1
|
Gorny J, Lafont C, Sapey C, Happel S, Gourgiotis A, Février L, Galceran J. Simultaneous measurement of labile U(VI) concentration and ( 234U/ 238U) activity ratio using a Monophos®-based Diffusive Gradients in thin-films sampler. Anal Chim Acta 2024; 1330:343266. [PMID: 39489949 DOI: 10.1016/j.aca.2024.343266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND In a context of environmental monitoring around installations related to the nuclear fuel cycle, the Diffusive Gradient in Thin-films (DGT) technique captures the integrated concentration of U isotopes in their native environment, yielding comprehensive data on U origin (anthropogenic vs natural), total concentration, and mobility. However, for common deployment times (4-5 days) in moderately basic waters, none of the commercially available binding gels is adapted to measure the total U concentration. So, the development of novel DGT binding gels is timely. RESULTS A new DGT sampler, using the Monophos® resin, as well as a new model for the interpretation of the DGT flux, has been successfully developed to measure the labile U concentration (which was also its total concentration) in moderately basic waters (pH ≈ 8). The model accounts for the penetration of uranyl carbonate complexes into the binding gel. Monophos-DGT samplers were able to quantify the total U concentration (accuracy >90 %) in three different mineral basic waters and in a synthetic seawater in laboratory experiments, as well as in situ in the rivers Essonne and Œuf, France. Ion interferences (e.g., Ca2+, Mg2+ and HCO3-), critical when using Chelex and Metsorb resins as binding agents, were overcome by using the new DGT sampler, thus allowing for a longer linear accumulation of U in the tested matrices and, above all, a better detection of U minor isotopes improving the potential of using DGT samplers for water source tracing through isotopic measurements. SIGNIFICANCE The use of the new DGT sampler and the new model for the interpretation of DGT flux is recommended to improve the accuracy of total U concentration determinations in field applications. Moreover, simultaneous elemental and isotopic measurements were successfully performed during field application, confirming new perspectives for environmental applications such as identification of U pollution sources by using isotopic signatures.
Collapse
Affiliation(s)
- Josselin Gorny
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, F-92260, Fontenay-aux-Roses, France.
| | - Charlotte Lafont
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, F-92260, Fontenay-aux-Roses, France
| | - Clémentine Sapey
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, F-92260, Fontenay-aux-Roses, France
| | | | - Alkiviadis Gourgiotis
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, F-92260, Fontenay-aux-Roses, France
| | - Laureline Février
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, F-13115, Saint Paul-lez-Durance, France
| | - Josep Galceran
- Departament de Química, Física i Ciències Ambientals i del Sòl, Universitat de Lleida and AGROTECNIO-CERCA, Rovira Roure 191, 25198, Lleida, Spain
| |
Collapse
|
2
|
Reiller PE. Predominance of the alkaline earth(II) triscarbonatoactinyl(VI) complexes in different geochemical contexts: Review of existing data and estimation of potentially unidentified species. CHEMOSPHERE 2024; 350:141049. [PMID: 38182083 DOI: 10.1016/j.chemosphere.2023.141049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
From the available thermodynamic data in the literature, a review of the impact of the formation of complexes between triscarbonatoactinyl(VI) and alkaline earth(II) (Ae) is estimated under varying conditions. First, after analyzing the literature data and using the ascertained thermodynamic data available from the commissioned reviews from the Nuclear Energy Agency (Organization for the Economic Cooperation and Development) Thermochemical DataBank Project on actinides (An) U, Np, and Pu, and from recently determined AenUO2(CO3)3(4-2n)- thermodynamic functions, the formation of AenAnO2(CO3)3(4-2n)- complexes for Pu(VI) and Np(VI) are estimated using linear free energy relationships (LFERs). The data are in good agreement with the sole determination of AePuO2(CO3)32- from Jo et al. (Dalton Trans. 49, 11605), which gives a relative confidence in the LFERs, and allows the application to actual situations. From existing uranium data, first, the impact of the origin of the data on the calculated predominance is addressed under 0.1 M NaCl and atmospheric CO2(g); second, the influence of ionic strength and salinity on predominance is estimated; and finally, the influence of temperature up to 50 °C on the solubility of uraninite in a deep geological radioactive waste storage or disposal site is calculated. For neptunium and plutonium, the impact of the potential log10β°(AenAnO2(CO3)3(4-2n)-) on Pourbaix diagrams of Pu and Np in Mg-Ca-CO3 media are estimated from Jo et al. (Dalton Trans. 49, 11605) and LFERs. Finally, the application to the speciation of Pu and Np in seawater is proposed.
Collapse
Affiliation(s)
- Pascal E Reiller
- Université Paris-Saclay, CEA, Service de Physico-Chimie (SPC), F-91191, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
3
|
Zebracki M, Marlin C, Gaillard T, Gorny J, Diez O, Durand V, Lafont C, Jardin C, Monange V. Elevated uranium concentration and low activity ratio ( 234U/ 238U) in the Œuf river as the result of groundwater-surface water interaction (Essonne river valley, South of Paris Basin, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162537. [PMID: 36921867 DOI: 10.1016/j.scitotenv.2023.162537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Uranium (U) is a naturally occurring radioactive heavy metal widely distributed on Earth. Noticeable elevated U concentration and low activity ratio (AR) were occasionally detected in headwater stream of the Essonne river (Seine Basin, France), the namely Œuf river. This paper aims at providing new insight on geogenic U features in headwater streams and examines the role of river-groundwater interaction. The Œuf river was sampled four times in 2020 to investigate the influence of heterogeneous geology and hydrological seasonality. The dissolved fraction of water samples was analyzed for a variety of chemical parameters (anion, major, minor and trace element concentrations, isotopes 234U and 238U). The Œuf river was shown to exhibit elevated U concentration up to 19.3 μg L-1 (exceeding by 100-fold the value of 0.19 μg L-1 known for riverine average) and low AR down to 0.41 (almost the third of the value expected in surface water, i.e., 1.17). The Œuf river got enriched in U when receiving groundwater from Beauce Limestone Aquifer System. High U concentration (above 15 μg L-1) was found in association with low AR (below 0.5) in the stream water when flowing in the outcrop zone of one BLAS unit. Taking advantage of changes in the stream flow conditions and the geochemical contrast between surface and ground waters, mixing volumes were calculated. This study first examined the potential of using U isotopes in combination with selenium as hydrogeochemical tracers of the river-groundwater continuum. In HWS, the aquifer discharge was shown to supply 12 to 59 % of the river water. This study demonstrates the key role played by the river-groundwater interaction on river water chemistry in small streams draining catchment with various geology setting. It also supports the use of combining redox sensitive trace elements to track the river-groundwater continuum.
Collapse
Affiliation(s)
- Mathilde Zebracki
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 92260 Fontenay-aux-Roses, France.
| | | | - Thierry Gaillard
- Compagnie de Prospection Géophysique Française (CPGF)-HORIZON, 77210 Avon, France
| | - Josselin Gorny
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 92260 Fontenay-aux-Roses, France
| | - Olivier Diez
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 92260 Fontenay-aux-Roses, France
| | | | - Charlotte Lafont
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 92260 Fontenay-aux-Roses, France
| | - Cyrielle Jardin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 92260 Fontenay-aux-Roses, France
| | - Valérie Monange
- Compagnie de Prospection Géophysique Française (CPGF)-HORIZON, 77210 Avon, France
| |
Collapse
|
4
|
Shang C, Coreau N, Macé N, Descostes M, Reiller PE. Implications of recently derived thermodynamic data and specific ionic interaction theory parameters for (Mg/Ca) nUO 2(CO 3) 3(4-2n)- complexes on the predominance of the Mg 2+-Ca 2+-UO 22+-OH --CO 32- systems, and application to natural and legacy-mine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159927. [PMID: 36343816 DOI: 10.1016/j.scitotenv.2022.159927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The formation of alkaline earth(II)triscarbonatouranyl(VI) (AenUO2(CO3)3(4-2n)-) species that have been evidenced both in laboratory and in-field studies, is important from slightly acidic pH up to near degraded cementitious in carbonated waters. They are also showing distinctive luminescence properties with a hypsochromic shift relative to UO22+. The conditions of pH, activities of alkaline earth(II) free ions (mostly Mg2+ and Ca2+) and carbonate ions (HCO3-) can be predicted from the thermodynamic functions and constants. The predictive validity of the activity of major alkaline ions (mostly Na+) is determined from the models used to describe the ionic strength comportment of these species, particularly using coefficients from the specific ion interaction theory (SIT). The stability domains of these species are better defined as a function of the activity of the constituents, and applied to natural waters. In this work, using recently obtained complete thermodynamic data and SIT coefficients, we will draw the stability domains of the AenUO2(CO3)3(4-2n)- species in combinations of activities of H+, HCO3-, Mg2+, Ca2+, and Na+ for a wide selection of water compositions from the literature. Water samples were collected near a French mining legacy-site (Site du Bosc, Lodève, France). After determining the major ion compositions, we will verify that the luminescence signal of uranium is in agreement with the predicted speciation in the stability domains.
Collapse
Affiliation(s)
- Chengming Shang
- Université Paris-Saclay, CEA, Service d'Études Analytiques et de Réactivité des Surfaces (SEARS), F-91191 Gif-sur-Yvette CEDEX, France
| | - Nathalie Coreau
- Université Paris-Saclay, CEA, Service d'Études du Comportement des Radionucléïdes (SECR), F-91191 Gif-sur-Yvette CEDEX, France
| | - Nathalie Macé
- Université Paris-Saclay, CEA, Service d'Études du Comportement des Radionucléïdes (SECR), F-91191 Gif-sur-Yvette CEDEX, France
| | - Michael Descostes
- ORANO Mining, Environmental R&D Department, 125 Avenue de Paris, 92330 Châtillon, France; PSL University/Mines ParisTech, Centre de Géosciences, 35 rue Saint-Honoré, 77305 Fontainebleau, France
| | - Pascal E Reiller
- Université Paris-Saclay, CEA, Service d'Études Analytiques et de Réactivité des Surfaces (SEARS), F-91191 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
5
|
Characterization of precipitates susceptible to clogging of sump filters after a Loss-of-Coolant-Accident in PWRs. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Smolíková V, Pelcová P, Ridošková A, Leermakers M. Diffusive Gradients in Thin-films technique for uranium monitoring along a salinity gradient: A comparative study on the performance of Chelex-100, Dow-PIWBA, Diphonix, and Lewatit FO 36 resin gels in the Scheldt estuary. Talanta 2021; 240:123168. [PMID: 34954614 DOI: 10.1016/j.talanta.2021.123168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Monitoring of uranium in the environment using the Diffusive Gradients in Thin-films (DGT) technique gains in importance as it can provide unique information about the bioavailability of the element and allows its long-term in-situ measurement. Hence, in this study, four DGT binding phases (Chelex-100, Dow-PIWBA, Diphonix, and Lewatit FO 36 resins) were evaluated for uranium monitoring to assess the robustness of their performance in estuarine and marine environments. These DGTs were deployed along the Scheldt estuary (Belgium and the Netherlands) over four campaigns between 2014 and 2021. The DGT performance (ratio of the DGT-determined vs. dissolved U concentration in grab water sample) varied with the water salinity. The Chelex-100 DGTs generally provided good performance in freshwater (median ratios close to 1.0), but an inverse correlation with the increasing salinity was observed (median ratios 0.7 at the stations with salinity >5). The Lewatit FO 36 DGTs provided good performance in the salinity range 0-18 (median ratios 1.0). However, a strong negative influence was observed at stations with high salinity levels (>18, ratio 0.6) and during the long-term deployment in seawater (ratios <0.5 over deployment periods ≥2 days). The Dow-PIWBA and Diphonix DGTs provided overall similar results with excellent performances along the whole salinity gradient (median ratios 1.1 and 1.0, respectively). Nevertheless, the long-term deployment trial in seawater (salinity ∼27) revealed the robustness of Diphonix DGTs that provided outstanding results even after 28 days of deployment (ratio 1.0). The differences in the performance of tested DGT resins were mostly given by the changes of U speciation along the salinity gradient. The speciation modelling of U showed that calcium uranyl carbonate complexes dominate along the Scheldt estuary (from 97 to 86% seawards) with increasing fraction of UO2(CO3)34- (from 2 to 14%) towards the mouth.
Collapse
Affiliation(s)
- Vendula Smolíková
- Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Pavlína Pelcová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Martine Leermakers
- Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
7
|
Lindfors S, Österlund H, Lundy L, Viklander M. Evaluation of measured dissolved and bio-met predicted bioavailable Cu, Ni and Zn concentrations in runoff from three urban catchments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112263. [PMID: 33714042 DOI: 10.1016/j.jenvman.2021.112263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Urban runoff is a diffuse source of pollution contributing to the poor ecological and chemical status of surface waters. Whilst the EU Priority Hazardous Substances Directive now identifies environmental quality standards for selected metals in relation to the bioavailable metal fraction the relationship between analytically determined metal size fractions transported by urban runoff and the often variably defined concept of bioavailability has not been thoroughly evaluated. This paper provides a review of the terminology used within urban runoff studies to characterise metal fractions and behaviour. Measured dissolved and truly dissolved (determined by ultrafiltration; <3000 molecular weight cutoff) Cu, Ni, and Zn concentrations are also compared to the bioavailable metal fraction (as predicted using Bio-met, a simplified biotic ligand model) in snowmelt and rainfall derived runoff samples from three urban catchments. The study shows that predicted bioavailable concentrations were significantly lower than truly dissolved concentrations for all metals and discusses current bioavailability modelling parameters in relation to rainfall and snowmelt runoff data sets. Statistical analysis of relationships between field and predicted bioavailable data sets indicate that the bioavailable fractions originate from both colloidal and truly dissolved fractions.
Collapse
Affiliation(s)
- Sarah Lindfors
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Lian Lundy
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
8
|
Shang C, Reiller PE. The determination of the thermodynamic constants of MgUO 2(CO 3) 32- complex in NaClO 4 and NaCl media by time-resolved luminescence spectroscopy, and applications in different geochemical contexts. Dalton Trans 2021; 50:4363-4379. [PMID: 33693449 DOI: 10.1039/d0dt04124f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The formation constants and specific ion interaction coefficients of MgUO2(CO3)32- complex were determined in 0.1 to 1.0 mol kgw-1 NaCl and 0.10 to 2.21 mol kgw-1 NaClO4 media in the framework of the specific ion interaction theory (SIT), by time-resolved laser-induced luminescence spectroscopy. The upper limits of ionic strength were chosen in order to limit luminescence quenching effects generated by high concentrations of Cl- and ClO4- already observed during our earlier studies on CanUO2(CO3)3(4-2n)- complexes (Shang & Reiller, Dalton Trans., 49, 466; Shang et al., Dalton Trans., 49, 15443). The cumulative formation constant determined is , and the specific ion interaction coefficients are ε(MgUO2(CO3)32-, Na+) = 0.19 ± 0.11 kgw mol-1 in NaClO4 and ε(MgUO2(CO3)32-, Na+) = 0.09 ± 0.16 kgw mol-1 in NaCl. Two gratings of 300 and 1800 lines per mm were used to acquire MgUO2(CO3)32- luminescence spectra, where the high-resolution 1800 lines per mm grating detected slight spectral shifts for the principal luminescent bands relative to CanUO2(CO3)3(4-2n)-. The applications of the consistent set of thermodynamic constants and ε values for MnUO2(CO3)3(4-2n)- (M = Mg and Ca) were examined in different geochemical contexts, where Mg over Ca concentration ratio varies to help defining the relative importance of these species.
Collapse
Affiliation(s)
- Chengming Shang
- Université Paris-Saclay, CEA, Service d'Études Analytiques et de Réactivité des Surfaces (SEARS), F-91191 Gif-sur-Yvette CEDEX, France.
| | | |
Collapse
|
9
|
Reiller PE, Descostes M. Development and application of the thermodynamic database PRODATA dedicated to the monitoring of mining activities from exploration to remediation. CHEMOSPHERE 2020; 251:126301. [PMID: 32145577 DOI: 10.1016/j.chemosphere.2020.126301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/19/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
A growing demand exists on the monitoring of both uranium mining activities and their environmental impacts. In order to help understanding and modelling both these aspects, a thermodynamic database dedicated to uranium mining activities is developed: the PRODATA database. Relevant species and phases for uranium and radium are chosen from existing compilations of data, complemented with important missing data for the application to mining activities and environmental monitoring. Important major anions and cations chemistry are included, as well as secondary pollutants such as arsenic, lead, or nickel. Applications of the PRODATA extracted database file for PhreeqC to theoretical speciation calculations of uranium and radium for actual water compositions - either linked to uranium mining activities, or under monitoring for environmental survey - are presented. Wider applications to other available water compositions from different geochemical concepts are also tested. For the tested cases, the major radium and uranium species obtained using PRODATA are compared with other available thermodynamic database (Thermochimie, LLNL, Wateq4f, Minteq, PSI/NAGRA). The choice of the database file - and of the ionic strength correction - can strongly impact the final speciation results. Sulphate complexes of radium and uranium are of particular importance in mining exploitation context, and carbonate uranium complexes - particularly [Formula: see text] complexes - are crucial for environmental monitoring. The latter complexes are key species for the aqueous speciation of uranium, even in reducing environment where U(IV) low solubility usually governs uranium mobility.
Collapse
Affiliation(s)
- Pascal E Reiller
- Den - Service D'Études Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.
| | - Michaël Descostes
- ORANO Group Mining R&D Dpt, 125 Avenue de Paris, F-92320, Châtillon, France
| |
Collapse
|