible portion of the vegetable was also reduced as a result of the biochar application.
Collapse
Affiliation(s)
- Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Xi Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Jidong Ying
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
11
|
Hadiya V, Popat K, Vyas S, Varjani S, Vithanage M, Kumar Gupta V, Núñez Delgado A, Zhou Y, Loke Show P, Bilal M, Zhang Z, Sillanpää M, Sabyasachi Mohanty S, Patel Z. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. BIORESOURCE TECHNOLOGY 2022; 355:127303. [PMID: 35562022 DOI: 10.1016/j.biortech.2022.127303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In recent years, biomass has been reported to obtain a wide range of value-added products. Biochar can be obtained by heating biomass, which aids in carbon sinks, soil amendments, resource recovery, and water retention. Microwave technology stands out among various biomass heating technologies not only for its effectiveness in biomass pyrolysis for the production of biochar and biofuel but also for its speed, volumetrics, selectivity, and efficiency. The features of microwave-assisted biomass pyrolysis and biochar are briefly reviewed in this paper. An informative comparison has been drawn between microwave-assisted pyrolysis and conventional pyrolysis. It focuses mainly on technological and economic scenario of biochar production and environmental impacts of using biochar. This source of knowledge would aid in the exploration of new possibilities and scope for employing microwave-assisted pyrolysis technology to produce biochar.
Collapse
Affiliation(s)
- Vishal Hadiya
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009,Gujarat, India
| | - Kartik Popat
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar 382007, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, UK, Edinburgh EH9 3JG, United Kingdom; Centre for Safe and Improved Foods, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, UK, Edinburgh EH9 3JG, United Kingdom
| | - Avelino Núñez Delgado
- Department of Soil Science and Agricultura Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002 Lugo, Spain
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia University, 401 Evansdale Drive, Morgantown, WV 26506, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Zeel Patel
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009,Gujarat, India
| |
Collapse
|
12
|
Arabi Z, Rinklebe J, El-Naggar A, Hou D, Sarmah AK, Moreno-Jiménez E. (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117199. [PMID: 33992901 DOI: 10.1016/j.envpol.2021.117199] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Biochar is a promising immobilizing agent of trace elements (TEs) in contaminated soils. However, several contradictory results have been reported regarding the potential of biochar to immobilize arsenic (As), chromium (Cr), and nickel (Ni) in contaminated soils. We conducted a meta-analysis on the published papers since 2006 until 2019 to examine the effects of biochar on the chemical (im)mobilization of As, Cr, and Ni in contaminated soils and to elucidate the major factors that control their interactions with biochar in soil. We synthesized 48 individual papers comprised of a total of 9351 pairwise comparisons and used the statistical tool of Cohen's d as an appropriate effect size for the comparison between means. We found that the application of biochar often increased the As mobilization in soils. Important variables that modulated the biochar effects on As mobilization in soil were pyrolysis temperature and time (ranging between 8 and 16 times when T > 450 °C and t > 1hr), organic matter (7-16 times when SOM<3%) and further site conditions. In contrast to As, biochar efficiently immobilized Cr and Ni in contaminated soils. The extent of the Cr and Ni immobilization was determined by the feedstock (Cr: 7-18 times for agricultural residue-derived biochar; Ni: 13-32 times for woody biomass-derived biochar). Our meta-analysis provides a compilation on the potential of different types of biochar to reduce/increase the mobilization of As, Cr, and Ni in various soils and under different experimental conditions. This study provides important insights on factors that affect biochar's efficiency for the (im)mobilization of As, Cr, and Ni in contaminated soils. While biochar effectively immobilizes Cr and Ni, a proper management of As-polluted soils with pristine biochar is still challenging. This limitation might be overcome by modification of biochar surfaces to exhibit higher surface area and functionality and active sites for surface complexation with TEs.
Collapse
Affiliation(s)
- Zahra Arabi
- Department of Agriculture and Natural Resources, Islamic Azad University, Gorgan Branch, 4914739975-717, Gorgan, Iran.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
13
|
Zong Y, Xiao Q, Malik Z, Su Y, Wang Y, Lu S. Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system. CHEMOSPHERE 2021; 280:130830. [PMID: 34162097 DOI: 10.1016/j.chemosphere.2021.130830] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Biochar has the potential to control the bioavailability and transformation of heavy metals in soil, thereby ensuring the safe crop production. A three seasons field experiment was conducted to investigate the effect of crop straw-derived biochar on the bioavailability and crop accumulation of Cd and Cu in contaminated soil. Wheat straw biochar (WSB), corn stalk biochar (CSB), and rice husk biochar (RHB) were applied at the rate of 0, 1.125, and 2.25 × 104 kg ha-1, respectively. The results showed that all types of biochar significantly increased soil pH, organic carbon and cation exchangeable capacity (CEC), compared to the control. The reduction in DTPA extractable Cd and Cu contents was much greater under high dosage biochar application, with a prominence at RHB treatment throughout the three cropping seasons, compared to the control. Moreover, the biological accumulation of Cd and Cu in the grains of rapeseed and corn significantly decreased after biochar application. Linear regression also confirmed the effective role of biochar in controlling the translocation and accumulation of Cd and Cu due to their inactive bioavailability. In addition, the sequential extraction indicated that exchangeable fraction (EXF) of Cu and Cd had decreased, while residual fraction (RSF) had increased under all biochar amendments. Contrarily, the oxidizable fraction (OXF) of Cd decreased while OXF of Cu increased under biochar treatments. Biochar application, especially RHB, could be an effective measure to enhance Cd and Cu adsorption and immobilization in polluted soils and thereby reducing its uptake and translocation to crops.
Collapse
Affiliation(s)
- Yutong Zong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Xiao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zaffar Malik
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Yuan Su
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yefeng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenggao Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Orellana Mendoza E, Cuadrado W, Yallico L, Zárate R, Quispe-Melgar HR, Limaymanta CH, Sarapura V, Bao-Cóndor D. Heavy metals in soils and edible tissues of Lepidium meyenii (maca) and health risk assessment in areas influenced by mining activity in the Central region of Peru. Toxicol Rep 2021; 8:1461-1470. [PMID: 34401355 PMCID: PMC8353470 DOI: 10.1016/j.toxrep.2021.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Heavy metal contamination of soil and agricultural products is an environmental problem, has an adverse effect on the quality of food crops, and is a danger to food security and public health. The concentration of arsenic (As), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) in surface soils and edible hypocotyls tissues of two ecotypes of Lepidium meyenii Walpers (maca) was evaluated in three districts of the Junín province, Peru. In addition, the risk to human health due to exposure to heavy metals from maca consumption was evaluated. Soil samples and maca hypocotyls were collected in areas influenced by mining and metallurgical activity. The mean concentration of Cd (0.32 ± 0.23 mg/kg) and Pb (0.20 ± 0.12 mg/kg) in maca samples exceeded the values established by the Food and Agriculture Organization and the World Health Organization. The bioconcentration factor was less than 1. The estimated daily intake of each metal was below the oral reference dose. The hazard quotient and hazard index were less than 1, it is unlikely to cause non-cancer adverse health outcome. The cancer risk for As and Cd was higher than the tolerable limit (1 × 10-6) in children and adults. In the district of Ondores, the cancer risk for As in children was higher than the acceptable limit (1 × 10-4). Residents of the Ondores district would be more exposed to As and Cd from consumption of maca hypocotyls. It is very important to carry out continuous monitoring of other toxic metals in different ecotypes of maca (red, black, yellow, purple, creamy white, pink) in order to evaluate the variation in the accumulation of heavy metals and the level of toxicity of each metal between ecotypes.
Collapse
Affiliation(s)
- Edith Orellana Mendoza
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Walter Cuadrado
- Faculty of Applied Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Luz Yallico
- Faculty of Nursing, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Rosa Zárate
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | | | - Cesar H. Limaymanta
- Department of Library and Information Science, Universidad Nacional Mayor de San Marcos, Av. Universitaria with Av. Venezuela, Lima, Lima District 15081, Peru
- Department of Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Vicky Sarapura
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| | - Diana Bao-Cóndor
- Faculty of Forestry and Environmental Sciences, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909–4089, Huancayo, Huancayo 12006, Peru
| |
Collapse
|
15
|
Sun L, Shen X, Yang J, Dai M, Ali I, Peng C, Naz I. Appraisal of a novel extraction technique for estimation of cadmium content in pea seedlings based on human health risk assessment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:293-300. [PMID: 34154481 DOI: 10.1080/15226514.2021.1935445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Pea sprouts were cultured in cadmium (Cd) concentrations of 0, 1.0, 3.0, and 5.0 mg L-1, respectively. The Cd in pea sprouts was continuously extracted with 100 °C distilled water, 60% ethanol, 6% acetic acid, and simulated gastric juice. It was observed that highest amount of Cd (48.65-58.87%) was found in the extraction of roots with 6% acetic acid, followed by 100 °C distilled water (28.68-37.61%). While in stems, most of the Cd (70.73-85.39%) was extracted by 6% acetic acid. The recovery rate of the sequential chemical extraction technique employed in this experiment was between 93 and 106%. Compared with traditional methods, this study has its development potential in two aspects. First, it can determine which steps of sequential extractions of heavy metals in plants are the most harmful to humans. Secondly, corresponding measures can be taken to reduce heavy metals in vegetables used daily, such as soaking edible vegetables in vinegar for a short time. Novelty statement: In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Compared with the commonly used extraction methods, the novel method is more reasonable and has greater development potential.
Collapse
Affiliation(s)
- Lin Sun
- The Key Laboratory of Marine Environmental Science and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xing Shen
- The Key Laboratory of Marine Environmental Science and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jiawei Yang
- The Key Laboratory of Marine Environmental Science and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao, China
| | - Min Dai
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, China
| | - Imran Ali
- The Key Laboratory of Marine Environmental Science and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Changsheng Peng
- The Key Laboratory of Marine Environmental Science and Ecology, College of Environmental Science and Engineering, Ministry of Education, Ocean University of China, Qingdao, China
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, Kingdom of Saudi Arabia (KSA)
| |
Collapse
|
16
|
Mehdizadeh L, Farsaraei S, Moghaddam M. Biochar application modified growth and physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124954. [PMID: 33422756 DOI: 10.1016/j.jhazmat.2020.124954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 05/08/2023]
Abstract
Biochar (BC) is prepared from waste organic material that can improve soil health in the contaminated area. Soil pollution with cadmium (Cd) is one of the worldwide problems. The present study aimed to evaluate the BC influence on some morphophysiological and biochemical characteristics, also Cd concentration of Ocimum ciliatum L. leaves under Cd stress as well as human risk assessment. Therefore, a pot factorial arrangement based on a completely randomized design was done which included three levels of BC (non-BC, 1%, and 2% of the pot soil) and three Cd levels (0, 20, and 40 mg/kg soil) with three replications. The results of the present study indicated that BC application improved morphological traits, photosynthetic pigments, relative water content (RWC), and catalase (CAT) activity of O. ciliatum under Cd stress and reduced total soluble sugars, total phenol, antioxidant activity, proline content, electrolyte leakage (EL), soluble protein content, ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) activities, and Cd concentration as well as target hazard quotient (THQ). In conclusion, based on the findings of this study, BC could be applied as an environmental friendly amendment in Cd-polluted soil to ameliorate the negative influences of Cd stress on O. ciliatum and reduces Cd levels and THQ in the plants due to the absorption properties of BC. This means that BC usage in contaminated soil helps to reduce pollutions and decreases the human risk assessment.
Collapse
Affiliation(s)
- Leila Mehdizadeh
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Sara Farsaraei
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohammad Moghaddam
- Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran.
| |
Collapse
|
17
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
18
|
Hu Q, Jung J, Chen D, Leong K, Song S, Li F, Mohan BC, Yao Z, Prabhakar AK, Lin XH, Lim EY, Zhang L, Souradeep G, Ok YS, Kua HW, Li SFY, Tan HTW, Dai Y, Tong YW, Peng Y, Joseph S, Wang CH. Biochar industry to circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143820. [PMID: 33248779 DOI: 10.1016/j.scitotenv.2020.143820] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Biochar, produced as a by-product of pyrolysis/gasification of waste biomass, shows great potential to reduce the environment impact, address the climate change issue, and establish a circular economy model. Despite the promising outlook, the research on the benefits of biochar remains highly debated. This has been attributed to the heterogeneity of biochar itself, with its inherent physical, chemical and biological properties highly influenced by production variables such as feedstock types and treating conditions. Hence, to enable meaningful comparison of results, establishment of an agreed international standard to govern the production of biochar for specific uses is necessary. In this study, we analyzed four key uses of biochar: 1) in agriculture and horticulture, 2) as construction material, 3) as activated carbon, and 4) in anaerobic digestion. Then the guidelines for the properties of biochar, especially for the concentrations of toxic heavy metals, for its environmental friendly application were proposed in the context of Singapore. The international status of the biochar industry code of practice, feedback from Singapore local industry and government agencies, as well as future perspectives for the biochar industry were explained.
Collapse
Affiliation(s)
- Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Janelle Jung
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, Singapore 018953, Singapore
| | - Dexiang Chen
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, Singapore 018953, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, Singapore 048545, Singapore
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Babu Cadiam Mohan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhiyi Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Arun Kumar Prabhakar
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Xuan Hao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Gupta Souradeep
- School of Civil and Environmental Engineering, The University of New South Wales, Kingsford, NSW 2032, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center & APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Harn Wei Kua
- Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Yanjun Dai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yinghong Peng
- Department of Mechanical Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Stephen Joseph
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
19
|
Li S, Sun X, Li S, Liu Y, Ma Q, Zhou W. Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. RSC Adv 2021; 11:4395-4405. [PMID: 35424422 PMCID: PMC8694506 DOI: 10.1039/d0ra09358k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
This study aims to assess the effect of green waste compost (GWC), biochar (BC) and humic acid (HA) amendments of an alkaline heavy metal-contaminated soil. In this study, amendments with GWC, GWC + BC and GWC + HA were applied to the heavy metal-contaminated soil in four application rates (0, 1, 2 and 5%), and was aimed at substantially mitigating the bioavailability of heavy metals for pakchoi cabbage from the sewage irrigation soils. The addition of different ratios of amendments can increase the pH of the soil by 0.11-0.30 units and also increase the organic matter content by 3.1-35.1%. The concentration of available arsenic (As), cadmium (Cd), zinc (Zn) and copper (Cu) in the CaCl2 extract was decreased effectively by all the amendments, except for the increase in the available concentration of As by compost-humic acid (T8) in the soil. Compared with the control, the CaCl2 extractable Cd was decreased by 33-48% after the addition of different ratios of amendments in the soil. Moreover, by increasing the content of compost and compost-biochar in combinations, easily exchangeable fractions of As, Cd, Zn and Cu were decreased, while the oxidation fraction and residual fractions were increased. When the soil amendments were applied, fresh weight of the root and shoot increased by 29-63% and 39-85%, respectively. Cd concentration in the roots and shoots of the pakchoi cabbage decreased by 21-44% and 26-53%, respectively, after adding different ratios of amendments. All the amendments were effective in reducing the Cd, Zn and Cu uptake by the roots and shoots of the pakchoi cabbage, and simultaneously reduce the absorption of As in the roots of pakchoi cabbage. As soil amendments, GWC alone or GWC + BC/GWC + HA application can significantly reduce the heavy metal levels in pakchoi cabbage while increasing the biomass production and higher application rate is more effective than the lower application rate.
Collapse
Affiliation(s)
- Song Li
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Suyan Li
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Yuanxin Liu
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Qixue Ma
- College of Forestry, Beijing Forestry University Beijing 100083 China
| | - Wenjie Zhou
- College of Forestry, Beijing Forestry University Beijing 100083 China
| |
Collapse
|
20
|
Cheng C, Luo W, Wang Q, He L, Sheng X. Combined biochar and metal-immobilizing bacteria reduces edible tissue metal uptake in vegetables by increasing amorphous Fe oxides and abundance of Fe- and Mn-oxidising Leptothrix species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111189. [PMID: 32858328 DOI: 10.1016/j.ecoenv.2020.111189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, a highly effective combined biochar and metal-immobilizing bacteria (Bacillus megaterium H3 and Serratia liquefaciens CL-1) (BHC) was characterized for its effects on solution Pb and Cd immobilization and edible tissue biomass and Pb and Cd accumulation in Chinese cabbages and radishes and the mechanisms involved in metal-polluted soils. In the metal-containing solution treated with BHC, the Pb and Cd concentrations decreased, while the pH and cell numbers of strains H3 and CL-1 increased over time. BHC significantly increased the edible tissue dry weight by 17-34% and reduced the edible tissue Pb (0.32-0.46 mg kg-1) and Cd (0.16 mg kg-1) contents of the vegetables by 24-45%. In the vegetable rhizosphere soils, BHC significantly decreased the acid-soluble Pb (1.81-2.21 mg kg-1) and Cd (0.40-0.48 mg kg-1) contents by 26-47% and increased the reducible Pb (18.2-18.8 mg kg-1) and Cd (0.38-0.39 mg kg-1) contents by 10-111%; while BHC also significantly increased the pH, urease activity by 115-169%, amorphous Fe oxides content by 12-19%, and relative abundance of gene copy numbers of Fe- and Mn-oxidising Leptothrix species by 28-73% compared with the controls. These results suggested that BHC decreased edible tissue metal uptake of the vegetables by increasing pH, urease activity, amorphous Fe oxides, and Leptothrix species abundance in polluted soil. These results may provide an effective and eco-friendly way for metal remediation and reducing metal uptake in vegetables by using combined biochar and metal-immobilizing bacteria in polluted soils.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Weiwei Luo
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qingxiang Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Linyan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiafang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
21
|
Khan AZ, Khan S, Ayaz T, Brusseau ML, Khan MA, Nawab J, Muhammad S. Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114446. [PMID: 32283452 PMCID: PMC7654435 DOI: 10.1016/j.envpol.2020.114446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 05/22/2023]
Abstract
As a result of metal mining activities in Pakistan, toxic heavy metals (HMs) such as chromium (Cr) and lead (Pb) often enter the soil ecosystem, accumulate in food crops and cause serious human health and environmental issues. Therefore, this study examined the efficacy of biochar for contaminated soil remediation. Poplar wood biochar (PWB) and sugarcane bagasse biochar (SCBB) were amended to mine-contaminated agricultural soil at 3% and 7% (wt/wt) application rates. Lactuca sativa (Lettuce) was cultivated in these soils in a greenhouse, and uptake of HMs (Cr and Pb) as well as biomass produced were measured. Subsequently, health risks were estimated from uptake data. When amended at 7%, both biochars significantly (P<0.01) reduced plant uptake of Cr and Pb in amended soil with significant (P<0.01) increase in biomass of lettuce as compared to the control. Risk assessment results showed that both biochars decreased the daily intake of metals (DIM) and associated health risk due to consumption of lettuce as compared to the control. The Pb human health risk index (HRI) for adults and children significantly (P<0.01) decreased with sugarcane bagasse biochar applied at 7% rate relative to other treatments (including the control). Relative to controls, the SCBB and PWB reduced Cr and Pb uptake in lettuce by 69%, 73.7%, respectively, and Pb by 57% and 47.4%, respectively. For both amendments, HRI values for Cr were within safe limits for adults and children. HRI values for Pb were not within safe limits except for the sugarcane bagasse biochar applied at 7%. Results of the study indicated that application of SCBB at 7% rate to mine impacted agricultural soil effectively increased plant biomass and reduced bioaccumulation, DIM and associated HRI of Cr and Pb as compared to other treatments and the control.
Collapse
Affiliation(s)
- Amir Zeb Khan
- Department of Environmental Sciences, University of Peshawar, 25120, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, 25120, Pakistan.
| | - Tehreem Ayaz
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Mark L Brusseau
- Soil, Water and Environmental Science Department, University of Arizona, Tucson, AZ85721, USA
| | - Muhammad Amjad Khan
- Department of Environmental Sciences, University of Peshawar, 25120, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| | - Said Muhammad
- Environmental Geosciences, National Centre of Excellence in Geology, University of Peshawar, 25130, Pakistan
| |
Collapse
|
22
|
Chen J, Xia X, Chu S, Wang H, Zhang Z, Xi N, Gan J. Cation-π Interactions with Coexisting Heavy Metals Enhanced the Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons in Spinach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7261-7270. [PMID: 32434324 DOI: 10.1021/acs.est.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few studies have considered the effect of co-occurring heavy metals on plant accumulation of hydrophobic organic compounds (HOCs), and less is known about the role of intermolecular interactions. This study investigated the molecular mechanisms of Cu/Zn effects on hydroponic uptake of four deuterated polycyclic aromatic hydrocarbons (PAHs-d10) by spinach (Spinacia oleracea L.). Both solubility enhancement experiment and quantum mechanical calculations demonstrated the existence of [PAH-Cu(H2O)0-4]2+ and [2·PAH-Cu(H2O)0-2]2+ via cation-π interactions when Cu2+ concentration was ≤100 μmol/L. Notably, PAH-d10 concentrations in both roots and shoots increased significantly with Cu2+ concentration. This was because the formation of phytoavailable PAH-Cu2+ complexes decreased PAH-d10 hydrophobicity and consequently decreased their sorption onto dissolved organic carbon (DOC, i.e., root exudates), thereby increasing phytoavailable concentrations and uptake of PAHs-d10. X-ray absorption near-edge structure analysis showed that PAH-Cu2+ complexes could enter defective spinach roots via apoplastic pathway. However, Zn2+ and PAHs-d10 cannot form the cation-π interactions because of the high desolvation penalty of Zn2+. Actually, Zn2+ decreased the spinach uptake of PAHs-d10 due to the increase of DOC induced by Zn. This work provides molecular insights into how metals could selectively affect the plant uptake of HOCs and highlights the importance of considering the HOC phytoavailability with coexisting metals.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenrui Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nannan Xi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|