1
|
Yuan S, Yang J, Fu X, Yu H, Guo Y, Xie Y, Xiao Y, Cheng Y, Yao W. Effect of tannic acid binding on the thermal degradation behavior and product toxicity of boscalid. Food Chem 2024; 444:138654. [PMID: 38335685 DOI: 10.1016/j.foodchem.2024.138654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The effect of tannic acid (TA) binding on the thermal degradation of boscalid was studied in this work. The results revealed that TA binding has a significant impact on boscalid degradation. The degradation rate constant of bound boscalid was reduced, and its corresponding half-life was significantly prolonged compared to the free state. Four identical degradation products were detected in both states through UHPLC-Q-TOF-MS, indicating that degradation products were not affected by TA binding. Based on DFT and MS analysis, the degradation pathways of boscalid included hydroxyl substitution of chlorine atoms and cleavage of CN and CC bonds. The toxicity of B2 and B3 exceeded that of boscalid. In summary, the binding of TA and boscalid significantly affected the thermal degradation rate of boscalid while preserving the types of degradation products. This study contributed to a fundamental understanding of the degradation process of bound pesticide residues in complex food matrices.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jian Yang
- China Academy of Launch Vehicle Technology, Beijing, China
| | - Xiaoyan Fu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
2
|
Tian L, Wang L, Wei S, Zhang L, Dong D, Guo Z. Enhanced degradation of enoxacin using ferrihydrite-catalyzed heterogeneous photo-Fenton process. ENVIRONMENTAL RESEARCH 2024; 251:118650. [PMID: 38458586 DOI: 10.1016/j.envres.2024.118650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 μmol L-1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.
Collapse
Affiliation(s)
- Lin Tian
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan, 610031, China
| | - Shikun Wei
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Zhang T, Yuan J, Guo Y, Wang X, Li QX, Zhang J, Xie J, Miao W, Fan Y. Combined toxicity of trifloxystrobin and fluopyram to zebrafish embryos and the effect on bone development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106834. [PMID: 38281391 DOI: 10.1016/j.aquatox.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Trifloxystrobin (TRI) is a methacrylate fungicide, and fluopyram (FLU) is a new pyridylethylbenzamide fungicide and nematicide. Both are often detected in water bodies and may be highly toxic to many aquatic organisms. Unfortunately, the aquatic biological risks of single FLU or a mixture of trifloxystrobin and fluopyram have not been reported. In this study, zebrafish was selected as the test organism to investigate the combined toxicity of trifloxystrobin and fluopyram to zebrafish. After zebrafish embryos exposed to three pesticide solutions, Alcian-blue staining, Alizarin-red staining and quantitative PCR (qPCR) were performed. The results indicated that 96h-LC50 of TRI was 0.159 mg·L-1 to zebrafish embryo, which was highly toxic. The 96h-LC50 of FLU to zebrafish embryos was 4.375 mg·L-1, being moderately toxic. The joint toxicity to zebrafish embryos(FLU at 96h-LC50 and TRI at 96h-LC50 in a 1:1 weight ratio to form a series of concentration treatment groups) was antagonistic. Both trifloxystrobin and fluopyram also inhibited the skeletal development of zebrafish and showed to be antagonistic. The results of qPCR indicated upregulations of different genes upon three different treatments. TRI mainly induced Smads up-expression, which may affect the BMP-smads pathway. FLU mainly induced an up-expression of extracellular BMP ligands and type I receptor (Bmpr-1a), which may affect the BMP ligand receptor pathway. The 1:1 mixture (weight ratio) of trifloxystrobin and fluopyram induced a reduction of the genes of extracellular BMP ligand (Smads) and type I receptor (Bmpr1ba), which may down-regulate BMP signaling and thus attenuating cartilage hyperproliferation, hypertrophy and mineralization. The results warren an interest in further studying the effect of the two fungicides in a mixture on zebrafish.
Collapse
Affiliation(s)
- Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Jie Yuan
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Qing X Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China.
| |
Collapse
|
5
|
Zhang S, Wei J, Wu N, Allam AA, Ajarem JS, Maodaa S, Huo Z, Zhu F, Qu R. Assessment of the UV/DCCNa and UV/NaClO oxidation process for the removal of diethyl phthalate (DEP) in the aqueous system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122915. [PMID: 37952917 DOI: 10.1016/j.envpol.2023.122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
In this work, the removal and transformation process of diethyl phthalate (DEP) in UV/dichloroisocyanurate (UV/DCCNa) and UV/sodium hypochlorite (UV/NaClO) systems were compared to evaluate the application potential of UV/DCCNa technology. Compared with UV/NaClO, UV/DCCNa process has the advantage of DEP removal and caused a higher degradation efficiency (93.8%) within 45 min of oxidation in ultrapure water due to the sustained release of hypochloric acid (HOCl). Fourteen intermediate products were found by high-resolution mass spectrometry, and the transformation patterns including hydroxylation, hydrolysis, chlorination, cross-coupling, and nitrosation were proposed. The oxidation processes were also performed under quasi-realistic environmental conditions, and it was found that DEP could be effectively removed in both systems, with yields of disinfection byproduct meeting the drinking water disinfection standard (<60.0 μg/L). Comparing the single system, the removal of DEP decreased in the mixed system containing five kinds of PAEs, which could be attributed to the regeneration of DEP and the competitive effect of •OH occurred among the Dimethyl phthalate (DMP), DEP, Dipropyl phthalate (DPrP), Diallyl phthalate (DAP) and Diisobutyl phthalate (DiBP). However, a greater removal performance presented in UV/DCCNa system compared with UV/NaClO system (69.4% > 62.1%). Further, assessment of mutagenicity and developmental toxicity by Toxicity Estimation Software Tool (T.E.S.T) software indicated that UV/DCCNa process has fewer adverse effects on the environment and is a more environmentally friendly chlorination method. This study may provide some guidance for selecting the suitable disinfection technology for drinking water treatment.
Collapse
Affiliation(s)
- Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Maodaa
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
6
|
Linh NV, Khongcharoen N, Nguyen DH, Dien LT, Rungrueng N, Jhunkeaw C, Sangpo P, Senapin S, Uttarotai T, Panphut W, St-Hilaire S, Van Doan H, Dong HT. Effects of hyperoxia during oxygen nanobubble treatment on innate immunity, growth performance, gill histology, and gut microbiome in Nile tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109191. [PMID: 37890736 DOI: 10.1016/j.fsi.2023.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Oxygen nanobubble (NB-O2) technology has been introduced to the aquaculture industry in recent years. This treatment usually results in a tremendously high level of dissolved oxygen (DO) in the water. However, little is known about the possible negative effects of hyperoxia due to NB-O2 treatment (hyper-NB-O2) on farmed fish. Here, we investigated i) the effect of short-term hyper-NB-O2 exposure (single treatment) on the innate immunity in Nile tilapia, Oreochromis niloticus, and ii) the effect of long-term hyper-NB-O2 exposure (26-day treatments) on survival, growth performance, gill histology, and gut microbiome in Nile tilapia. A single treatment with NB-O2 for 10 min in 50 L of water resulted in 24.2 ± 0.04 mg/L DO (approximately 2-3 × 107 nanoscale oxygen bubbles/mL). This treatment did not result in differences in expression of several immune-related genes (e.g., TNF-α, LYZ and HPS70) in various tissues (e.g., gill, head kidney, and spleen) compared to the non-treated control. Over a 26-day period of exposure, no significant differences were observed in survival and growth performance of the fish, but minor histological changes were occasionally noted on the gills. Analysis of the gut microbiome revealed a significant increase in the genera Bosea, Exiguobacterium, Hyphomicrobium, and Singulisphaera in the group receiving NB-O2. Moreover, no signs of "gas bubble disease" were observed in the fish throughout the duration of the experiment. Overall, these results suggest that both short- and long-term hyper-NB-O2 exposure appears to be benign and has no obvious adverse effects on fish.
Collapse
Affiliation(s)
- Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nareerat Khongcharoen
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Dinh-Hung Nguyen
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Le Thanh Dien
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Naruporn Rungrueng
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Chayuda Jhunkeaw
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Pattiya Sangpo
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Centex of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Toungporn Uttarotai
- Department of Highland Agriculture and Natural Resources, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wattana Panphut
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand; Aquaculture and Aquatic Resources Management Program, Department of Food, Agriculture and Biore-sources (AARM/FAB), School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Tang L, Zhou S, Li F, Sun L, Lu H. Ozone Micronano-bubble-Enhanced Selective Degradation of Oxytetracycline from Production Wastewater: The Overlooked Singlet Oxygen Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18550-18562. [PMID: 36474357 DOI: 10.1021/acs.est.2c06008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The efficient and selective removal of refractory antibiotics from high-strength antibiotic production wastewater is crucial but remains a substantial challenge. In this study, a novel ozone micronano-bubble (MNB)-enhanced treatment system was constructed for antibiotic production wastewater treatment. Compared with conventional ozone, ozone MNBs exhibit excellent treatment efficiency for oxytetracycline (OTC) degradation and toxicity decrease. Notably, this study identifies the overlooked singlet oxygen (1O2) for the first time as a crucial active species in the ozone MNB system through probe and electron paramagnetic resonance methods. Subsequently, the oxidation mechanisms of OTC by ozone MNBs are systematically investigated. Owing to the high reactivity of OTC toward 1O2, ozone MNBs enhance the selective and anti-interference performance of OTC degradation in raw OTC production wastewater with complex matrixes. This study provides insights into the mechanism of ozone MNB-enhanced pollutant degradation and a new perspective for the efficient treatment of high-concentration industrial wastewater using ozone MNBs. In addition, this study presents a promising technology with scientific guidance for the treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Fan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou510006, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou510275, China
| |
Collapse
|
8
|
Raths J, Schnurr J, Bundschuh M, Pinto FE, Janfelt C, Hollender J. Importance of Dietary Uptake for in Situ Bioaccumulation of Systemic Fungicides Using Gammarus pulex as a Model Organism. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1993-2006. [PMID: 36946554 DOI: 10.1002/etc.5615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Bioaccumulation of organic contaminants from contaminated food sources might pose an underestimated risk toward shredding invertebrates. This assumption is substantiated by monitoring studies observing discrepancies of predicted tissue concentrations determined from laboratory-based experiments compared with measured concentrations of systemic pesticides in gammarids. To elucidate the role of dietary uptake in bioaccumulation, gammarids were exposed to leaf material from trees treated with a systemic fungicide mixture (azoxystrobin, cyprodinil, fluopyram, and tebuconazole), simulating leaves entering surface waters in autumn. Leaf concentrations, spatial distribution, and leaching behavior of fungicides were characterized using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and matrix-assisted laser desorption ionization-mass spectrometric imaging. The contribution of leached fungicides and fungicides taken up from feeding was assessed by assembling caged (no access) and uncaged (access to leaves) gammarids. The fungicide dynamics in the test system were analyzed using LC-HRMS/MS and toxicokinetic modeling. In addition, a summer scenario was simulated where water was the initial source of contamination and leaves contaminated by sorption. The uptake, translocation, and biotransformation of systemic fungicides by trees were compound-dependent. Internal fungicide concentrations of gammarids with access to leaves were much higher than in caged gammarids of the autumn scenario, but the difference was minimal in the summer scenario. In food choice and dissectioning experiments gammarids did not avoid contaminated leaves and efficiently assimilated contaminants from leaves, indicating the relevance of this exposure pathway in the field. The present study demonstrates the potential impact of dietary uptake on in situ bioaccumulation for shredders in autumn, outside the main application period. The toxicokinetic parameters obtained facilitate modeling of environmental exposure scenarios. The uncovered significance of dietary uptake for detritivores warrants further consideration from scientific as well as regulatory perspectives. Environ Toxicol Chem 2023;42:1993-2006. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology-Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Jacob Schnurr
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fernanda E Pinto
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Hollender
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology-Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Caponio G, Vendemia M, Mallardi D, Marsico AD, Alba V, Gentilesco G, Forte G, Velasco R, Coletta A. Pesticide Residues and Berry Microbiome after Ozonated Water Washing in Table Grape Storage. Foods 2023; 12:3144. [PMID: 37685075 PMCID: PMC10486638 DOI: 10.3390/foods12173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Nowadays, different systems for reducing pesticides in table grapes are being tested at different production stages either in the field or in postharvest. The present study tested ozonated water treatments at the beginning of the cold storage of the Princess® seedless table grape variety to reduce the residue contents of some pesticides and to evaluate their effect on gray mold and the berry microbiome. An ozone generator capable of producing an ozone concentration ranging from 18 to 65 Nm3 was utilized for obtaining three ozone concentration levels in water: 3, 5 and 10 mg/L. Ozonated water was placed in a 70 L plastic box where 500 g grape samples closed in perforated plastic clamshell containers were immersed utilizing two washing times (5 and 10 min). Overall, six ozonated water treatments were tested. After the ozonated water treatments, all samples were stored for 30 days at 2 °C and 95% relative humidity to simulate commercial practices. The pesticide residue contents were determined before the ozonated water treatments (T0) and 30 days after the cold storage (T1). The treatments with ozonated water washing reduced the pesticide residues up to 100%, while the SO2 control treatment reduced the pesticide residues ranging from 20.7 to 60.7%. Using 3 mg/L ozonated water to wash grapes for 5 min represented the optimal degradation conditions for all of the analyzed pesticides, except for fludioxonil, which degraded better with a washing time of 10 min. The ozone treatments did not significantly reduce the gray mold and the fungal and bacterial microbiome, while a relevant reduction was observed in the yeast population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Coletta
- CREA, Council for Agricultural Research and Economics, Research Center for Viticulture and Enology, 70010 Turi, Italy; (G.C.); (M.V.); (D.M.); (A.D.M.); (V.A.); (G.G.); (G.F.); (R.V.)
| |
Collapse
|
10
|
Reddy Ramireddy VS, Kurakula R, Velayudhaperumal Chellam P, James A, van Hullebusch ED. Systematic computational toxicity analysis of the ozonolytic degraded compounds of azo dyes: Quantitative structure-activity relationship (QSAR) and adverse outcome pathway (AOP) based approach. ENVIRONMENTAL RESEARCH 2023; 231:116142. [PMID: 37217122 DOI: 10.1016/j.envres.2023.116142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
The present study identifies and analyses the degraded products of three azo dyes (Reactive Orange 16, Reactive Red 120, and Direct Red 80) and proffers their in silico toxicity predictions. In our previously published work, the synthetic dye effluents were degraded using an ozonolysis-based Advanced Oxidation Process. In the present study, the degraded products of the three dyes were analysed using GC-MS at endpoint strategy and further subjected to in silico toxicity analysis using Toxicity Estimation Software Tool (TEST), Prediction Of TOXicity of chemicals (ProTox-II), and Estimation Programs Interface Suite (EPI Suite). Several physiological toxicity endpoints, such as hepatotoxicity, carcinogenicity, mutagenicity, cellular and molecular interactions, were considered to assess the Quantitative Structure-Activity Relationships (QSAR) and adverse outcome pathways. The environmental fate of the by-products in terms of their biodegradability and possible bioaccumulation was also assessed. Results of ProTox-II suggested that the azo dye degradation products are carcinogenic, immunotoxic, and cytotoxic and displayed toxicity towards Androgen Receptor and Mitochondrial Membrane Potential. TEST results predicted LC50 and IGC50 values for three organisms Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas. EPISUITE software via the BCFBAF module surmises that the degradation products' bioaccumulation (BAF) and bioconcentration factors (BCF) are high. The cumulative inference of the results suggests that most degradation by-products are toxic and need further remediation strategies. The study aims to complement existing tests to predict toxicity and prioritise the elimination/reduction of harmful degradation products of primary treatment procedures. The novelty of this study is that it streamlines in silico approaches to predict the nature of toxicity of degradation by-products of toxic industrial affluents like azo dyes. These approaches can assist the first phase of toxicology assessments for any pollutant for regulatory decision-making bodies to chalk out appropriate action plans for their remediation.
Collapse
Affiliation(s)
| | - Rakshitha Kurakula
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, India
| | | | - Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, New Delhi, India.
| | | |
Collapse
|
11
|
Liu H, Fu G, Li W, Liu B, Ji X, Zhang S, Qiao K. Oxidative stress and mitochondrial damage induced by a novel pesticide fluopimomide in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91794-91802. [PMID: 37479935 DOI: 10.1007/s11356-023-28893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Fluopimomide is a novel pesticide intensively used in agricultural pest control; however, its excessive use may have toxicological effects on non-target organisms. In this study, Caenorhabditis elegans was used to evaluate the toxic effects of fluopimomide and its possible mechanisms. The effects of fluopimomide on the growth, pharyngeal pumping, and antioxidant systems of C. elegans were determined. Furthermore, the gene expression levels associated with mitochondria in the nematodes were also investigated. Results indicated that fluopimomide at 0.2, 1.0, and 5.0 mg/L notably (p < 0.001) decreased body length, pharyngeal pumping, and body bends in the nematodes compared to the untreated control. Additionally, fluopimomide at 0.2, 1.0, and 5.0 mg/L notably (p < 0.05) increased the content of malondialdehyde by 3.30-, 21.24-, and 33.57-fold, respectively, while fluopimomide at 1.0 and 5.0 mg/L significantly (p < 0.001) increased the levels of reactive oxygen species (ROS) by 49.14% and 77.06% compared to the untreated control. In contrast, fluopimomide at 1.0 and 5.0 mg/L notably reduced the activities of target enzyme succinate dehydrogenase and at 5.0 mg/L reduced the activities of antioxidant enzyme superoxide dismutase. Further evidence revealed that fluopimomide at 1.0 and 5.0 mg/L significantly inhibited oxygen consumption and at 0.2, 1.0, and 5.0 mg/L significantly inhibited ATP level in comparison to the untreated control. The expression of genes related to the mitochondrial electron transport chain mev-1 and isp-1 was significantly downregulated. ROS levels in the mev-1 and isp-1 mutants after fluopimomide treatments did not change significantly compared with the untreated mutants, suggesting that mev-1 and isp-1 may play critical roles in the toxicity induced by fluopimomide. Overall, the results demonstrate that oxidative stress and mitochondrial damage may be involved in toxicity of fluopimomide in C. elegans.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenjing Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bingjie Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Gainesville, FL, 33031, USA
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Shandong Huayang Technology Co., Ltd, Tai'an, 271411, Shandong, China.
| |
Collapse
|
12
|
Han WR, Wang WL, Qiao TJ, Wang W, Su H, Xu CX, Wu QY. Ozone micro-bubble aeration using the ceramic ultrafiltration membrane with superior oxidation performance for 2, 4-D elimination. WATER RESEARCH 2023; 237:119952. [PMID: 37104935 DOI: 10.1016/j.watres.2023.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Micro-bubble aeration is an efficient way to promote ozonation performance, but the technology is challenged by extensive energy cost. Here, a ceramic ultrafiltration membrane was used to achieve ozone micro-bubble (0-80 µm) aeration in a simple way at gaseous pressures of 0.14-0.19 MPa. Compared with milli-bubble aeration, micro-bubble aeration increased the equilibrium aquatic O3 concentrations by 1.53-3.25 times and apparent O3 transfer rates by 3.12-3.35 times at pH 5.0-8.0. Consequently, the •OH yield was 2.67-3.54 times via faster O3 transfer to the aquatic solution followed by decomposition rather than interfacial reaction. Ozone micro-bubble aeration outperformed milli-bubble aeration, with the degradation kinetics of 2,4-D being 3.08-4.36 times higher. Both O3-oxidation and •OH oxidation were important to the promotion with the contributions being 35.8%-45.9% and 54.1%-64.2%, respectively. The operational and water matric conditions influenced the oxidation performance via both O3 oxidation and •OH oxidation, which is reported for the first time. In general, the ceramic membrane offered a low-energy approach of ozone micro-bubble aeration for efficient pollutant degradation. The O3 oxidation and •OH oxidation were proportionally promoted by ozone micro-bubble due to O3 transfer enhancement. Thus, the promotive mechanism can be interpreted as the synchronous enchantment on ozone exposure and •OH exposure for the first time.
Collapse
Affiliation(s)
- Wei-Ran Han
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Long Wang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tie-Jun Qiao
- Shenzhen Sinotsing environmental technologies company limited, Guangdong Province, Shenzhen 518055, China
| | - Wei Wang
- Beijing enterprises water group limited, Beijing 100020, China
| | - Hang Su
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chen-Xin Xu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
13
|
An W, Li X, Ma J, Ma L. Advanced treatment of industrial wastewater by ozonation with iron-based monolithic catalyst packing: From mechanism to application. WATER RESEARCH 2023; 235:119860. [PMID: 36934537 DOI: 10.1016/j.watres.2023.119860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
An Fe-based catalyst was prepared by oxidising waste Fe shavings directly in a solution. In engineering applications, Fe shavings were compressed and modified to form Fe-based monolithic catalyst packing. Both of which exhibited excellent catalytic activity in catalytic ozonation industrial wastewater after biochemical treatment. Fe-based monolithic catalyst packing has irregular channels, large porosity, small pore diameter, and the effective specific surface area (SSA) up to 3500 m2/m3, these characteristics are conducive to mass transfer, and promote the effective utilisation of •OH in the catalyst "action zone". A tower reactor (<3000 m3/d) and reinforced concrete construction reactor (>5000 m3/d) were designed according to the wastewater flow. Regression analysis showed that hydraulic residence time (HRT) and O3/CODin are important parameters in engineering design and operation. In addition, strategies for the application of Fe-based monolithic catalyst packing to wastewater with high salinity and high inorganic carbon concentration have been proposed. Fe-based monolithic catalyst packing catalytic ozonation is a relatively cost-effective and eco-friendly process with extremely broad application prospects in the advanced treatment of industrial wastewater.
Collapse
Affiliation(s)
- Wenhui An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xufang Li
- China Tiegong Investment & Construction Group Co., Ltd., Beijing 101300, China
| | - Jieting Ma
- Shanghai Municipal Engineering Design Institute 〈Group〉 Co., Ltd., Shanghai 200092, China
| | - Luming Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Shi J, Jiang J, Chen Q, Wang L, Nian K, Long T. Production of higher toxic intermediates of organic pollutants during chemical oxidation processes: A review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
15
|
Lu T, Guo Y, Shi J, Li X, Wu K, Li X, Zeng Z, Xiong Y. Identification and Safety Evaluation of Ochratoxin A Transformation Product in Rapeseed Oil Refining Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14931-14939. [PMID: 36331822 DOI: 10.1021/acs.jafc.2c04532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is an important mycotoxin detected in edible oil, and it can be effectively removed by classical edible oil refining processes. However, the fate of OTA in the refining process has not been reported. In this study, we systematically tracked the OTA changes during the oil refining process by fortifying 100 μg/kg OTA in crude rapeseed oil. Results showed that about 10.57%, 88.85%, and 0.58% of OTA were removed during the degumming, deacidification, and decolorization processes. Among them, 16.25% OTA was transferred to the byproducts, including 9.85% in degumming wastewater, 5.68% in soap stock, 0.14% in deacidification wastewater, and 0.58% in the decolorizer; 83.75% OTA was found to transform into the lactone ring opened OTA (OP-OTA) during the deacidification stage, which is attributed to the hydrolysis of the lactone ring of OTA in the alkali refining. The OP-OTA was verified to distribute in the soap stock, and small amounts of OP-OTA could be transferred to deacidified wastewater when the OTA pollution level reached 500 μg/kg in crude rapeseed oil. The OP-OTA exhibited strong toxicity, especially nephrotoxicity, as reflected by the cell viability assay and in silico toxicity. Therefore, the safety of the soap stock processing products from OTA-contaminated rapeseed deserves attention.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Jiachen Shi
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Kesheng Wu
- Jiangxi Agricultural Technology Extension Center, Nanchang, Jiangxi 330096, P.R. China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| |
Collapse
|
16
|
Zhang W, Liu H, Fu G, Li Y, Ji X, Zhang S, Wei M, Qiao K. Exposure to fluopimomide at sublethal doses causes oxidative stress in Caenorhabditis elegans regulated by insulin/insulin-like growth factor 1-like signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2529-2539. [PMID: 35833599 DOI: 10.1002/tox.23616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fluopimomide is an innovative pesticide, widely used for agricultural pest management; however, little is known about its effect on non-target organisms. This study was designed to assess the potential risk of fluopimomide and the molecular mechanisms using Caenorhabditis elegans, a common model animal. The oxidative stress-related indicators were analyzed in C. elegans after exposure to fluopimomide for 24 h at three sublethal doses (0.2, 1.0, and 5.0 mg/L). The results demonstrated that sublethal exposure to fluopimomide adversely affected the nematodes growth, locomotive behaviors, reproduction, and lifespan, accompanying with enhanced of reactive oxygen species (ROS) generation, lipid and lipofuscin accumulation, and malondialdehyde content. In addition, exposure to fluopimomide significantly inhibited antioxidant systems including superoxide dismutase, catalase, glutathione S-transferase, and glutathione in the nematodes. Moreover, the expression of oxidative stress-related genes of sod-3, hsp-16.1, gst-4, ctl-2, daf-16, and daf-2 were significantly down-regulated, while the expression of skn-1 was significantly up-regulated. Further evidence revealed that daf-16 and skn-1 mutant strains of C. elegans significantly decreased ROS production upon fluopimomide exposure compared with the wild-type nematodes. Overall, our findings indicated that exposure to fluopimomide at sublethal doses caused oxidative damage, mainly associated with insulin/IGF-1-like signaling pathway in C. elegans. This is the first report of potential toxic effects of fluopimomide even at low concentrations, providing a new insight into the mechanisms of toxicity to C. elegans by fluopimomide.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yujie Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Florida, USA
| | - Min Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
17
|
Pereira de Freitas LV, de Paula Terra G, de Souza Santos S, Sicupira LC, Silvério FO. Optimization and validation of liquid-liquid extraction with low-temperature purification (LLE-LTP) for determining fluopyram fungicide in water samples using HPLC-DAD. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2945-2952. [PMID: 35861165 DOI: 10.1039/d2ay01004f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluopyram is a fungicide and nematicide that belongs to the chemical group of benzamides, which act as succinate dehydrogenase inhibitors (SDHIs) on the mitochondrial respiratory chain of fungi. Despite being well known in several countries, there are few studies involving the optimization and validation of extraction methods for determining fluopyram in water samples. Therefore, this study aimed to optimize and validate liquid-liquid extraction with low-temperature purification (LLE-LTP) to determine fluopyram fungicide in water samples using high-performance liquid chromatography with diode array detection (HPLC-DAD). A two-level full factorial design was employed to optimize LLE-LTP which enabled achieving a recovery rate close to 100% and relative standard deviations (RSD) < 10.0%. The validation showed that the extraction method may be considered selective, precise, accurate, and linear in the range of 6.0 to 200 μg L-1. The LOD and LOQ were 4.0 and 6.0 μg L-1, respectively, proving the efficiency of this method for trace level determination of this fungicide in water samples. LLE-LTP coupled to HLPC-DAD analysis showed a matrix effect of less than 8% and it was applied in monitoring 20 environmental water samples, but no fluopyram residue was detected in the samples.
Collapse
Affiliation(s)
- Lucas Victor Pereira de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Gleysson de Paula Terra
- Department of Chemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Silas de Souza Santos
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, 39404-547, Montes Claros, Minas Gerais, Brazil.
| | - Lázaro Chaves Sicupira
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39447-790, Janaúba, Minas Gerais, Brazil
| | - Flaviano Oliveira Silvério
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, 39404-547, Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Naeem H, Ahmad KS. Fungal and bacterial assisted bioremediation of environmental toxicant (N-[2-[3-chloro-5-(trifluoromethyl)-2-pyridinyl] ethyl]-2-(trifluoromethyl) benzamide) holding benzamidic genesis elucidating the eco-friendly strategy. J Basic Microbiol 2022; 62:711-720. [PMID: 35417042 DOI: 10.1002/jobm.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/07/2022]
Abstract
Fluopyram (FLP) containing benzamidic genesis utilized for seed detoxification and as a foliar application is associated with low profound toxicity in mammals but long-term toxicology investigations have revealed that FLP can stimulate tumor growth. FLP attenuation has been the first time scrutinized employing microorganisms originally identified from soils. Biodegrative assays of four fungal strains; Aspergillus fumigatus (AFu), Aspergillus terreus (AT), Aspergillus flavus (AF), Aspergillus niger (AN), and three bacterial strains: Streptococcus pneumoniae (SP) Streptococcus pyogenes (SPy), and Escherichia coli (EC), were employed. Ten milligrams per liter FLP concentration was made employing separately microbe and analyzed for 35 days. The analytical technique was inclusive of ultraviolet-visible spectrophotometric and high-performance liquid chromatography procedure endeavored to test FLP biodegradation. SP and AT exhibited maximal potentiality to metabolize FLP. HPLC is indicative of several metabolites formations. FLP degradation by AFu, EC, SPy, AN, AF, AT, SP was observed to be 24.2%, 82.7%, 89.8%, 90.7%, 91.3%, 95.4%, and 99.3%, explicating the efficacy of all strains employed in FLP degradation. Current investigations are indicative of significant bioremediation strategies for xenobiotic mitigation. Furthermore, the current examinations are inclusive of the augmentation of biodegradative assays to be utilized on a large scale for efficient environmental management cost-effectively and sustainably.
Collapse
Affiliation(s)
- Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
19
|
Sarfaraj Hussain M, Azam F, Ahmed Eldarrat H, Haque A, Khalid M, Zaheen Hassan M, Ali M, Arif M, Ahmad I, Zaman G, Alabdallah NM, Saeed M. Structural, functional, molecular, and biological evaluation of novel triterpenoids isolated from Helichrysum stoechas (L.) Moench. collected from Mediterranean Sea bank: Misurata- Libya. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Jafari B, Godini H, Soltani RDC, Seydi E. Effectiveness of UV/SO 32- advanced reduction process for degradation and mineralization of trichlorfon pesticide in water: identification of intermediates and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20409-20420. [PMID: 34738214 DOI: 10.1007/s11356-021-17274-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the degradability, mineralization, proposed decomposition pathway, intermediate products, and toxicity of effluent from trichlorfon (TCF) degradation in water by UV/sulfite-advanced reduction process (UV/S-ARP). This study was experimentally performed in a photochemical reactor as a batch operation. The source of light was a UV lamp. Sulfite ion was used as the reducing agent. After the treatment, the residual concentration of TCF was measured by liquid chromatography equipped with tandem mass spectrometry (LC-MS/MS). UV/S-ARP had the highest performance at an initial pH of 7, a sulfite ion concentration of 120 mg/L, a contact time of 60 min, and a TCF concentration of 10 mg/L. Under such conditions, the degradation efficiency of TCF was 96.0%, and the amount of mineralization based on the removal of TOC and COD was 74.6% and 79.5%, respectively. The results of the degradation mechanism showed that eaq- and SO3•- have played the greatest role in dechlorination and transformation of TCF. Based on the identified intermediates, more complex compounds are transformed into compounds with simpler structures by UV/S-ARP. Evaluating the toxicity of TCF by-products via ECOSAR bioassay showed that as-generated intermediates do not have acute and chronic adverse effects on fish. The results of our study indicated that the advanced reduction process could be an effective process for the purification of TCF-contaminated water.
Collapse
Affiliation(s)
- Bahareh Jafari
- Department of Environmental Health Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Hatam Godini
- Department of Environmental Health Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.
- Research Center for Health, Safety and Environment (HSE), Alborz University of Medical Sciences, Karaj, Iran.
| | | | - Enayatollah Seydi
- Research Center for Health, Safety and Environment (HSE), Alborz University of Medical Sciences, Karaj, Iran
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
21
|
An X, Zong Z, Zhang Q, Li Z, Zhong M, Long H, Cai C, Tan X. Novel thermo-alkali-stable cellulase-producing Serratia sp. AXJ-M cooperates with Arthrobacter sp. AXJ-M1 to improve degradation of cellulose in papermaking black liquor. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126811. [PMID: 34388933 DOI: 10.1016/j.jhazmat.2021.126811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/26/2023]
Abstract
There is an urgent requirement to treat cellulose present in papermaking black liquor since it induces severe economic wastes and causes environmental pollution. We characterized cellulase activity at different temperatures and pH to seek thermo-alkali-stable cellulase-producing bacteria, a natural consortium of Serratia sp. AXJ-M and Arthrobacter sp. AXJ-M1 was used to improve the degradation of cellulose. Notably, the enzyme activities and the degradation rate of cellulose were increased by 30%-70% and 30% after co-culture, respectively. In addition, the addition of cosubstrates increased the degradation rate of cellulose beyond 30%. The thermo-alkali-stable endoglucanase (bcsZ) gene was derived from the strain AXJ-M and was cloned and expressed. The purified bcsZ displayed the maximum activity at 70 °C and pH 9. Mn2+, Ca2+, Mg2+ and Tween-20 had beneficial effects on the enzyme activity. Structurally, bcsZ potentially catalyzed the degradation of cellulose. The co-culture with ligninolytic activities significantly decreased target the parameters (cellulose 45% and COD 95%) while using the immobilized fluidized bed reactors (FBRs). Finally, toxicological tests and antioxidant enzyme activities indicated that the co-culture had a detoxifying effect on black liquor. Our study showed that Serratia sp. AXJ-M acts synergistically with Arthrobacter sp. AXJ-M1 may be potentially useful for bioremediation for black liquor.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Zhengbin Zong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China.
| | - Zhimin Li
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Min Zhong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Haozhi Long
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Changzhi Cai
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China
| | - Xiaoming Tan
- School of Life Sciences, Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, PR China
| |
Collapse
|
22
|
Liu Y, Zhang W, Wang Y, Liu H, Zhang S, Ji X, Qiao K. Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in Caenorhabditis elegans. CHEMOSPHERE 2022; 286:131830. [PMID: 34388432 DOI: 10.1016/j.chemosphere.2021.131830] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Fluopyram, a succinate dehydrogenase inhibitor fungicide and nematicide, has been used extensively for agricultural pest control and toxicologically affects non-target organisms. In the present study, Caenorhabditis elegans, a well-established model organism, was used to evaluate the toxic effect of fluopyram and the possible molecular mechanisms. C. elegans was exposed to fluopyram for 24 h at three sublethal concentrations (0.01, 0.05 and 0.25 mg/L) and the physiological, biochemical, and molecular indicators were examined. The results showed that sublethal exposure to fluopyram could cause damage to growth, locomotion behavior, feeding, lifespan and reproduction of the nematodes. Fluopyram exposure induced oxidative stress as indicated by increase of ROS production, lipofuscin and lipid accumulation, and MDA level in the nematodes. In contrast, exposure to fluopyram significantly decreased the activities of target enzyme SDH and antioxidant enzymes including SOD, CAT and GST. Moreover, the expression of genes associated with oxidative stress (e.g., gst-4, sod-3, fat-7, mev-1 and daf-16), intestinal damage (e.g., mtm-6, nhx-2, opt-2, pkc-3, par-6, act-5 and egl-8), and cell apoptosis (e.g., ced-13, ced-3, egl-38, efl-2, cep-1 and lgg-1) was significantly influenced after exposure to fluopyram. According to Pearson correlation analyses, significant correlation existed between 190 pairs of parameters, which indicated that fluopyram induced multiple toxic related effects in C. elegans. These findings suggest that oxidative stress, intestinal damage, and cell apoptosis may play major roles in toxicity of fluopyram in the nematodes.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Weiping Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ying Wang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL, 33031, USA
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
23
|
Liu X, Li H, Fang Y, Yang Z. Heterogeneous catalytic ozonation of sulfamethazine in aqueous solution using maghemite-supported manganese oxides. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Wang J, Sun Z. Successful application of municipal domestic wastewater as a co-substrate in 2,4,6-trichlorophenol degradation. CHEMOSPHERE 2021; 280:130707. [PMID: 33971410 DOI: 10.1016/j.chemosphere.2021.130707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP) is highly toxic and causes harmful effects on aquatic ecosystems and human health. In this study, wastewater containing high levels of 2,4,6-TCP was successfully co-metabolized by introducing municipal domestic wastewater (MDW) as the co-catabolic carbon source. The concentration of degraded 2,4,6-TCP increased from 0 to 208.71 mg/L by adjusting the influent MDW volume during a 150-day-long operation. An MDW dose of 500 mL was found optimal, with an average concentration of 250 mgCOD/L. Unlike the long-term experiment, changing the MDW adding mode in a typical cycle further increased the concentration of 2,4,6-TCP removed to 317 mg/L. The main MDW components, such as the sugars, VFAs, and slowly biodegradable organic substances, improved 2,4,6-TCP degradation, achieving a TOC removal efficiency of 90.98% and a dechlorination efficiency of 100%. The MDW level did not change the 2,4,6-TCP degradation rate (μTCP) in a typical cycle compared to the single carbon source, and the μTCP remained at a high level of 50 mg 2,4,6-TCP/h. Macrogenetic analysis demonstrated that MDW addition promoted the growth of 43 bacterial genera (41.49%) responsible for 2,4,6-TCP degradation and intermediates' metabolism. The key genes for 2,4,6-TCP metabolism (pcpA, chqB, mal-r, pcaI, pcaF, and fadA) were detected in the activated sludge, which were distributed among the 43 genera. To conclude, this study proposes a new carbon source for co-metabolism to treat 2,4,6-TCP-polluted wastewater.
Collapse
Affiliation(s)
- Jianguang Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
25
|
Dorn A, Hammel K, Dalkmann P, Faber D, Hellpointner E, Lamshoeft M, Telscher M, Bruns E, Seidel E, Hollert H. What is the actual exposure of organic compounds on Chironomus riparius? - A novel methodology enabling the depth-related analysis in sediment microcosms. CHEMOSPHERE 2021; 279:130424. [PMID: 33887594 DOI: 10.1016/j.chemosphere.2021.130424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
A novel active sampling method enabled determination of sediment depth profiles revealing the spatial distribution of model compounds N,N-dimethylsulfamide, fluopyram and bixafen (low, medium, high adsorption affinity) in sediment microcosms according to OECD Test 218/219 (Sediment-Water Chironomid Toxicity Test Using Spiked Sediment/Spiked Water). After the overlying water was removed, plastic tubes were inserted into the sediment and the microcosms were frozen. For depth-related analysis, each "sediment core" was mounted in a cutting device and sawed into three 5-mm-slices, respectively (top, middle, bottom). Each slice was centrifuged for sediment and pore water separation. By various sampling dates within 28 days, we could follow the behavior of model compounds depending on sorption affinities and display specific distribution patterns within the sediment. N,N-dimethylsulfamide showing no sediment adsorption, migrated unhindered in (OECD 219) and out (OECD 218) of the sediment via pore water, resulting in homogenous distributions in both test designs. Fluopyram with moderate adsorption affinity revealed a concentration gradient with declining amounts from top to bottom layer (OECD 219) and higher amounts in the middle and bottom layer as compared to the top layer (OECD 218). Bixafen providing a strong adsorption affinity accumulated in the top layer in OECD 219, while no concentration gradients became visible in OECD 218. For establishing a Toxic Substances in Surface Waters (TOXSWA) model, we compared our measurements with simulated results revealing good agreements. The presented methodology is a useful tool to determine more realistic sediment and pore water concentrations, which the Chironomid larvae are exposed to.
Collapse
Affiliation(s)
- Alexander Dorn
- Institute of Environmental Research, RWTH Aachen University, 52074, Aachen, Germany; Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany.
| | - Klaus Hammel
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Philipp Dalkmann
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Daniel Faber
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Eduard Hellpointner
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Marc Lamshoeft
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Markus Telscher
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Eric Bruns
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Erika Seidel
- Environmental Safety, Crop Science Division, Bayer, AG, 40789, Monheim, Germany
| | - Henner Hollert
- Institute of Environmental Research, RWTH Aachen University, 52074, Aachen, Germany; Institute of Ecology, Evolution & Diversity, Goethe Universität, 60438, Frankfurt Am Main, Germany
| |
Collapse
|
26
|
Swami S, Kumar B, Singh SB. Effect of ozone application on the removal of pesticides from grapes and green bell peppers and changes in their nutraceutical quality. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:722-730. [PMID: 34190028 DOI: 10.1080/03601234.2021.1940660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study evaluates the efficacy of ozonated water for the removal of pesticide residues in grapes and green bell peppers. Fruit fortified with pesticides (azoxystrobin, chlorothalonil, chlorpyrifos, cypermethrin, hexaconazole and methyl parathion) were subjected to 15 and 30 min aqueous ozone treatment. GC analysis of ozonated fruits showed a 48.67% to 96.95% decrease in pesticide residues of different pesticides. Methyl paraoxon, a toxic degradation product of methyl parathion, was detected in the ozonated water sample. To assess the effect of ozonation on the nutraceutical quality of fruits, the concentrations of eleven polyphenols and ascorbic acid were analyzed. The individual polyphenols showed different trend in 15 and 30 min treatment. Overall, there was an increase in the levels of all the polyphenols in grapes after 30 min ozonation treatment. In peppers, there was a net increase in quercetin, quercetin-3-O-glucoside, rutin and kaempferol in 30 min while other polyphenols were decreased. The ascorbic acid content of both the fruits was decreased by more than 70% upon ozonation. Thus, ozonation treatment was effective in pesticide removal. However, it changed the nutraceutical quality of grapes and green bell peppers.
Collapse
Affiliation(s)
- Saurabh Swami
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Birendra Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
27
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Anti-inflammatory, analgesic and molecular docking studies of Lanostanoic acid 3-O-α-D-glycopyranoside isolated from Helichrysum stoechas. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Li C, Zhu H, Guo Y, Xie Y, Cheng Y, Yu H, Qian H, Yao W. Investigation of the transformation and toxicity of trichlorfon at the molecular level during enzymic hydrolysis of apple juice. Food Chem 2020; 344:128653. [PMID: 33229164 DOI: 10.1016/j.foodchem.2020.128653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
Trichlorfon is one of the most widely used organophosphorus pesticides in agriculture. In this study, the extent of transformation of trichlorfon to dichlorvos (DDVP), during the polygalacturonase (PG) treatment of apple pulp was monitored. A transformation pathway is proposed for trichlorfon molecules, based on density functional theory (DFT) calculations. The transformation of trichlorfon involves hydroxyl substitution and cleavage, which was confirmed by molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) theory. In addition, the toxicity of trichlorfon and its transformed products was analyzed using Ecological Structure Activity Relationships (ECOSAR) software. The binding sites of the two pesticides are located in the hydrophobic grooves of the acetylcholinesterase (AChE) active site region and both pesticides form hydrophobic interactions and hydrogen bonds with a large number of surrounding amino acid residues. DDVP binds more strongly with AChE, so it is a better AChE inhibitor and more toxic than trichlorfon.
Collapse
Affiliation(s)
- Changjian Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Huimin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province, 266109, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
30
|
Chen J, Li QX, Song B. Chemical Nematicides: Recent Research Progress and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12175-12188. [PMID: 33079521 DOI: 10.1021/acs.jafc.0c02871] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant-parasitic nematodes have caused huge economic losses to agriculture worldwide and seriously threaten the sustainable development of modern agriculture. Chemical nematicides are still the most effective means to manage nematodes. However, the long-term use of organophosphorus and carbamate nematicides has led to a lack of field control efficacy and increased nematode resistance. To meet the huge market demand and slow the growth of resistance, new nematicides are needed to enter the market. The rational design and synthesis of new chemical scaffolds to screen for new nematicides is still a difficult task. We reviewed the latest research progress of nematicidal compounds in the past decade, discussed the structure-activity relationship and mechanism of action, and recommended some nematicidal active fragments. It is hoped that this review can update the recent progress on nematicide discoveries and provide new ideas for the design and mechanism of action studies of nematicides.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|