1
|
Moghaddam HS, Abkar L, Fowler SJ. Making waves: From tap to gut- exploring the impact of drinking water on gut microbiota. WATER RESEARCH 2024; 267:122503. [PMID: 39340867 DOI: 10.1016/j.watres.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Drinking water (DW) harbours diverse microbial species and chemical attributes. Water comprises the greatest portion of our daily diet, ingested both on its own and used in the preparation of food. DW is our major source of liquids, which is vital to maintaining homeostasis, and can also supply essential minerals. Limited evidence suggests that DW plays a role in shaping the gut microbiome, which implies that it may impact human health. Despite its significant contribution to diet, DW is often overlooked in studies examining dietary influences on the gut microbiota. This perspective explores our current understanding of the link between DW and the gut microbiota - an area of human microbiome science that has been surprisingly understudied. Existing studies reveal links between DW source, microbiota composition, and gut health, emphasizing the need for comprehensive investigations. Understanding the interplay between DW and gut microbiota holds potential for tailored interventions to enhance human health.
Collapse
Affiliation(s)
| | - Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
2
|
Sha Y, Zhang D, Tu J, Zhang R, Shao Y, Chen J, Lu S, Liu X. Chronic exposure to tris(1,3-dichloro-2-propyl) phosphate: Effects on intestinal microbiota and serum metabolism in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116469. [PMID: 38772141 DOI: 10.1016/j.ecoenv.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphate ester that can adversely affect animal or human health. The intestinal microbiota is critical to human health. High-dose exposure to TDCIPP can markedly affect the intestinal ecosystem of mice, but the effects of long-term exposure to lower concentrations of TDCIPP on the intestinal flora and body metabolism remain unclear. In this study, TDCIPP was administered to Sprague-Dawley rats by gavage at a dose of 13.3 mg/kg bw/day for 90 days. TDCIPP increased the relative weight of the kidneys (P = 0.017), but had no effect on the relative weight of the heart, liver, spleen, lungs, testes, and ovaries (P > 0.05). 16 S rRNA gene sequencing revealed that long-term TDCIPP exposure affected the diversity, relative abundance, and functions of rat gut microbes. The serum metabolomics of the rats showed that TDCIPP can disrupt the serum metabolic profiles, result in the up-regulation of 26 metabolites and down-regulation of 3 metabolites, and affect multiple metabolic pathways in rat sera. In addition, the disturbed genera and metabolites were correlated. The functions of some disturbed gut microbes were consistent with the affected metabolic pathways in the sera, and these metabolic pathways were all associated with kidney disease, suggesting that TDCIPP may cause kidney injury in rats by affecting the intestinal flora and serum metabolism.
Collapse
Affiliation(s)
- Yujie Sha
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou 510080, China.
| |
Collapse
|
3
|
Li C, Liu C, Feng C, Lan T. Exploring the impacts of service life of biological activated carbon on dissolved organic nitrogen removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121214. [PMID: 36740163 DOI: 10.1016/j.envpol.2023.121214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The biological activated carbon (BAC) process has been widely used in drinking water treatment to improve the removal of pollutants, including the precursors of nitrogenous disinfection byproducts (N-DBPs). Nevertheless, old BAC filter effluent DON concentration is heightened, increasing the highly toxic N-DBPs formation potential. Herein, the variation of dissolved organic nitrogen (DON) was comprehensively explored during one backwashing cycle, focusing on four BAC age (0.3, 2, 5, and 10 years) for BAC filters in drinking water. Comparatively, the removal rate of DON by four BAC followed the order 0.3-yr BAC (39.69%-66.96%) >2-yr BAC (10.10%-39.78%) >5-yr BAC (-4.18%-29.63%)>10-yr BAC (-20.88%-19.87%). When at day 7 after backwashing, 10-yr BAC filter effluent increased at least 13.71% of DON and considerably elevated the N-DBPs formation potential, which was attributed to the ultimate production of more various proteins/amino sugars-like compounds by microbes. In comparisons of microbial community between all BAC samples, Rhizobials were more prevalent in 10-yr BAC and could produce microbe-derived DON associated with amino acids. Moreover, microbes regulated metabolic pathways, including amino acid biosynthesis, TCA cycle, purine metabolism, and pyrimidine metabolism, to enhance the adaptive cellular machinery in response to environmental stressors, and therefore accelerated microbial secretion of microbe-derived DON. Structural equation model (SEM) analysis investigated that BAC age had bio-effects on N-DBPs formation potential, which were delivered via the linkage of " BAC age, microbial community, microbial metabolism, and DON molecular characteristics". Our findings demonstrate the necessity of reconsidering the feasibility of BAC filters for long-time operation, which has implications for future N-DBPs precursors control in drinking water.
Collapse
Affiliation(s)
- Congcong Li
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing, 210098, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China.
| | - Changlong Feng
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tong Lan
- College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
4
|
Ma F, Luo Y, Liu Y, Zhang M, Wu J, Chen L, Zhang G. The disruption on gut microbiome of Decabromodiphenyl ethane exposure in the simulator of the human intestinal microbial ecosystem (SHIME). Toxicol Appl Pharmacol 2022; 452:116194. [PMID: 35961412 DOI: 10.1016/j.taap.2022.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
The health risks of Decabromodiphenyl ethane (DBDPE) with its cardiovascular toxicity, liver toxicity and cytotoxicity had been generally acknowledged. However, the influence on gut microbiome and short-chain fatty acids (SCFAs) metabolism caused by DBDPE exposure remained unknown. In this study, three exposure groups (5, 50, 500 mg/L) and control group were used to investigate the effect of DBDPE by using simulator of the human intestinal microbial ecosystem (SHIME). 16S rRNA gene high-throughput sequencing illustrated that high dose DBDPE exposure increased the α-diversity of gut microbiota, while reduced the abundance of Firmicutes and Proteobacteria. In addition, the low dose (5 mg/L) DBDPE inhibited the increasing of SCFAs, but the medium and high dose (50 and 500 mg/L) DBDPE promoted the advancement, especially in ascending colon. Notably, DBDPE exposure lead a similar changing of acetic acid and butyric acid contents in different sections of the colon. This study confirmed the alternation of composition and metabolic function in gut microbial community due to DBDPE exposure, indicating an intestinal damage and appealing for more attention concentrated on the health effects of DBDPE exposure.
Collapse
Affiliation(s)
- Fengmin Ma
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Yasong Luo
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Yuqi Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Mai Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Jiguo Wu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Lingyun Chen
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Sha Y, Wu H, Guo Y, Liu X, Mo Y, Yang Q, Wei S, Long K, Lu D, Xia Y, Zheng W, Su Z, Wei X. Effects of iodoacetic acid drinking water disinfection byproduct on the gut microbiota and its metabolism in rats. J Environ Sci (China) 2022; 117:91-104. [PMID: 35725093 DOI: 10.1016/j.jes.2022.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.
Collapse
Affiliation(s)
- Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shumao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
6
|
Lindell AE, Zimmermann-Kogadeeva M, Patil KR. Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nat Rev Microbiol 2022; 20:431-443. [PMID: 35102308 PMCID: PMC7615390 DOI: 10.1038/s41579-022-00681-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota contributes to diverse aspects of host physiology, ranging from immunomodulation to drug metabolism. Changes in the gut microbiota composition are associated with various diseases as well as with the response to medications. It is therefore important to understand how different lifestyle and environmental factors shape gut microbiota composition. Beyond the commonly considered factor of diet, small-molecule drugs have recently been identified as major effectors of the microbiota composition. Other xenobiotics, such as environmental or chemical pollutants, can also impact gut bacterial communities. Here, we review the mechanisms of interactions between gut bacteria and antibiotics, host-targeted drugs, natural food compounds, food additives and environmental pollutants. While xenobiotics can impact bacterial growth and metabolism, bacteria in turn can bioaccumulate or chemically modify these compounds. These reciprocal interactions can manifest in complex xenobiotic-microbiota-host relationships. Our Review highlights the need to study mechanisms underlying interactions with pollutants and food additives towards deciphering the dynamics and evolution of the gut microbiota.
Collapse
Affiliation(s)
- Anna E Lindell
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Kiran R Patil
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Wang J, Liu T, Liu L, Chen X, Zhang X, Du H, Wang C, Li J, Li J. Immune dysfunction induced by 2,6-dichloro-1,4-benzoquinone, an emerging water disinfection byproduct, due to the defects of host-microbiome interactions. CHEMOSPHERE 2022; 294:133777. [PMID: 35093416 DOI: 10.1016/j.chemosphere.2022.133777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
2,6-dichloro-1,4-benzoquinone (DCBQ), as an emerging water disinfection byproducts (DBPs), has posed potential risks via the digestion system. However, little is known about the toxicity of DCBQ on the gut microbiome, which plays a critical role on human health. This study has comprehensively investigated the impact of DCBQ on the intestinal microbiome, metabolic functions, and immunity after the mice orally exposure to DCBQ at the concentration of 31.25, 62.5 and 125 mg/kg body weight for 28 days. Our results indicated that DCBQ exposure has perturbed the balance between T helper (Th) 1 mediated pro-inflammatory response and Th2 mediated anti-inflammatory response in mice, especially inducing the activation of immune system toward a Th2 response. DCBQ group has induced gut microbiota dysbiosis, and at phylum level, Proteobacteria was relatively less abundant compared with that in the control group. Furthermore, DCBQ exposure has dramatically perturbed metabolites profiles which were involved in 28 metabolic pathways, such as amino acids biosynthesis and metabolism, lipid metabolism. In particular, the altered gut microbiota showed strong correlations with both the altered metabolites and the altered immunological variables after DCBQ exposure. This study provides evidence on the adverse effects and mechanisms of water disinfection byproduct DCBQ through the interaction of immune-microbiome-metabolome, highlighting the importance to assess DBPs-associated risks.
Collapse
Affiliation(s)
- Jun Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Ting Liu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Lifang Liu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xin Chen
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xu Zhang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Haiying Du
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Juan Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
8
|
Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System. Processes (Basel) 2022. [DOI: 10.3390/pr10030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlorination disinfection byproducts (CDBPs) can exert adverse human health effects. Many toxicology-based studies confirmed the health hazards of CDBPs, but little research has been done on gut microbiome. We explored the effect of CDBPs on intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The results showed that CDBPs slightly inhibited the production of short-chain fatty acids, and the abundance of Actinobacteria decreased in the transverse colon and descending colon. The abundance of Proteobacteria increased in the ascending colon and descending colon, while it decreased in the transverse colon. The abundance of Firmicutes decreased in both the ascending colon and descending colon. In particular, the abundance of Lachnospiraceae members, Bilophila, Oscillospira, Parabacteroides, Desulfovibrio, and Roseburia increased in the ascending colon, while the abundance of Sutterella, Bacteroides, Escherichia, Phascolarctobacterium, Clostridium, Citrobacter, and Klebsiella increased in the descending colon. The Shannon index differed significantly in both the ascending colon and descending colon before and after exposure. Overall, we demonstrate the feasibility of applying the SHIME model to studying the effects of intestinal toxicity on health of chlorinated by-products. The findings of this study improve our understanding of the health impact of CDBPs on the intestinal microbiota and better control of CDBPs in treated water is recommended.
Collapse
|
9
|
Teng Y, Yang X, Li G, Zhu Y, Zhang Z. Habitats Show More Impacts Than Host Species in Shaping Gut Microbiota of Sympatric Rodent Species in a Fragmented Forest. Front Microbiol 2022; 13:811990. [PMID: 35197954 PMCID: PMC8859092 DOI: 10.3389/fmicb.2022.811990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota play a significant role for animals to adapt to the changing environment. Host species and habitats are key drivers in shaping the diversity and composition of the microbiota, but the determinants of composition of the sympatric host gut microbiome remain poorly understood within an ecosystem. In this study, we examined the effects of habitats of different succession stages and host species on the diversity and composition of fecal gut microbiota in four sympatric rodent species (Apodemus draco, Leopoldamys edwardsi, Niviventer confucianus, and Niviventer fulvescens) in a subtropical forest. We found, as compared to the differences between species, habitat types showed a much larger effect on the gut microbiota of rodents. Alpha diversity of the microbial community of A. draco, N. fulvescens, and N. confucianus was highest in farmland, followed by primary forest and shrubland, and lowest in secondary forest. Beta diversity of the three rodent species showed significant different among habitats. The alpha diversity of gut microbiota of L. edwardsi was significantly higher than those of A. draco and N. confucianus, and its beta diversity showed significant difference from A. draco. Our results suggested that gut microbiota were important for animals in responding to diet changes in different habitats under human disturbances.
Collapse
Affiliation(s)
- Yuwei Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xifu Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yunlong Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhibin Zhang,
| |
Collapse
|
10
|
Xu X, Zhang Z. Sex- and age-specific variation of gut microbiota in Brandt's voles. PeerJ 2021; 9:e11434. [PMID: 34164232 PMCID: PMC8194415 DOI: 10.7717/peerj.11434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background Gut microbiota plays a key role in the survival and reproduction of wild animals which rely on microbiota to break down plant compounds for nutrients. As compared to laboratory animals, wild animals face much more threat of environmental changes (e.g. food shortages and risk of infection). Therefore, studying the gut microbiota of wild animals can help us better understand the mechanisms animals use to adapt to their environment. Methods We collected the feces of Brandt’s voles in the grassland, of three age groups (juvenile, adult and old), in both sexes. We studied the gut microbiota by 16S rRNA sequencing. Results The main members of gut microbiota in Brandt’s voles were Firmicutes, Bacteroidetes and Proteobacteria. As voles get older, the proportion of Firmicutes increased gradually, and the proportion of Bacteroides decreased gradually. The diversity of the microbiota of juveniles is lower, seems like there is still a lot of space for colonization, and there are large variations in the composition of the microbiome between individuals. In adulthood, the gut microbiota tends to be stable, and the diversity is highest. In adult, the abundances of Christensenellaceae and Peptococcus of female were significantly higher than male voles. Conclusions The gut microbiota of Brandt’s vole was influenced by sex and age, probably due to growth needs and hormone levels. Gut microbiota of wild animals were much influenced by their life-history reflected by their age and sex. Future studies will be directed to identify functions of these “wild microbiota” in regulating physiological or behavioral processes of wild animals in different life stage or sexes.
Collapse
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, Beijing, China
| |
Collapse
|