1
|
Zhang Y, Li Y, Wang N, Ma X, Sun J, Wang X, Wang J. Joint action of six-component mixtures based on concentration response curves morphological parameter in acute and long-term toxicity assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104595. [PMID: 39613123 DOI: 10.1016/j.etap.2024.104595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Previous studies found that the multi-component mixtures with hormesis concentration-response curves (CRCs) were divided into three types according to the combined toxicity analysis of the segment-based method and σ2(k∙ECx) (the variance of k∙ECx). In this study, the acute and long-term toxicity of six pollutants and 12 six-component mixtures were assessed using microplate toxicity analyses (MTA). The functional relationship between σ2(k·ECx) and effect ratio (ERx) was determined by means of the independent action (IA) and the ER model to systematically investigate the correlation between mixture types in acute and long-term toxicity. The results indicated that across the entire concentration range, the mixture type of acute toxicity was consistent with short time exposure (0.25 h) measured in the long-term toxicity experiment. In the inhibition effect range, the types of mixtures of acute toxicity remained consistent with the chronic toxicity (exposure for 24 h) in 11 of the 12 mixtures. This study clarified the changes in the joint action of multi-component mixtures on Aliivibrio fischeri in terms of acute and long-term toxicity. The chronic toxicity of the mixtures can be predicted from the acute toxicity results, which provides a theoretical basis for the biological toxicity evaluation of multi-component mixtures.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Yajiao Li
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Na Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China.
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse; Key Laboratory of Environmental Engineering, Shaanxi Province; Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
2
|
Dos Santos CR, Rosa E Silva GO, Valias CDF, Santos LVDS, Amaral MCS. Ecotoxicological study of seven pharmaceutically active compounds: Mixture effects and environmental risk assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107068. [PMID: 39217790 DOI: 10.1016/j.aquatox.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC50 of 0.32 mg L-1, 6.15 mg L-1 and 36.8 mg L-1, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Guilherme Otávio Rosa E Silva
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila de Figueiredo Valias
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar,500 - Coração Eucarístico, 30.535-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Narciso A, Barra Caracciolo A, Grenni P, Rauseo J, Patrolecco L, Spataro F, Mariani L. Application of the Aliivibrio fischeri bacterium bioassay for assessing single and mixture effects of antibiotics and copper. FEMS Microbiol Ecol 2023; 99:fiad125. [PMID: 37822015 DOI: 10.1093/femsec/fiad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
The Aliivibrio fischeri bioassay was successfully applied in order to evaluate the acute effect of sulfamethoxazole (SMX), ciprofloxacin (CIP), chlortetracycline (CTC) and copper (Cu), alone or in binary, ternary, and overall mixture. The toxicity results are reported in terms of both effective concentrations, which inhibited 50% of the bacterium bioluminescence (EC50%), and in Toxic Units (TUs). The TUs were compared with predicted values obtained using the Concentration Addition model (CA). Finally, the toxicity of water extracts from a soil contaminated by the three antibiotics (7 mg Kg-1 each) in the presence/absence of copper (30 mg Kg-1) was also evaluated. Copper was the most toxic chemical (EC50: 0.78 mg L-1), followed by CTC (EC50: 3.64 mg L-1), CIP (96 mg L-1) and SMX (196 mg L-1). Comparing the TU and CA values of the mixtures, additive effects were generally found. However, a synergic action was recorded in the case of the CIP+Cu co-presence and antagonistic effects in the case of CTC+Cu and the ternary mixture (containing each antibiotic at 0.7 mg L-1), were identified. Soil water extracts did not show any toxicity, demonstrating the buffering ability of the soil to immobilize these chemicals.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
| | - Paola Grenni
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
| | - Francesca Spataro
- Institute of Polar Sciences - National Research Council (ISP-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
| | - Livia Mariani
- Water Research Institute, National Research Council (IRSA-CNR), SP 35d, km 0.7 Montelibretti 00010 (Rome), Italy
| |
Collapse
|
4
|
Wang N, Sun J, Ma X, Yang X, Wang X, Zhang Y, Zhou J, Wang J, Ge C. A study of long-term toxicity of multiple mixtures with hormetic effects by the characteristic parameter σ 2(k∙ECx) and stepwise method. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104133. [PMID: 37116630 DOI: 10.1016/j.etap.2023.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
A previous study found that the characteristic parameter σ2(k∙ECx) (the concentration ECx and slope k of the concentrationresponse curve (CRC) at the effect x %) can predict the acute combined toxicity of multiple mixtures with S-shaped CRCs. In this paper, the competence of σ2(k∙ECx) to predict the long-term toxicity of multiple mixtures with J-shaped CRCs was explored using the Aliivibrio fischeri as the test organism. The combined toxicity was evaluated by the independent action (IA) model and the effect ratio (ERx) model. The stepwise method was used to divide J-shaped CRC into ML and MR (SL and SR). The results showed that the σ2(k∙ECx) and ERx of each segment was in good agreement with the exponential function. A new type of mixture was added to the original type A and type B, whose rules of interaction were opposite to those of type B (named opposite B, OB). This paper improves the understanding and analysis of the J-shaped CRCs in environmental risk assessment.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinyue Yang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
5
|
Drzymała J, Kalka J, Sochacki A, Felis E. Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11859. [PMID: 36231168 PMCID: PMC9565086 DOI: 10.3390/ijerph191911859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Constructed wetlands (CWs) are a promising alternative for conventional methods of wastewater treatment. However, the biggest challenge in wastewater treatment is the improvement of the technology used so that it is possible to remove micropollutants without additional costs. The impact of wastewater treatment in CWs on toxicity towards Aliivibrio fischeri, Daphnia magna and Lemna minor was investigated. The effects of feeding regime (wastewater fed in five batches per week at a batch volume of 1 L, or twice per week at a batch volume of 2.5 L) and the presence of pharmaceuticals (diclofenac and sulfamethoxazole), as well as the presence of Miscantus giganteus plants in CW columns (twelve of the 24 columns that were planted) were analyzed. A reduction in toxicity was observed in all experimental setups. The effluents from constructed wetlands were classified as moderately toxic (average TU for A. fischeri, D. magna and L. minor was 0.9, 2.5 and 5.5, respectively). The feeding regime of 5 days of feeding/2 days of resting resulted in a positive impact on the ecotoxicological and chemical parameters of wastewater (removal of TOC, N-NH4 and pharmaceuticals). Extended exposure of Miscantus giganteus to the wastewater containing pharmaceuticals resulted in elevated activity of antioxidant enzymes (catalase and superoxide dismutase) in leaf material.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
| | - Adam Sochacki
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Bordin ER, Munhoz RC, Panicio PP, de Freitas AM, Ramsdorf WA. Effects of environmentally relevant concentrations of atrazine and glyphosate herbicides, isolated and in mixture, on two generation of the freshwater microcrustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:884-896. [PMID: 35585359 DOI: 10.1007/s10646-022-02554-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The herbicides atrazine and glyphosate are used worldwide and their excessive usage results in the frequent presence of these pesticides in environmental compartments. We evaluated the effects of environmentally relevant concentrations of analytical standards and commercial formulations of atrazine (2 µg L-1) and glyphosate (65 µg L-1), isolated and in mixture (2 + 65 µg L-1) on the microcrustacean Daphnia magna. Through chronic exposure (21 days) of two generations, we observed effects on survival, reproductive capacity and responses of the antioxidant defense system (catalase) and biotransformation system (glutathione S-transferase). The survival of organisms was affected in the second generation (F1) with a mortality of 17% in the mixture of commercial formulations treatments. In the evaluation of the first generation (F0) we observed only effects on sexual maturation of organisms, while in the F1, changes were observed in all parameters evaluated. A statistical difference (p < 0.05) was also observed between the analytical standards and the commercial formulations for all parameters evaluated, indicating that other components present in the formulations can change the toxicity of products. We suggest that atrazine can modulate toxicity when mixed with glyphosate, as the standard analytical atrazine and mixture of analytical standards results were similar in most parameters. Given the difficulty in estimating effects of mixtures and considering that various stressors are found in the environment, our results support the need to carry out long-term studies and, above all, to verify what are the impacts across generations, so that the toxicity of products is not underestimated. Graphical abstract.
Collapse
Affiliation(s)
- Eduarda Roberta Bordin
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Renan César Munhoz
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | | | | | | |
Collapse
|
7
|
The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Tang L, Zhou Y, Zhang Y, Sun H. The role of energy/substrate in microbial hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2021.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Lu S, Liu SS, Huang P, Wang ZJ, Wang Y. Study on the Combined Toxicities and Quantitative Characterization of Toxicity Sensitivities of Three Flavor Chemicals and Their Mixtures to Caenorhabditis elegans. ACS OMEGA 2021; 6:35745-35756. [PMID: 34984305 PMCID: PMC8717562 DOI: 10.1021/acsomega.1c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/03/2021] [Indexed: 05/09/2023]
Abstract
It was shown that flavor chemicals with high toxicity sensitivities mean that small changes in their effective concentrations can lead to significant changes in toxicity. Flavors are widely used in personal care products. However, our study demonstrated that some flavor chemicals and their mixture rays have high toxicity sensitivities to Caenorhabditis elegans (C. elegans), which may have an impact on human health. In this paper, three flavor chemicals (benzyl alcohol, phenethyl alcohol, and cinnamaldehyde) were used as components of the mixture, and three binary mixture systems were constructed, respectively. Five mixture rays were designed for each mixture system by a direct equipartition ray design method. The lethal toxicities of the three flavor chemicals and mixture rays to C. elegans at three exposure volumes were determined. A new concept (inverse of the negative logarithmic concentration span (iSPAN)) was introduced to quantitatively evaluate the toxicity sensitivity of chemicals or mixture rays, and the combination index (CI) was employed to identify the toxicological interactions in the mixtures. It was shown that the three flavor chemicals as well as the binary mixture rays have a significant concentration-response relationship on the lethality of C. elegans. The iSPAN values of the three flavor chemicals and their mixture rays were larger than 3.000, showing very strong toxicity sensitivity to C. elegans. In mixture systems, the toxicity sensitivities of mixture rays with different mixture ratios were also different at different exposure volumes. In addition, it can be seen from the CI heat map that the toxicological interaction not only shows the mixture ratio dependence but also changes with the different exposure volumes, which implies that the mixtures consisting of flavor chemicals with high toxicity sensitivity have complex toxicological interactions. Therefore, in environmental risk assessment, special attention should be paid to chemicals with high toxicity sensitivities.
Collapse
Affiliation(s)
- Sheng Lu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Shu-Shen Liu
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Peng Huang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ze-Jun Wang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yu Wang
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
10
|
França ÍWL, Oliveira DWF, Giro MEA, Melo VMM, Gonçalves LRB. Production of surfactin by
Bacillus subtilis
LAMI005
and evaluation of its potential as tensoactive and emulsifier. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Vânia Maria Maciel Melo
- Departamento de Biologia ‐ LemBiotech ‐ Laboratório de Ecologia Microbiana e Biotecnologia Universidade Federal do Ceará Fortaleza Brazil
| | | |
Collapse
|
11
|
Agathokleous E, Kitao M, Calabrese EJ. Hormesis: Highly Generalizable and Beyond Laboratory. TRENDS IN PLANT SCIENCE 2020; 25:1076-1086. [PMID: 32546350 DOI: 10.1016/j.tplants.2020.05.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
Hormesis is a biphasic dose-response relationship with contrasting effects of low versus high doses of stress. Hormesis is rapidly developing in plant science research and has wide implications for risk assessment, stress biology, and agriculture. Here, we explore selected areas of importance to the concept of hormesis and suggest that hormesis is a highly generalizable phenomenon. We address the questions of whether hormesis occurs in high-risk groups or in response to mixtures of stress-inducing agents, whether there is a single biological mechanism of hormesis, and what the temporal features of hormesis are.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Drzymała J, Kalka J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. CHEMOSPHERE 2020; 259:127407. [PMID: 32593821 DOI: 10.1016/j.chemosphere.2020.127407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to investigate the impact of two pharmaceuticals, diclofenac and sulfamethoxazole, and their binary mixture on aquatic organisms, marine bacteria Aliivibrio fischeri, crustacean Daphnia magna, and vascular plant Lemna minor. The binary mixture of the drugs showed the highest toxicity towards the model organisms. Diclofenac had an average toxicity which posed a high environmental risk to aquatic organisms, while sulfamethoxazole was characterized by a low toxicity with low environmental risk. The organism most sensitive to diclofenac was A. fischeri (IC50 = 8.72 ± 1.14 mg L-1) and for sulfamethoxazole and the binary mixture, it was L. minor (IC50 = 12.56 ± 4.48 and 4.83 ± 0.43 mg L-1, respectively). The toxicity of the mixture was predicted using the Concentration Addition and Independent Action models, and the results were compared with the experimental data. None of the models suitably predicted the real toxicity of the pharmaceutical mixture. Interactions between the mixture components were confirmed by calculating the mixture toxicity index values which showed that the pharmaceuticals displayed synergistic or partial additive effects which depended on the selected test organism and test duration. When added as a complex matrix to wastewater (at a concentration of 2 mg L-1 each), the pharmaceuticals did not display increased toxicity. This observation confirms that the presence of micro-contaminants in aquatic environments may cause interactions between different compounds, the results of which are difficult to predict and model.
Collapse
Affiliation(s)
- J Drzymała
- Silesian University of Technology, The Biotechnology Center, Gliwice, Poland.
| | - J Kalka
- Silesian University of Technology, Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Gliwice, Poland
| |
Collapse
|