1
|
Gontijo JB, Paula FS, Bieluczyk W, França AG, Navroski D, Mandro JA, Venturini AM, Asselta FO, Mendes LW, Moura JMS, Moreira MZ, Nüsslein K, Bohannan BJM, Bodelier PLE, Rodrigues JLM, Tsai SM. Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios. ENVIRONMENTAL MICROBIOME 2024; 19:48. [PMID: 39020395 PMCID: PMC11256501 DOI: 10.1186/s40793-024-00596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Fabiana S Paula
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Wanderlei Bieluczyk
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Aline G França
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Deisi Navroski
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Jéssica A Mandro
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Fernanda O Asselta
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Lucas W Mendes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - José M S Moura
- Instituto de Formação Interdisciplinar e Intercultural, Universidade Federal do Oeste do Pará, Santarém, PA, Brazil
| | - Marcelo Z Moreira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Paul L E Bodelier
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, GE, The Netherlands
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
2
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Bai Y, Wang Y, Shen L, Shang B, Ji Y, Ren B, Yang W, Yang Y, Ma Z, Feng Z. Equal importance of humic acids and nitrate in driving anaerobic oxidation of methane in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169311. [PMID: 38103608 DOI: 10.1016/j.scitotenv.2023.169311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Methane (CH4) is both generated and consumed in paddy soils, where anaerobic oxidation of methane (AOM) serves as a crucial process for mitigating CH4 emissions. Although the participation of humic acids (HA) and nitrate in AOM has been recognized, their relative roles and significance in paddy soils remain insufficiently investigated. In this study, we explored the potential activity of AOM driven by HA and nitrate, as well as the composition of archaeal communities in paddy soils across different rice growth periods and fertilization treatments. AOM activity ranged from 0.81 to 1.33 and 1.26 to 2.38 nmol of 13CO2 g-1 (dry soil) day-1 with HA and nitrate, respectively. No significant differences (p < 0.05) were observed between the AOM activity driven by HA and nitrate across the three fertilization treatments. According to AOM activity, the annual consumption of CH4 was estimated at approximately 0.49 ± 0.06 and 0.83 ± 0.19 Tg for AOM processes driven by HA and nitrate in Chinese paddy soils. Nitrate-driven AOM activity exhibited a positive (p < 0.05) correlation with the abundance of the ANME-2d mcrA gene but a negative (p < 0.05) correlation with the content of dissolved organic carbon. Intriguingly, HA-driven AOM activity was only correlated positively with the nitrate-driven AOM activity. Soil water content, soil organic carbon, nitrate and nitrite contents were significantly correlated with the relative abundance of methanogenic and methanotrophic archaea. These results identified the potential importance of HA and nitrate in driving AOM processes within paddy soils, providing a comprehensive understanding of the complex microbial processes regulating greenhouse gas emissions from paddy soils.
Collapse
Affiliation(s)
- Yanan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yanping Wang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Bo Shang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yang Ji
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bingjie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wangting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhiguo Ma
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
4
|
Chi W, Chen G, Hu S, Li X, Cheng K, Wang Q, Xia B, Yang Y, Ma Y, Liu T. A small extent of seawater intrusion significantly enhanced Cd uptake by rice in coastal paddy fields. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131945. [PMID: 37421859 DOI: 10.1016/j.jhazmat.2023.131945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Paddy fields located around estuaries suffer from seawater intrusion, and how and to what extent salinity levels influence Cd accumulation in rice grains is still unclear. Pot experiments were carried out by cultivating rice under alternating flooding and drainage conditions with different salinity levels (0.2‰, 0.6‰ and 1.8‰). The Cd availability was greatly enhanced at 1.8‰ salinity due to the competition for binding sites by cations and the formation of Cd complexation with anions, which also contributed to Cd uptake by rice roots. The soil Cd fractions were investigated and found that the Cd availability significantly decreased during flooding stage, while it rapidly increased after soil drainage. During drainage stage, Cd availability was greatly enhanced at 1.8‰ salinity mainly attributed to the formation of CdCln2-n. The kinetic model was established to quantitatively evaluate Cd transformation, and it found that the release of Cd from organic matter and Fe-Mn oxides was greatly enhanced at 1.8‰ salinity. The results of pot experiments showed that there was a significant increase in Cd content in rice roots and grains in the treatment of 1.8‰ salinity, because the increasing salinity induced an increase in Cd availability and upregulation of key genes regulating Cd uptake in rice roots. Our findings elucidated the key mechanisms by which high salinity enhanced Cd accumulation in rice grains, and more attention should be given to the food safety of rice cultivated around estuaries.
Collapse
Affiliation(s)
- Wenting Chi
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Xiaomin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Kuan Cheng
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Bingqing Xia
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| | - Yibing Ma
- Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
5
|
Duan X, Yin P, Tsona N, Cao K, Xie Y, He X, Chen B, Chen J, Gao F, Yang L, Lv S. Biogenic methane in coastal unconsolidated sediment systems: A review. ENVIRONMENTAL RESEARCH 2023; 227:115803. [PMID: 37003546 DOI: 10.1016/j.envres.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
Marine sediments are the world's largest known reservoir of methane. In many coastal regions, methane is trapped in sediments buried at depths ranging from centimeters to hundreds of meters below the seafloor, in the forms of gas pockets, dispersed gas bubbles and dissolved gas, also known as shallow gas (methane-dominated gas mixture). The existence of shallow gas affects the engineering geological environment and threatens the safety of artificial facilities. The escape of shallow gas from sediments into the atmosphere can even threaten ecosystem security and affect global climate change. However, until now, shallow gas has remained a mystery to the scientific community. For example, how it is generated, how it distributes and migrates in sediments, and what are the factors that influence these processes that are still unclear. In the context of increasingly intense offshore development and global warming, there is a huge gap between existing scientific understanding of shallow gas and the need to develop scientific solutions for related problems. Based on this, this paper systematically collects the information on all aspects of shallow gas mentioned above, comprehensively summarizes the current scientific understanding, and analyzes the existing shortcomings, which will provide systematic references for the research on environmental disaster prevention, engineering technology, climate change, and other fields.
Collapse
Affiliation(s)
- Xiaoyong Duan
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China.
| | - Ping Yin
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China.
| | - Narcisse Tsona
- Environment Research Institute, Shandong University. Qingdao, 266237, China
| | - Ke Cao
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Yongqing Xie
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China; Zhejiang Institute of Marine Geology Survey, Zhoushan, Zhejiang, 316021, China; Zhejiang Engineering Survey and Design Institute Group CO. LTD, Ningbo, Zhejiang, 315012, China
| | - Xingliang He
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Bin Chen
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Junbing Chen
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China; Zhejiang Institute of Hydrogeology and Engineering Geology, Ningbo, 315012, China
| | - Fei Gao
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| | - Lei Yang
- Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China; Zhejiang Institute of Marine Geology Survey, Zhoushan, Zhejiang, 316021, China; Zhejiang Engineering Survey and Design Institute Group CO. LTD, Ningbo, Zhejiang, 315012, China
| | - Shenghua Lv
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, 266237, China; Zhoushan Field Scientific Observation and Research Station for Marine Geo-hazards, China Geological Survey, Qingdao, 266237, China
| |
Collapse
|
6
|
Chen X, Xue D, Wang Y, Qiu Q, Wu L, Wang M, Liu J, Chen H. Variations in the archaeal community and associated methanogenesis in peat profiles of three typical peatland types in China. ENVIRONMENTAL MICROBIOME 2023; 18:48. [PMID: 37280702 DOI: 10.1186/s40793-023-00503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Peatlands contain about 500 Pg of carbon worldwide and play a dual role as both a carbon sink and an important methane (CH4) source, thereby potentially influencing climate change. However, systematic studies on peat properties, microorganisms, methanogenesis, and their interrelations in peatlands remain limited, especially in China. Therefore, the present study aims to investigate the physicochemical properties, archaeal community, and predominant methanogenesis pathways in three typical peatlands in China, namely Hani (H), Taishanmiao (T), and Ruokeba (R) peatlands, and quantitively determine their CH4 production potentials. RESULTS These peatlands exhibited high water content (WC) and total carbon content (TC), as well as low pH values. In addition, R exhibited a lower dissolved organic carbon concentration (DOC), as well as higher total iron content (TFe) and pH values compared to those observed in T. There were also clear differences in the archaeal community between the three peatlands, especially in the deep peat layers. The average relative abundance of the total methanogens ranged from 10 to 12%, of which Methanosarcinales and Methanomicrobiales were the most abundant in peat samples (8%). In contrast, Methanobacteriales were mainly distributed in the upper peat layer (0-40 cm). Besides methanogens, Marine Benthic Group D/Deep-Sea Hydrothermal Vent Euryarchaeotic Group 1 (MBG-D/DHVEG-1), Nitrosotaleales, and several other orders of Bathyarchaeota also exhibited high relative abundances, especially in T. This finding might be due to the unique geological conditions, suggesting high archaeal diversity in peatlands. In addition, the highest and lowest CH4 production potentials were 2.38 and 0.22 μg g-1 d-1 in H and R, respectively. The distributions of the dominant methanogens were consistent with the respective methanogenesis pathways in the three peatlands. The pH, DOC, and WC were strongly correlated with CH4 production potentials. However, no relationship was found between CH4 production potential and methanogens, suggesting that CH4 production in peatlands may not be controlled by the relative abundance of methanogens. CONCLUSIONS The results of the present study provide further insights into CH4 production in peatlands in China, highlighting the importance of the archaeal community and peat physicochemical properties for studies on methanogenesis in distinct types of peatlands.
Collapse
Affiliation(s)
- Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Wu
- School of Forestry and Horticulture, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Meng Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, 130024, China
| | - Jiawen Liu
- SQE Department, COFCO Coca-Cola Beverages (Sichuan) Company Limited, Chengdu, 610500, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| |
Collapse
|
7
|
Insights into the Genomic Potential of a Methylocystis sp. from Amazonian Floodplain Sediments. Microorganisms 2022; 10:microorganisms10091747. [PMID: 36144349 PMCID: PMC9506196 DOI: 10.3390/microorganisms10091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Although floodplains are recognized as important sources of methane (CH4) in the Amazon basin, little is known about the role of methanotrophs in mitigating CH4 emissions in these ecosystems. Our previous data reported the genus Methylocystis as one of the most abundant methanotrophs in these floodplain sediments. However, information on the functional potential and life strategies of these organisms living under seasonal flooding is still missing. Here, we described the first metagenome-assembled genome (MAG) of a Methylocystis sp. recovered from Amazonian floodplains sediments, and we explored its functional potential and ecological traits through phylogenomic, functional annotation, and pan-genomic approaches. Both phylogenomics and pan-genomics identified the closest placement of the bin.170_fp as Methylocystis parvus. As expected for Type II methanotrophs, the Core cluster from the pan-genome comprised genes for CH4 oxidation and formaldehyde assimilation through the serine pathway. Furthermore, the complete set of genes related to nitrogen fixation is also present in the Core. Interestingly, the MAG singleton cluster revealed the presence of unique genes related to nitrogen metabolism and cell motility. The study sheds light on the genomic characteristics of a dominant, but as yet unexplored methanotroph from the Amazonian floodplains. By exploring the genomic potential related to resource utilization and motility capability, we expanded our knowledge on the niche breadth of these dominant methanotrophs in the Amazonian floodplains.
Collapse
|
8
|
Metagenomes from Eastern Brazilian Amazonian Floodplains in the Wet and Dry Seasons. Microbiol Resour Announc 2022; 11:e0043222. [PMID: 35852316 PMCID: PMC9387299 DOI: 10.1128/mra.00432-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we report the metagenomes from two Amazonian floodplain sediments in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle. Microbial information on this diversified and dynamic landscape will provide further insights into its significance in regional and global biogeochemical cycles.
Collapse
|
9
|
Monteiro GGTN, Barros DJ, Gabriel GVM, Venturini AM, Veloso TGR, Vazquez GH, Oliveira LC, Neu V, Bodelier PLE, Mansano CFM, Tsai SM, Navarrete AA. Molecular evidence for stimulation of methane oxidation in Amazonian floodplains by ammonia-oxidizing communities. Front Microbiol 2022; 13:913453. [PMID: 35979497 PMCID: PMC9376453 DOI: 10.3389/fmicb.2022.913453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
Ammonia oxidation is the rate-limiting first step of nitrification and a key process in the nitrogen cycle that results in the formation of nitrite (NO2 -), which can be further oxidized to nitrate (NO3 -). In the Amazonian floodplains, soils are subjected to extended seasons of flooding during the rainy season, in which they can become anoxic and produce a significant amount of methane (CH4). Various microorganisms in this anoxic environment can couple the reduction of different ions, such as NO2 - and NO3 -, with the oxidation of CH4 for energy production and effectively link the carbon and nitrogen cycle. Here, we addressed the composition of ammonium (NH4 +) and NO3 --and NO2 --dependent CH4-oxidizing microbial communities in an Amazonian floodplain. In addition, we analyzed the influence of environmental and geochemical factors on these microbial communities. Soil samples were collected from different layers of forest and agroforest land-use systems during the flood and non-flood seasons in the floodplain of the Tocantins River, and next-generation sequencing of archaeal and bacterial 16S rRNA amplicons was performed, coupled with chemical characterization of the soils. We found that ammonia-oxidizing archaea (AOA) were more abundant than ammonia-oxidizing bacteria (AOB) during both flood and non-flood seasons. Nitrogen-dependent anaerobic methane oxidizers (N-DAMO) from both the archaeal and bacterial domains were also found in both seasons, with higher abundance in the flood season. The different seasons, land uses, and depths analyzed had a significant influence on the soil chemical factors and also affected the abundance and composition of AOA, AOB, and N-DAMO. During the flood season, there was a significant correlation between ammonia oxidizers and N-DAMO, indicating the possible role of these oxidizers in providing oxidized nitrogen species for methanotrophy under anaerobic conditions, which is essential for nitrogen removal in these soils.
Collapse
Affiliation(s)
| | - Dayane J. Barros
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Gabriele V. M. Gabriel
- Graduate Program in Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Andressa M. Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, United States
| | - Tomás G. R. Veloso
- Graduate Program in Agricultural Microbiology, Federal University of Viçosa, Viçosa, Brazil
| | - Gisele H. Vazquez
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| | - Luciana C. Oliveira
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Vania Neu
- Federal Rural University of Amazonia (UFRA), Belém, Brazil
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | - Siu M. Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Acacio A. Navarrete
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| |
Collapse
|
10
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Kumar S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02051-3. [PMID: 35657425 DOI: 10.1007/s00248-022-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Forest soils are a pressing subject of worldwide research owing to the several roles of forests such as carbon sinks. Currently, the living soil ecosystem has become dreadful as a consequence of several anthropogenic activities including climate change. Climate change continues to transform the living soil ecosystem as well as the soil microbiome of planet Earth. The majority of studies have aimed to decipher the role of forest soil bacteria and fungi to understand and predict the impact of climate change on soil microbiome community structure and their ecosystem in the environment. In forest soils, microorganisms live in diverse habitats with specific behavior, comprising bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are influenced by biotic interactions and nutrient accessibility. Soil microbiome also drives multiple crucial steps in the nutrient biogeochemical cycles (carbon, nitrogen, phosphorous, and sulfur cycles). Soil microbes help in the nitrogen cycle through nitrogen fixation during the nitrogen cycle and maintain the concentration of nitrogen in the atmosphere. Soil microorganisms in forest soils respond to various effects of climate change, for instance, global warming, elevated level of CO2, drought, anthropogenic nitrogen deposition, increased precipitation, and flood. As the major burning issue of the globe, researchers are facing the major challenges to study soil microbiome. This review sheds light on the current scenario of knowledge about the effect of climate change on living soil ecosystems in various climate-sensitive soil ecosystems and the consequences for vegetation-soil-climate feedbacks.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Adhishree Nagda
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Tushar Mehta
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, School of Biological Science, Central University of Punjab, Bhatinda, Punjab, 151401, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan - Block B, New Campus, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
11
|
Luo D, Meng X, Zheng N, Li Y, Yao H, Chapman SJ. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147773. [PMID: 34029806 DOI: 10.1016/j.scitotenv.2021.147773] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The anaerobic oxidation of methane (AOM) mediated by microorganisms is a key process in the reduction of methane emissions, and AOM-coupled electron acceptors have been shown to regulate methane emissions into the atmosphere in marine systems. Paddy fields are a significant source of methane and account for 20% of global methane emissions, but the effect of electron acceptors on the methane emission process in flooded paddy fields has been poorly characterized. This study aimed to determine whether the electron acceptors ferric iron and nitrate, and biochar, acting as an electron shuttle, can regulate the AOM process in paddy soil, with or without interaction between biochar and these two electron acceptors. We also aimed to characterize which microorganisms are actively involved. Here, we added 13C-labeled CH4 (13CH4) into anaerobic microcosms to evaluate the role of electron acceptors by measuring the methane oxidation rate and the enrichment of 13C-labeled CO2 (13CO2). We then combined DNA-stable isotope probing with amplicon sequencing to study the active microorganisms. We found for the first time that, in addition to nitrate, ferric iron can also effectively promote AOM in paddy soil. However, there was no significant effect of biochar. Ferric iron-dependent AOM was mainly carried out by iron-reducing bacteria (Geobacter, Ammoniphilus and Clostridium), and nitrate-dependent AOM was mainly by nitrate-reducing bacteria (Rhodanobacter, Paenibacillus and Planococcus). Our results demonstrate that the AOM process, regulated by the electron acceptors ferric iron and nitrate, can alleviate methane emission from paddy soil. The potentially active microorganisms related to electron acceptor reduction may be crucial for this methane sink and deserve further research.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiangtian Meng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ningguo Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China.
| | | |
Collapse
|
12
|
Gontijo JB, Paula FS, Venturini AM, Yoshiura CA, Borges CD, Moura JMS, Bohannan BJM, Nüsslein K, Rodrigues JLM, Tsai SM. Not just a methane source: Amazonian floodplain sediments harbour a high diversity of methanotrophs with different metabolic capabilities. Mol Ecol 2021; 30:2560-2572. [PMID: 33817881 DOI: 10.1111/mec.15912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH4 source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH4 emissions across floodplain areas. Here, we report the in situ composition of CH4 cycling microbial communities in Amazonian floodplain sediments. We considered how abiotic factors may affect the microbial community composition and, more specifically, CH4 cycling groups. We collected sediment samples during wet and dry seasons from three different types of floodplain forests, along with upland forest soil samples, from the Eastern Amazon, Brazil. We used high-resolution sequencing of archaeal and bacterial 16S rRNA genes combined with real-time PCR to quantify Archaea and Bacteria, as well as key functional genes indicative of the presence of methanogenic (mcrA) and methanotrophic (pmoA) microorganisms. Methanogens were found to be present in high abundance in floodplain sediments, and they seem to resist the dramatic environmental changes between flooded and nonflooded conditions. Methanotrophs known to use different pathways to oxidise CH4 were detected, including anaerobic archaeal and bacterial taxa, indicating that a wide metabolic diversity may be harboured in this highly variable environment. The floodplain environmental variability, which is affected by the river origin, drives not only the sediment chemistry but also the composition of the microbial communities. These environmental changes seem also to affect the pools of methanotrophs occupying distinct niches. Understanding these shifts in the methanotrophic communities could improve our comprehension of the CH4 emissions in the region.
Collapse
Affiliation(s)
- Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil.,Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Clovis D Borges
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José Mauro S Moura
- Center for Interdisciplinary Formation, Federal University of Western Pará, Santarém, Brazil
| | - Brendan J M Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
13
|
Complete Genome Sequence of Desulfobulbus oligotrophicus Prop6, an Anaerobic Deltabacterota Strain That Lacks Mercury Methylation Capability. Microbiol Resour Announc 2021; 10:10/5/e00002-21. [PMID: 33541869 PMCID: PMC7862947 DOI: 10.1128/mra.00002-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfobulbus oligotrophicus Prop6 is a sulfate-reducing, propionate-oxidizing Deltabacterota (formerly Deltaproteobacteria) strain from sewage sludge. Desulfobulbus species are found in anoxic environments, in animal microbiota, and some produce the neurotoxin methylmercury. The 3.1-Mbp D. oligotrophicus genome sequence enables studies of diverse environmental adaptations and the evolutionary genomics of mercury methylation mechanisms.
Collapse
|
14
|
de Mello Gabriel GV, Pitombo LM, Rosa LMT, Navarrete AA, Botero WG, do Carmo JB, de Oliveira LC. The environmental importance of iron speciation in soils: evaluation of classic methodologies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:63. [PMID: 33447916 DOI: 10.1007/s10661-021-08874-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Iron is an essential mineral and one of the most abundant in soils, presenting itself in the environment as ferrous and ferric ions. As each oxidation state of iron has a different role in the environment, its speciation in environmental studies is important. The determination of ferrous iron received great attention from soil chemists because of its important role in agriculture, in redox processes, and as an electron acceptor in the catalysis of organic matter. Methodologies with the use of colorimetric reagents to determine ferrous iron are divergent and not very clear. In this study, we compared two colorimetric reagents (1,10-phenanthroline and ferrozine) to determine the total concentration of iron, ferrous and ferric ions in soil, using simple and low-cost methodologies. The determination of ferrous and total iron with 1,10-phenanthroline colorimetric reagent, following published instructions, did not correlate with ferrozine method, presenting an erroneous quantification. After neutralizing the extract of 1,10-phenanthroline with NaOH, both colorimetric methods allowed to quantify with precision and high yield the amount of ferrous and total iron extracted from the soil. The oxidation states of iron have a different contribution and importance to the environment. In this sense, the improvement of a widely used methodology is crucial for the better study of iron speciation in soil.
Collapse
Affiliation(s)
- Gabriele Verônica de Mello Gabriel
- Graduate School of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
| | - Leonardo Machado Pitombo
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
| | - Luana Maria Tavares Rosa
- Graduate School of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
| | - Acacio Aparecido Navarrete
- Graduate School of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
| | - Wander Gustavo Botero
- Postgraduate Program in Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, Alagoas, 57309-005, Brazil
| | - Janaina Braga do Carmo
- Graduate School of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil
| | - Luciana Camargo de Oliveira
- Graduate School of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil.
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo, 18052-780, Brazil.
| |
Collapse
|