1
|
Li J, Peng X, Zeng P, Shen L, Li M, Guo Y. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review. CHEMOSPHERE 2024; 370:143874. [PMID: 39638125 DOI: 10.1016/j.chemosphere.2024.143874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangtian Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shenyang University of Technology, Shenyang, 110870, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; North China Electric Power University, Beijing, 102206, China
| | - Yanfei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Gu Q, Li M, Huo Y, Zhou Y, Jiang J, Ma Y, Wen N, Wei F, He M. Theoretical evidence for a pH-dependent effect of carbonate on the degradation of sulfonamide antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124710. [PMID: 39173865 DOI: 10.1016/j.envpol.2024.124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Carbonate (CO32-/HCO3-) have a significant impact on advanced oxidation processes (AOPs) by consuming reactive free radicals such as HO• to generate CO3•-. However, research on the mechanisms and kinetics of CO3•- remains limited. This study investigates the degradation mechanism and kinetics of sulfonamide antibiotics (SAs) by CO3•- through theoretical calculations. The calculation results revealed that the effect of CO3•- on SAs degradation is pH-dependent due to the dissociable sulfonamide group (-SO2NH-) of SAs in the common water treatment pH range (3-8). The main reaction type of CO3•- with both neutral and anionic molecules of SAs is single electron transfer reaction. Frontier molecular orbital theory (FMO) illustrated that deprotonation of the sulfonamide group of SAs decreases the charge density on the heterocyclic ring, facilitating the electrophilic addition of CO3•-. The second-order rate constants of the neutral and anionic molecules of SAs with CO3•- were calculated as 7.57 × 101∼1.84 × 108 and 1.81 × 107∼7.94 × 109 M-1 s-1, respectively, resulting in an increase in the apparent reaction rate constants with pH. Stepwise multiple linear regression was employed to predict reactivity with anionic sulfonamide antibiotics (SAs-). Two models with outstanding prediction and stability were developed with coefficients of determination R2 of 0.660 and 0.681, respectively. The degradation kinetics simulation indicated that in the UV/H2O2 process in the presence of carbonate, the degradation rate of SAs increased with pH. Furthermore, the contribution of CO3•- to SMX degradation increased while that of HO• decreased. This study highlights the contribution of carbonates to the micropollutant degradation in the UV/H2O2 process as the model, providing theoretical insights into the development of carbonate-based AOPs.
Collapse
Affiliation(s)
- Qingyuan Gu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Mingxue Li
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jinchan Jiang
- Weihai Water Conservancy Affairs Service Center, Weihai, 264200, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Nuan Wen
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Fenghua Wei
- Assets and Laboratory Management Office, Shandong University, Qingdao, 266237, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Jackulin F, Senthil Kumar P, Chitra B, Karthick S, Rangasamy G. A review on recent advancements in the treatment of polyaromatic hydrocarbons (PAHs) using sulfate radicals based advanced oxidation process. ENVIRONMENTAL RESEARCH 2024; 253:119124. [PMID: 38734294 DOI: 10.1016/j.envres.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Polyaromatic hydrocarbons (PAHs) are the most persistent compounds that get contaminated in the soil and water. Nearly 16 PAHs was considered to be a very toxic according US protection Agency. Though its concentration level is low in the environments but the effects due to it, is enormous. Advanced Oxidation Process (AOP) is an emergent methodology towards treating such pollutants with low and high molecular weight of complex substances. In this study, sulfate radical (SO4‾•) based AOP is emphasized for purging PAH from different sources. This review essentially concentrated on the mechanism of SO4‾• for the remediation of pollutants from different sources and the effects caused due to these pollutants in the environment was reduced by this mechanism is revealed in this review. It also talks about the SO4‾• precursors like Peroxymonosulfate (PMS) and Persulfate (PS) and their active participation in treating the different sources of toxic pollutants. Though PS and PMS is used for removing different contaminants, the degradation of PAH due to SO4‾• was presented particularly. The hydroxyl radical (•OH) mechanism-based methods are also emphasized in this review along with their limitations. In addition to that, different activation methods of PS and PMS were discussed which highlighted the performance of transition metals in activation. Also this review opened up about the degradation efficiency of contaminants, which was mostly higher than 90% where transition metals were used for activation. Especially, on usage of nanoparticles even 100% of degradation could be able to achieve was clearly showed in this literature study. This study mainly proposed the treatment of PAH present in the soil and water using SO4‾• with different activation methodologies. Particularly, it emphasized about the importance of treating the PAH to overcome the risk associated with the environment and humans due to its contamination.
Collapse
Affiliation(s)
- Fetcia Jackulin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - S Karthick
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
4
|
Xu T, Fan L, Xiong Z, Lai B. Insight into the Discriminative Efficiencies and Mechanisms of Peroxy Activation via Fe/Cu Bimetallic Catalysts for Wastewater Purification. Molecules 2024; 29:2868. [PMID: 38930932 PMCID: PMC11206741 DOI: 10.3390/molecules29122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Fe/Cu bimetallic catalysts have a synergistic effect that can effectively enhance catalytic activity, so Fe/Cu bimetallic catalysts have been extensively studied. However, the efficacy and mechanisms of Fe/Cu bimetallic catalysts' peroxidation activation have rarely been explored. In this study, Fe/Cu bimetallic materials were fabricated to catalyze different oxidizing agents, including peroxymonosulfate (PMS), peroxydisulfate (PDS), peroxyacetic acid (PAA), and hydrogen peroxide (H2O2), for the degradation of sulfamethoxazole (SMX). The Fe/Cu/oxidant systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). In the Fe/Cu/PMS, Fe/Cu/PDS, and Fe/Cu/PAA systems, the main reactive oxygen species (ROS) responsible for SMX degradation were hydroxyl radical (•OH) and singlet oxygen (1O2), while the main ROS was only •OH in the H2O2 system. The differences in the surface structure of the materials before and after oxidation were examined, revealing the presence of a large amount of flocculent material on the surface of the oxidized PMS material. Anion experiments and actual body experiments also revealed that the PMS system had a strong anti-interference ability. Finally, a comprehensive comparison concluded that the PMS system was the optimal system among the four oxidation systems. Overall, this work revealed that the PMS oxidant has a better catalytic degradation of SMX compared to other oxidizers for Fe/Cu, that PMS generates more ROS, and that the PMS system has a stronger resistance to interference.
Collapse
Affiliation(s)
- Tingjin Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Lu Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Serna-Carrizales JC, Zárate Guzmán AI, Forgionny A, Acelas N, Pérez S, Muñoz-Saldaña J, Ocampo-Perez R. Production of activated carbon from agave residues and its synergistic application in a hybrid adsorption-AOPs system for effective removal of sulfamethazine from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 250:118559. [PMID: 38412912 DOI: 10.1016/j.envres.2024.118559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Tequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles.
Collapse
Affiliation(s)
- Juan Carlos Serna-Carrizales
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - Ana I Zárate Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico; Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan, 45129, Mexico.
| | - Angélica Forgionny
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia.
| | - Nancy Acelas
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
| | - Sebastián Pérez
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc, Real de Juriquilla, 76230, Querétaro, Mexico
| | - Juan Muñoz-Saldaña
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc, Real de Juriquilla, 76230, Querétaro, Mexico
| | - Raúl Ocampo-Perez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|
6
|
Xie Z, Zhang Y, Li Z, Zhang S, Du C. Nitrogen-Doped Biochar for Enhanced Peroxymonosulfate Activation to Degrade Phenol through Both Free Radical and Direct Oxidation Based on Electron Transfer Pathways. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8520-8532. [PMID: 38608211 DOI: 10.1021/acs.langmuir.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Nowadays, super nitrogen-doped biochar (SNBC) material has become one of the most promising metal-free catalysts for activating peroxymonosulfate (PMS) to degrade organic pollutants. To understand the evolution of SNBC properties with fabrication conditions, a variety of SNBC materials were prepared and characterized by elemental analysis, N2 adsorption-desorption, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. We systematically investigated the activation potential of these SNBC materials for PMS to degrade phenol. SN1BC-800 with the best catalytic performance was obtained by changing the activation temperatures and the ratio of biochar to melamine. The effects of catalyst dosage, the PMS concentration, pH, and reaction temperature on phenol degradation were studied in detail. In the presence of 0.3 g/L SN1BC-800 and 1 g/L PMS, the removal rate of 20 mg/L phenol could reach 100% within 5 min. According to electron paramagnetic resonance spectra and free radical quenching experiments, a nonfree radical pathway of phenol degradation dominated by 1O2 and electron transfer was proposed. More interestingly, the excellent catalytic performance of the SN1BC-800/PMS system is universally applicable in the degradation of other typical organic pollutants. In addition, the degradation rate of phenol is still over 80% after five reuses, which shows that the SN1BC-800 catalyst has high stability and good application prospects in environmental remediation.
Collapse
Affiliation(s)
- Zengrun Xie
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai 264025, Shandong province, China
| | - Yuanyuan Zhang
- Environmental Monitor Station of Yantai, Shandong Province, China, No. 118, Qingnian South Road, Yantai 264000, Shandong province, China
| | - Zhiling Li
- Division of Science and Technology, Ludong University, Yantai 264025, Shandong province, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai 264025, Shandong province, China
| | - Chenyu Du
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai 264025, Shandong province, China
| |
Collapse
|
7
|
Hu Y, Han X, Deng S, Xu X, Kang J, Xi B, Jiang Y, Yang Y, Lv N. Core-Shell MnFe Nanocatalyst Derived from Prussian Blue Analogs for Peroxymonosulfate Activation: Nonradical Mechanism and Bimetallic Valence Cycle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6220-6228. [PMID: 38471015 DOI: 10.1021/acs.langmuir.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Sulfamethazine (SAT) is widely present in sediment, soil, rivers, and groundwater. Unfortunately, traditional water treatment technologies are inefficient at eliminating SAT from contaminated water. Therefore, developing an effective and ecologically friendly treatment procedure to effectively remove SAT is critical. This has raised concerns about its potential impact on the environment and human health. In this study, metal-organic-inorganic composites consisting of graphene-encapsulated Fe-Mn metal catalyst (Mn3Fe1-NC) were synthesized by calcining MnFe Prussian blue analogs (PBA) under a nitrogen atmosphere. The composites were applied to activate peroxymonosulfate (PMS) and facilitate the degradation of SAT in aquatic environments. The Mn3Fe1-NC, dosed with 5 mg, in combination with PMS, dosed with 1.5 mmol L-1, achieved a 91.8% degradation efficiency of SAT. The transformation of the CN skeleton led to the formation of a carbon shell structure, which consequently reduced metal ion leaching from the material. At various pH levels, the iron and manganese ions were observed to leach out at levels lower than 0.1392 and 0.0580 mg L-1, respectively. In contrast, the Mn3Fe1-NC was found to be minimally impacted by pH levels and coexisting ions present in the aqueous environment. Radical burst experiments and electrochemical analysis tests verified that degradation primarily occurs through the nonradical pathway of electron transfer. The active sites responsible for this process were identified as the Mn (IV) and graphitic-N atoms on the material, which facilitate direct electron transfer. Additionally, the presence of Fe atoms promotes the valence cycling of Mn atoms. This study introduces new insights into the reaction mechanism and the constitutive relationship of catalytic centers in nonradical oxidation reactions.
Collapse
Affiliation(s)
- Yuhan Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiayu Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ningqing Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
8
|
Tian K, Shen T, Xu P, Wang J, Shi F, Cao M, Zhang G, Zheng Q, Zhang G. Exploring the mechanism of norfloxacin removal and active species evolution by coupling persulfate activation with biochar hybridized Fe 3O 4 composites. CHEMOSPHERE 2024; 347:140666. [PMID: 37952816 DOI: 10.1016/j.chemosphere.2023.140666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In situ growth of dispersed active sites on substrates is a strategy for designing highly efficient catalysts for sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs). Here, magnetic biochar composite (Fe3O4/BC) was fabricated as an activator to trigger PDS (peroxydisulfate) for norfloxacin (NOR) removal, achieving reliable NOR removal efficiency (>90%) within 10 min. Based on the synergistic effect between Fe3O4 and BC, the removal rate increases to 0.0265 L mg-1 min-1. Fe3O4/BC exhibited decent adaptability, stability, and recyclability toward affecting factors variation during PDS activation, attributed to the synergistic effect between Fe3O4 and BC. The electron transfer of magnetic Fe3O4 coupled with the adsorption and conduction function of carbon skeleton, which overcomes typical problems as crystal agglomeration, metal leaching, and catalysts recovery etc. The electron-rich Fe(II) sites promote the radical pathway by generating reactive oxygen species (ROS, •OH, SO4•- and O2•-), and radicals evolution contributing to the form of 1O2 in non-radical pathway. Under the effect of multipath in NOR degradation, HPLC-QTOF-MS spectroscopy and DFT calculation revealed the possible degradation pathway of NOR. In addition, according to toxicity prediction, the overall NOR contamination toxicity of NOR was effectively alleviated by Fe3O4/BC + PDS system. Overall, this study presents a promising composite in PDS activation and views the active species evolution in the NOR removal system, which is crucial for mechanism study in relevant research in the future.
Collapse
Affiliation(s)
- Ke Tian
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinyi Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengyin Shi
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Menghan Cao
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guodong Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257029, China
| | - Qingzhu Zheng
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangshan Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Zhang Y, Liu G, Xue Y, Fu L, Qian Y, Hou M, Li X, Ling C, Zhang Y, Pan Y. Boron promoted Fe 3+/peracetic acid process for sulfamethazine degradation: Efficiency, role of boron, and identification of the reactive species. J Environ Sci (China) 2024; 135:72-85. [PMID: 37778842 DOI: 10.1016/j.jes.2022.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 10/03/2023]
Abstract
In this work, boron (B) was used to promote Fe3+/peracetic acid (Fe3+/PAA) for the degradation of sulfamethazine (SMT). An SMT degradation efficiency of 9.1% was observed in the Fe3+/PAA system over 60 min, which was significantly increased to 99.3% in the B/Fe3+/PAA system over 10 min. The B/Fe3+/PAA process also exhibited superior resistance to natural substances, excellent adaptability to different harmful substances, and good removal of antibiotics in natural fresh water samples. The mechanism of action of boron for Fe3+ reduction was determined using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, density functional theory (DFT) calculations, and electrochemical tests. The dominant role of •OH was confirmed using quenching experiments, electron spin resonance (EPR) spectroscopy, and quantitative tests. Organic radicals (R-O•) and Fe(IV) also significantly contribute to the removal of SMT. DFT calculations on the reaction between Fe2+ and the PAA were conducted to further determine the contribution from •OH, R-O•, and Fe(IV) from the perspective of thermodynamics and the reaction pathways. Different boron dosages, Fe3+ dosages, and initial pH values were also investigated in the B/Fe3+/PAA system to study their effect of SMT removal and the production of the reactive species. Fe(IV) production determined the kR-O•+Fe(IV) value suggesting that Fe(IV) may play a more important role than R-O•. A comparison of the results with other processes has also proved that the procedure described in this study (B/Fe3+/PAA) is an effective method for the degradation of antibiotics.
Collapse
Affiliation(s)
- Yanhong Zhang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Guangbing Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Yuzhu Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lichun Fu
- School of Iron and Steel, Soochow University, Suzhou 215000, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yawei Qian
- SUMEC Complete Equipment &Engineering Co., LTD., Nanjing 211500, China
| | - Minhui Hou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Chen Ling
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Wu J, Xu Z, Yao K, Wang Z, Li R, Zuo L, Liu G, Feng Y. Efficient degradation and detoxification of antibiotic Fosfomycin by UV irradiation in the presence of persulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167249. [PMID: 37739086 DOI: 10.1016/j.scitotenv.2023.167249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Fosfomycin (FOS) as a widely used antibiotic has been found in abundance throughout the environment, but little effort has been devoted to its treatment. In this study, we systemically looked into the degradation of FOS by ultraviolet-activated persulfate (UV/PS) in aqueous solutions. Our findings demonstrated that FOS can be degraded efficiently under the UV/PS, e.g., >90 % of FOS was degraded with 19,200 mJ cm-2 of UV irradiance and 20 μM of PS. HO was the dominant radical responsible for FOS degradation. FOS degradation increased as PS dosage increased, and higher degradation efficiency was observed at neutral pH. Natural water constitutes either promoted (e.g., Cu2+, Fe3+, and SO42-) or inhibited (e.g., humic acid, HCO3-, and CO32-) FOS degradation to varying degrees. Hydroxyl substitution, CP bond cleavage, and coupling reactions were the major degradation pathways for FOS degradation. Finally, the toxicity evaluation revealed that FOS was toxic to E. coli and S. aureus, but the toxicity of the intermediate products of FOS to E. coli and S. aureus rapidly decreased over time after UV/PS treatment. Therefore, these findings provided a fundamental understanding of the transformation process of FOS and supplied useful information for the environmental elimination of FOS contamination and its toxicity.
Collapse
Affiliation(s)
- Jingyi Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhe Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Yao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Ruobai Li
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Linzi Zuo
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Jiang M, Xu Z, Zhang X, Han Z, Zhang T, Chen X. Enhanced persulfate activation by ethylene glycol-mediated bimetallic sulfide for imidacloprid degradation. CHEMOSPHERE 2023; 341:140032. [PMID: 37659508 DOI: 10.1016/j.chemosphere.2023.140032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
CuFeS2 is regarded as a promising catalyst for heterogeneous activation to remove organic contaminants in wastewater. However, effects of solvents in regulating material synthesis and catalytic activity are still not clear. Herein, we reported the role of water, ethanol, ethylene glycol (EG), glycerol, and polyethylene glycol 200 on the synthesis of CuFeS2 micro-flowers and their performance in activating persulfate (PS) to remove imidacloprid (IMI) pesticide. The results showed that the solvent had an effect on the morphology, crystallinity, yields, specific surface areas and unpaired electrons of CuFeS2 micro-flowers. The degradation experiments revealed the efficient catalytic activity of EG-mediated CuFeS2 for heterogeneous PS activation. SO4•- and •OH were identified in EG-CuFeS2/PS system and •OH (90.4%) was the dominant reactive species. Meanwhile, stable 20% of η[PMSO2] (the molar ratio of PMSO2 generation to PMSO consumption) was achieved and demonstrated that Fe(IV) was also involved in the degradation process. Moreover, S2- promoted the cycling of Fe3+/Fe2+ and Cu2+/Cu+, enhancing the synergistic activation and reusability of the catalyst. Density functional theory (DFT) calculations verified that PS was adsorbed by Fe atom and electron transfer occurred on the catalyst surface. Three possible degradation pathways of IMI were proposed by analysis of the degradation intermediates and their toxicities were evaluated by ECOSAR. This study not only provides a theoretical foundation for catalyst design, but also promotes the industrial application of bimetallic sulfide Fenton-like catalysts for water management.
Collapse
Affiliation(s)
- Mengyun Jiang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xirong Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zizhen Han
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaochun Chen
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Huang ST, Lei YQ, Guo PR, Zhang WX, Liang JY, Chen X, Xu JW, Diao ZH. Degradation of Levofloxacin by a green zero-valent iron-loaded carbon composite activating peroxydisulfate system: Reactivity, products and mechanism. CHEMOSPHERE 2023; 340:139899. [PMID: 37611769 DOI: 10.1016/j.chemosphere.2023.139899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/11/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
In this study, a green zero-valent iron-loaded carbon composite (ZVI-SCG) was synthesized using coffee grounds and FeCl3 solution through two-steps method, and the synthesized ZVI-SCG was used in the activation of peroxydisulfate (PDS) to degrade Levofloxacin (LEX). Results revealed that ZVI-SCG exhibited a great potential for LEX removal by adsorption and catalytic degradation in the ZVI-SCG/PDS system, and 99% of LEX was removed in the ZVI-SCG/PDS system within 60 min. ZVI-SCG/PDS system showed a high reactivity toward LEX degradation under realistic environmental conditions. Also, the ZVI-SCG/PDS system could effectively degrade several quinolone antibiotics including gatifloxacin, ciprofloxacin and LEX in single and simultaneous removal modes. A potential reaction mechanism of LEX degradation by ZVI-SCG/PDS system was proposed, SO4•-, HO•, O2•- and 1O2 involved in radical and non-radical pathways took part in catalytic degradation of LEX by ZVI-SCG/PDS system, but HO• might be the main reactive species for LEX degradation. The possible degradation pathway of LEX was also proposed based on the identified ten intermediate products, LEX degradation was successfully achieved through decarboxylation, opening ring and hydroxylation processes. The potential toxicity of LEX and its oxidation products decreased significantly after treatment. This study provides a promising strategy of water treatment for the antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Shi-Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Yong-Qian Lei
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China.
| | - Wen-Xuan Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Yi Liang
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xie Chen
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jing-Wei Xu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Zeng-Hui Diao
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
13
|
Liang J, Huang W, Wei S, Tian C, Zhang X, Nong G, Wang S, Song H. Photodegradation performance and mechanism of sulfadiazine in Fe(III)-EDDS-activated persulfate system. ENVIRONMENTAL TECHNOLOGY 2023; 44:3518-3531. [PMID: 35389823 DOI: 10.1080/09593330.2022.2064238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
In order to overcome the shortcomings in the traditional Fenton process, Fe(III)-EDDS-activated persulfate advanced oxidation process under irradiation is carried out as a promising technology. The photodegradation of sulfadiazine (SD) in Fe(III)-EDDS-activated persulfate system was investigated in this paper. The results showed that SD could be effectively degraded in Fe(III)-EDDS/S 2 O 8 2 - /hv system. The effects of Fe(III):EDDS molar ratio, the concentration of Fe(III)-EDDS, and the concentration of S 2 O 8 2 - on SD degradation were explored. At neutral pH, when Fe(III):EDDS = 1:1, Fe(III)-EDDS = 0.1 mM, S 2 O 8 2 - = 1.5 mM, the best SD degradation was achieved. The experiment of external influence factors showed that the degradation of SD could be obviously inhibited by the presence of C O 3 2 - , S O 4 2 - , whereas the degradation of SD was almost unaffected by the addition ofCl-. The degradation of SD could be slightly inhibited by the presence of humic acid and NO3-. The effect of pH on SD degradation was investigated, and SD could be degraded effectively in the pH range of 3-9. ESR proved that 1O2, ·OH, S O 4 - , and O2- were produced in the process. S O 4 - and ·OH were identified as the main radicals while O2·- also played non-ignorable role. Eleven intermediate products of SD were analysed. The C = N, S-N, and S-C bonds of SD were attacked by radicals firstly, leading to a series of reactions that eventually resulted in the destruction of SD molecules and the formation of small organic molecules.
Collapse
Affiliation(s)
- Jianwei Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Wenyu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| | - Shiping Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Chengyue Tian
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Xinyun Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Guoyou Nong
- School of Resources, Environment and Materials, Guangxi University, Nanning, People's Republic of China
| | - Shuangfei Wang
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, People's Republic of China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, People's Republic of China
| |
Collapse
|
14
|
Zhou J, Chen T, Cui J, Chen Y, Zhao S, Qu JH, Wang Z, Pan J, Fan L. Responses of the microbial community and the production of extracellular polymeric substances to sulfamethazine shocks in a novel two-stage biological contact oxidation system. Front Microbiol 2023; 14:1240435. [PMID: 37711695 PMCID: PMC10499511 DOI: 10.3389/fmicb.2023.1240435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction The biological contact oxidation reactor is an effective technology for the treatment of antibiotic wastewater, but there has been little research investigating its performance on the sulfamethazine wastewater treatment. Methods In this study, a novel two-stage biological contact oxidation reactor was used for the first time to explore the impact of sulfamethazine (SMZ) on the performance, microbial community, extracellular polymeric substances (EPS), and antibiotic-resistant genes (ARGs). Results The chemical oxygen demand (COD) and ammonia nitrogen (NH 4 + -N) removal efficiencies kept stable at 86.93% and 83.97% with 0.1-1 mg/L SMZ addition and were inhibited at 3 mg/L SMZ. The presence of SMZ could affect the production and chemical composition of EPS in the biofilm, especially for the pronounced increase in TB-PN yield in response against the threat of SMZ. Metagenomics sequencing demonstrated that SMZ could impact on the microbial community, a high abundance of Candidatus_Promineofilum, unclassified_c__Anaerolineae, and unclassified_c__Betaproteobacteria were positively correlated to SMZ, especially for Candidatus_Promineofilum. Discussion Candidatus_Promineofilum not only had the ability of EPS secretion, but also was significantly associated with the primary SMZ resistance genes of sul1 and sul2, which developed resistance against SMZ pressure through the mechanism of targeted gene changes, further provided a useful and easy-implement technology for sulfamethazine wastewater treatment.
Collapse
Affiliation(s)
- Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Tian Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yan Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jian-Hang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Zitong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Jingshi Pan
- College of International Education, Henan University of Technology, Zhengzhou, Henan, China
| | - Lixin Fan
- College of International Education, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Wang L, Jiang N, Xu H, Luo Y, Zhang T. Trace Cu(II)-Mediated Selective Oxidation of Benzothiazole: The Predominance of Sequential Cu(II)-Cu(I)-Cu(III) Valence Transition and Dissolved Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12523-12533. [PMID: 37552881 DOI: 10.1021/acs.est.3c04134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Trace Cu(II), which inherently exists in soil and some water/wastewater, can trigger persulfate oxidation of some pollutants, but the oxidation capability and mechanism are not well understood, especially toward refractory pollutants. We report in this research that benzothiazole (BTH), a universal refractory pollutant typically originating from tire leachates and various industrial wastewater, can be facilely and selectively removed by peroxydisulfate (PDS) with an equimolar BTH/PDS stoichiometry in the presence of environmental-relevant contents of Cu(II) (below several micromoles). Comprehensive scavenging tests, electron spin resonance analysis, spectroscopy characterization, and electrochemical analysis, revealed that PDS first reduces the BTH-coordinated Cu(II) to Cu(I) and then oxidizes Cu(I) to high-valent Cu(III), which accounts for the BTH degradation. Moreover, once the reaction is initiated, the superoxide radical is probably produced in the presence of dissolved oxygen, which subsequently dominates the reduction of Cu(II) to Cu(I). This facile oxidation process is also effective in removing a series of BTH derivatives (BTHs) that are of environmental concern, thus can be used for their source control. The results highlight the sequential Cu(II)-Cu(I)-Cu(III) transition during PDS activation and the crucial role of contaminant coordination with Cu(II) in oxidative transformation.
Collapse
Affiliation(s)
- Lihong Wang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Ning Jiang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Haodan Xu
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Yiwen Luo
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Zhou S, Hu Y, Yang M, Liu Y, Li Q, Wang Y, Gu G, Gan M. Insights into the mechanism of persulfate activation with carbonated waste metal adsorbed resin for the degradation of 2,4-dichlorophenol. ENVIRONMENTAL RESEARCH 2023; 226:115639. [PMID: 36907348 DOI: 10.1016/j.envres.2023.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Superabsorbent resin (SAR) saturated with heavy metals poses a threat to surrounding ecosystem. To promote the reutilization of waste, resins adsorbed by Fe2+ and Cu2+ were carbonized and used as catalysts (Fe@C/Cu@C) to activate persulfate (PS) for 2,4-dichlorophenol (2,4-DCP) degradation. The heterogeneous catalytic reaction was mainly responsible for 2,4-DCP removal. The synergistic effect of Fe@C and Cu@C was propitious to 2,4-DCP degradation. Fe@C/Cu@C with a ratio of 2:1 showed the highest performance of 2,4-DCP removal. 40 mg/L 2,4-DCP was completely removed within 90 min under reaction conditions of 5 mM PS, pH = 7.0 and T = 25 °C. The cooperation of Fe@C and Cu@C facilitated the redox cycling of Fe and Cu species to supply accessible PS activation sites, enhancing ROS generation for 2,4-DCP degradation. Carbon skeleton enhanced 2,4-DCP removal via radical/nonradical oxidation pathways and via its adsorption to 2,4-DCP. SO4˙-, HO˙ and O2•- were the dominate radical species involved in 2,4-DCP destruction. Meanwhile, the possible pathways of 2,4-DCP degradation were proposed based on GC-MS. Finally, recycling tests proved catalysts exhibited recyclable stability. Aiming to resource utilization, Fe@C/Cu@C with satisfactory catalysis and stability, is promising catalyst for contaminated water treatment.
Collapse
Affiliation(s)
- Shuang Zhou
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yonglian Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Minglei Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yun Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Qingke Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Yanhong Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
17
|
Wu H, Hu Z, Liang R, Zhang X, Zhou M, Arotiba OA. B-doping mediated formation of oxygen vacancies in Bi 2Sn 2O 7 quantum dots with a unique electronic structure for efficient and stable photoelectrocatalytic sulfamethazine degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131696. [PMID: 37245365 DOI: 10.1016/j.jhazmat.2023.131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
This study devised a straightforward one-step approach that enabled simultaneous boron (B) doping and oxygen vacancies (OVs) production on Bi2Sn2O7 (BSO) (B-BSO-OV) quantum dots (QDs), optimizing the electrical structure of the photoelectrodes. Under light-emitting diode (LED) illumination and a low potential of 1.15 V, B-BSO-OV demonstrated effective and stable photoelectrocatalytic (PEC) degradation of sulfamethazine (SMT), achieving the first-order kinetic rate constant of 0.158 min-1. The surface electronic structure, the different factors influencing the PEC degradation of SMT, and the degradation mechanism were studied. Experimental studies have shown that B-BSO-OV exhibits strong visible light trapping ability, high electron transport ability, and superior PEC performance. DFT calculations show that the presence of OVs on BSO successfully reduces the band gap, controls the electrical structure, and accelerates charge transfer. This work sheds light on the synergistic effects of the electronic structure of B-doping and OVs in heterobimetallic oxide BSO under the PEC process and offers a promising approach for the design of photoelectrodes.
Collapse
Affiliation(s)
- Huizhong Wu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhongzheng Hu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiheng Liang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuyang Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| |
Collapse
|
18
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
19
|
Yin K, Hao L, Li G. CuO nanosheets incorporated scrap steel slag coupled with persulfate catalysts for high-efficient degradation of sulfonamide from water. ENVIRONMENTAL RESEARCH 2023; 216:114614. [PMID: 36272596 DOI: 10.1016/j.envres.2022.114614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient and magnetically recoverable persulfate (PS) catalyst was prepared for the removal of sulfonamide (SMD) from wastewater, which is difficult to be degraded by the conventional biological treatment. In this study, the scrap steel slag (SSS) was used as supporting carrier and the CuO nanosheet was incorporated on the surface of SSS. The optimal conditions were determined as follows: the dosage of CuO/SSS was 1 g L-1, the PS concentration was 4 mM and the optimal initial pH was 6.85. Under the optimal conditions, the maximum SMD removal efficiency of 80.29% was achieved within 30 min by using CuO/SSS + PS. In addition, the CuO/SSS + PS system had a wide pH range (5-9) and more than 60% removal efficiency of SMD could be obtained with the pH between 3 and 11. The mechanism based on the phase transformation of Cu(I/II), Cu(II/III) and Fe(II/III) was elucidated by using different analytical techniques, such as SEM, XRD, XPS, BET, FTIR, VSM characterization and free radical analysis. This study provided a new pathway for the SSS resource utilization and the effective degradation of SMD from the refractory wastewater by using CuO/SSS catalyst coupled with PS system.
Collapse
Affiliation(s)
- Keke Yin
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, 300457, Tianjin, China
| | - Guiju Li
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, 300457, Tianjin, China.
| |
Collapse
|
20
|
Liu D, Shi C, Nie Y, Peng W, Ming YA. Nano-CuOx for ciprofloxacin effective removal via wet peroxide oxidation catalysis and its practical application in wastewater. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using Cu(NO3)2·3H2O as active material and citric acid (CA) as complexing agent, heterogeneous catalyst nano-CuOx was prepared by sol-gel method. The catalytic wet peroxide oxidation (CWPO) reaction system was established accordingly. The system was used to treat ciprofloxacin (CIP) in simulated wastewater and real wastewater. The effects of the molar ratio of metal salt to CA, calcination temperature, H2O2 dosage, reaction temperature, and catalyst dosage on the physicochemical structure and the properties of CWPO were investigated. The results showed that when the molar ratio of CA to metal salt (Cu(NO3)2·3H2O) was 1.8, the calcination temperature was 500 °C, the concentration of H2O2 was 10 mmol · L–1, the reaction temperature was 95 °C, and the dosage of catalyst was 1 g · L–1, CWPO system has the best degradation effect on CIP. At thses optical conditions, the removal rate reached 86.8%, chemical oxygen demand (COD) removal rate reached 54.9%, and the recycling rate of the catalyst was very good. The refractory organics in actual pharmaceutical wastewater could be oxidized by this system as well, and the COD removal rate reaches 47%. The degradation mechanism of CIP showed that the main functions of the CWPO system were ·O2– and ·OH radicals. The possible degradation pathways were determined by ion chromatography to be intermediate products generated from piperazine ring cleavage, defluorination, decarboxylation, and quinoline hydroxylation of CIP. The catalyzing mechanism was investigated in detail; some useful information was obtained in this work.
Collapse
Affiliation(s)
- Dan Liu
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Changping Shi
- Wuhan Taichangyuan Environmental Protection Technology Co., Ltd., Wuhan, Hubei, China
| | - Yang Nie
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Wenjun Peng
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Yin-an Ming
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Zhang Z, Duan Y, Dai C, Li S, Chen Y, Tu Y, Leong KH, Zhou L. Oxidation of sulfamethazine by peracetic acid activated with biochar: Reactive oxygen species contribution and toxicity change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120170. [PMID: 36115488 DOI: 10.1016/j.envpol.2022.120170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA) as an emerging oxidative has been concerned increasingly due to its high oxidation capacity and low byproducts formation potential. This study was to investigate the oxidation of sulfamethazine (SMZ) by PAA activated with activated biochar (ABC) after thermal modification. The results demonstrated that PAA could be effectively activated by ABC to degrade SMZ in a wide pH range (3-9), which followed the pseudo-second-order kinetics (R2 > 0.99). Both non-radicals (singlet oxygen) and free radicals (alkoxy radicals, hydroxyl radicals) existed in the ABC/PAA system, and the degradation of SMZ was dominated by singlet oxygen. Humic acid (HA), SO42- and HCO3- slightly inhibited the degradation of SMZ in the ABC/PAA process, while Cl- and Br- promoted the degradation of SMZ. The cleavage of S-N, S-C bond, and SO2 extraction reaction rearrangement was the main oxidation process of SMZ. Meanwhile, the results of the ECOSAR program showed that the acute toxicity of most by-products was significantly reduced compared to SMZ, which revealed the potential applicability of the ABC/PAA process in the treatment of antibiotics pollution and their detoxification.
Collapse
Affiliation(s)
- Zhibo Zhang
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China
| | - Yanping Duan
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China.
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Si Li
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yuru Chen
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China
| | - Yaojen Tu
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, 200234, PR China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Tunku Abdul Rahman University, 31900, Kampar, Perak, Malaysia
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX, 78712, USA
| |
Collapse
|
22
|
Green and facile synthesis of heterojunction nanocatalyst: Insights and mechanism of antibiotics removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Bu Z, Hou M, Li Z, Dong Z, Zeng L, Zhang P, Wu G, Li X, Zhang Y, Pan Y. Fe3+/Fe2+ cycle promoted peroxymonosulfate activation with addition of boron for sulfamethazine degradation: Efficiency and the role of boron. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Heterogeneous Metal-Activated Persulfate and Electrochemically Activated Persulfate: A Review. Catalysts 2022. [DOI: 10.3390/catal12091024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The problem of organic pollution in wastewater is an important challenge due to its negative impact on the aquatic environment and human health. This review provides an outline of the research status for a sulfate-based advanced oxidation process in the removal of organic pollutants from water. The progress for metal catalyst activation and electrochemical activation is summarized including the use of catalyst-activated peroxymonosulfate (PMS) and peroxydisulfate (PDS) to generate hydroxyl radicals and sulfate radicals to degrade pollutants in water. This review covers mainly single metal (e.g., cobalt, copper, iron and manganese) and mixed metal catalyst activation as well as electrochemical activation in recent years. The leaching of metal ions in transition metal catalysts, the application of mixed metals, and the combination with the electrochemical process are summarized. The research and development process of the electrochemical activation process for the degradation of the main pollutants is also described in detail.
Collapse
|
25
|
Fan J, Wang Q, Yan W, Chen J, Zhou X, Xie H. Mn 3O 4-g-C 3N 4 composite to activate peroxymonosulfate for organic pollutants degradation: Electron transfer and structure-dependence. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128818. [PMID: 35427973 DOI: 10.1016/j.jhazmat.2022.128818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
A novel heterogeneous manganese/graphitic carbon nitride (Mn3O4-CN) catalyst for activating peroxymonosulfate (PMS) was successfully assembled using alkali precipitation. The g-C3N4 improved the composite's surface morphology, micro-porous structure, surface area, and particle size distribution, and an electron-rich center with Mn site was created. The Mn3O4-CN/PMS system exhibited high efficiency and stability when the solution pH varied from 3.0 to 9.0, with more than 90% of p-acetaminophen (ACT) removal in 30 min under experimental conditions. A possible reaction mechanism was proposed, primarily involving electron transfer from Mn (II) and Mn (III) to PMS along with the generation of·O2- and 1O2, and the degradation of ACT was attributed to the 1O2. Specifically, the degradation rate of phenolic compounds varied with their molecular structure in the following order: ACT > bisphenol A (BPA) > p-cresol (MP) > p-chlorophenol (CP) > phenol (Ph) > p-nitrophenol (NP). Further, the density functional theory (DFT) calculations indicated that the phenols' degradation efficiency was related to their adsorption energy and Bader charge value. These results improved our understanding of the manganese-based PMS non-radical dominated process and provided a method for predicting the degradation performance of phenols for the first time.
Collapse
Affiliation(s)
- Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Qiaoqiao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, PR China
| |
Collapse
|
26
|
Degradation of Tetracycline Hydrochloride by a Novel CDs/g-C3N4/BiPO4 under Visible-Light Irradiation: Reactivity and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In recent years, with the large-scale use of antibiotics, the pollution of antibiotics in the environment has become increasingly serious and has attracted widespread attention. In this study, a novel CDs/g-C3N4/BiPO4 (CDBPC) composite was successfully synthesized by a hydrothermal method for the removal of the antibiotic tetracycline hydrochloride (TC) in water. The experimental results showed that the synthesized photocatalyst was crystalline rods and cotton balls, accompanied by overlapping layered nanosheet structures, and the specific surface area was as high as 518.50 m2/g. This photocatalyst contains g-C3N4 and bismuth phosphate (BiPO4) phases, as well as abundant surface functional groups such as C=N, C-O, and P-O. When the optimal conditions were pH 4, CDBPC dosage of 1 g/L, and TC concentration of 10 mg/L, the degradation rate of TC reached 75.50%. Active species capture experiments showed that the main active species in this photocatalytic system were holes (h+), hydroxyl radicals, and superoxide anion radicals. The reaction mechanism for the removal of TC by CDBPC was also proposed. The removal of TC was mainly achieved by the synergy between the adsorption of CDBPC and the oxidation of both holes and hydroxyl radicals. In this system, TC was adsorbed on the surface of CDBPC, and then the adsorbed TC was degraded into small molecular products by an attack with holes and hydroxyl radicals and finally mineralized into carbon dioxide and water. This study indicated that this novel photocatalyst CDBPC has a huge potential for antibiotic removal, which provides a new strategy for antibiotic treatment of wastewater.
Collapse
|
27
|
Dong Q, Dong H, Li Y, Xiao J, Xiang S, Hou X, Chu D. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128601. [PMID: 35255337 DOI: 10.1016/j.jhazmat.2022.128601] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In this work, zero-valent Fe-Cu bimetallic nanoparticles were synthesized using a facile method, and applied to activate sulfite for the degradation of sulfamethazine (SMT) from the aqueous solution. The key factors influencing SMT degradation were investigated, namely the theoretical loading of Cu, Fe-Cu catalyst dosage, sulfite concentration and initial solution pH. The experimental results showed that the Fe-Cu/sulfite system exhibited a much better performance in SMT degradation than the bare Fe0/sulfite system. The mechanism and possible degradation pathway of SMT in Fe-Cu/sulfite system were revealed. The reactive radicals that played a dominant role in the SMT degradation process were •OH and SO4•-, while the loading of Cu induced the synergistic effect between Fe and Cu. The redox cycle between Cu(I)/Cu(II) remarkably contributed to the conversion of Fe(III) to Fe(II), greatly enhancing the catalytic performance of Fe-Cu bimetal. In real groundwater applications, the Fe-Cu/sulfite system also exhibited satisfactory SMT degradation. The 30-day aging tests of Fe-Cu particles demonstrated that the aging of catalyst was not obviously affecting the removal of SMT. Furthermore, the reusability of catalyst was evidenced by the recycling experiments. This study provides a promising application of bimetal activated sulfite for enhanced contaminant degradation in groundwater.
Collapse
Affiliation(s)
- Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
28
|
Ding D, Mei Z, Huang H, Feng W, Chen L, Chen Y, Zhou J. Oxygen-Independent Sulfate Radical for Stimuli-Responsive Tumor Nanotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200974. [PMID: 35488513 PMCID: PMC9189647 DOI: 10.1002/advs.202200974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Indexed: 05/08/2023]
Abstract
Variant modalities are quested and merged into the tumor nanotherapy by leveraging the excitation from external or intratumoral incentives. However, the ubiquitous hypoxia and the insufficient content of hydrogen peroxide (H2 O2 ) in tumor microenvironments inevitably hinder the effective production of reactive oxygen species (ROS). To radically extricate from the shackles, peroxymonosulfate (PMS: HSO5- )-loaded hollow mesoporous copper sulfide (CuS) nanoparticles (NPs) are prepared as the distinct ROS donors for sulfate radical (•SO4- )-mediated and stimuli-responsive tumor nanotherapy in an oxygen-independent manner. In this therapeutic modality, the second near-infrared laser irradiation, together with the released copper ions as well as the heat produced by CuS after illumination, work together to activate PMS thus triply ensuring the copious production of •SO4- . Different from conventional ROS, the emergence of •SO4- , possessing a longer half-life and more rapid reaction, is independent of the oxygen (O2 ) and H2 O2 content within the tumor. In addition, this engineered nanosystem also exerts the function of photoacoustic imaging and skin restoration on the corresponding animal models. This study reveals the enormous potential of sulfate radical in oncotherapy and broadens pave for exploring the application of multifunctional and stimuli-responsive nanosystems in biomedicine.
Collapse
Affiliation(s)
- Dandan Ding
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Zihan Mei
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Hui Huang
- Shanghai Engineering Research Center of Organ RepairMaterdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Feng
- Shanghai Engineering Research Center of Organ RepairMaterdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Liang Chen
- Shanghai Engineering Research Center of Organ RepairMaterdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Shanghai Engineering Research Center of Organ RepairMaterdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- School of MedicineShanghai UniversityShanghai200444P. R. China
- Wenzhou Institute of Shanghai UniversityWenzhou325000P. R. China
| | - Jianqiao Zhou
- Department of UltrasoundRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
29
|
Guo Z, Zhang Y, Gan S, He H, Cai N, Xu J, Guo P, Chen B, Pan X. Effective degradation of COVID-19 related drugs by biochar-supported red mud catalyst activated persulfate process: Mechanism and pathway. JOURNAL OF CLEANER PRODUCTION 2022; 340:130753. [PMID: 36032562 PMCID: PMC9396784 DOI: 10.1016/j.jclepro.2022.130753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 05/25/2023]
Abstract
With the global spread of the COVID-19 pandemic, the water pollution caused by extensive production and application of COVID-19 related drugs has aroused growing attention. Herein, a novel biochar-supported red mud catalyst (RM-BC) containing abundant free hydroxyl groups was synthesized. The RM-BC activated persulfate process was firstly put forward to degrade COVID-19 related drugs, including arbidol (ARB), chloroquine phosphate, hydroxychloroquine sulfate, and acyclovir. Highly effective removal of these pharmaceuticals was achieved and even 100% of ARB was removed within 12 min at optimum conditions. Mechanism study indicated that SO4 •- and HO• were the predominant radicals, and these radicals were responsible for the formation of DMPOX in electron spin resonance experiments. Fe species (Fe0 and Fe3O4) and oxygen-containing functional groups in RM-BC played crucial roles in the elimination of ARB. Effects of degradation conditions and several common water matrices were also investigated. Finally, the degradation products of ARB were identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and possible degradation pathways were proposed. This study demonstrated that RM-BC/PS system would have great potential for the removal of COVID-19 related drug residues in water by the catalyst synthesized from the solid waste.
Collapse
Affiliation(s)
- Ziwei Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510000, China
| | - Shuchai Gan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nan Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Jingwei Xu
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 51000, China
| | - Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
30
|
Zhu L, Li M, Qi H, Sun Z. Using Fe-Cu/HGF composite cathodes for the degradation of Diuron by electro-activated peroxydisulfate. CHEMOSPHERE 2022; 291:132897. [PMID: 34780743 DOI: 10.1016/j.chemosphere.2021.132897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
An iron-copper graphite felt (Fe-Cu/HGF) electrode was successfully prepared by heat treatment and impregnation of graphite felt as the support followed by calcination, and an electro-activated peroxydisulfate (E-PDS) system with Fe-Cu/HGF as the cathode was constructed to degrade Diuron. This system synergistically activated PDS through electrochemical processes and transition metal catalysis. High-valence metal ions could be converted into low-valence metal ions by reduction at the cathode, and low-valence metal ions continuously activated PDS to generate more sulfate radicals (SO4-) and hydroxyl radicals (OH) to accelerate Diuron degradation. The Fe-Cu/HGF composite cathode exhibited a performance superior to graphite felt (RGF) obtained using pretreatment only, including increased hydrophilicity, significantly increased number of defect sites and larger electroactive surface area. Under optimized experimental degradation conditions, Diuron could be completely removed in 35 min, at which time copper ion leaching was not detected in the solution, while the total iron ion concentration was 0.27 mg L-1. Extending the reaction time to 6 h, the amount of total organic carbon was reduced to 32.2%. In addition, the free radicals that degraded Diuron were identified as mainly SO4- and OH with a slightly higher contribution of SO4-. The mechanism and pathways of Diuron degradation in the E-PDS system were determined. The E-PDS system was successfully applied to the degradation of other pollutants and the degradation of Diuron in different simulated water environments. In summary, the E-PDS system using Fe-Cu/HGF as the cathode is a promising treatment method for Diuron-containing wastewater.
Collapse
Affiliation(s)
- Lijing Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Mengya Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
31
|
Tan J, Li Z, Li J, Meng Y, Yao X, Wang Y, Lu Y, Zhang T. Visible-light-assisted peroxymonosulfate activation by metal-free bifunctional oxygen-doped graphitic carbon nitride for enhanced degradation of imidacloprid: Role of non-photochemical and photocatalytic activation pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127048. [PMID: 34537642 DOI: 10.1016/j.jhazmat.2021.127048] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional oxygen-doped graphitic carbon nitride (OCN) was fabricated to activate peroxymonosulfate (PMS) for degrading imidacloprid (IMD). The modulated electronic structure of OCN promoted the adsorption, electron transfer, and formation of the redox site of PMS. The light absorption capacity, and the separation and migration speed of photogenerated carriers of OCN were increased. Consequently, 94.5% of IMD (3.0 mg/L) was removed by OCN-10/PMS process in 2.0 h. Compared with g-C3N4/PMS (0.048 h-1), the IMD degradation rate constant of OCN-10/Vis/PMS system (1.501 h-1) was increased by 30.3 times. The PMS oxidation on electron-deficient C atoms and holes, the PMS reduction around electron-rich O atoms and photogenerated electrons, and the multiple reactions of superoxide radical were the sources of the main active species singlet oxygen. Moreover, even under different pH conditions, coexisting anions, humic acid, and other neonicotinoid pesticides, the OCN-10/Vis/PMS system still showed acceptable applicability. Finally, mass spectrometry identified that hydroxylation and N-dealkylation of amines were the primary degradation pathways of IMD. This paper demonstrates an environmental-friendly combined activation strategy of PMS that can be operated day and night with low energy consumption, aiming to pave the way for developing metal-free photocatalysts for high-efficient environmental purification based on advanced oxidation coupling technology.
Collapse
Affiliation(s)
- Jie Tan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Meng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Lu
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
32
|
Cai J, Zhang Y. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8281-8293. [PMID: 34482464 DOI: 10.1007/s11356-021-16156-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Sulfide-modified nanoscale zero-valent iron (S-nZVI) has been considered an efficient material to remove heavy metals and organic contaminants. The experiments of bisphenol S (BPS) degradation by persulfate (PS) activated with S-nZVI (S-nZVI/PS) or nZVI (nZVI/PS) were carried out in this paper. The results show that, compared to the bare nZVI/PS system, the S-nZVI/PS system shows higher activity in BPS degradation, especially at high BPS concentration. The reaction rate constant kobs of BPS removal by the S-nZVI/PS system (0.142 min-1) was much higher than that in nZVI/PS system (0.089 min-1) because more oxidation species were generated in the S-nZVI/PS system. The results of electron paramagnetic resonance (EPR) and radical quenching tests show that both hydroxyl radical (·OH) and sulfate radical (SO4·-) were involved in the degradation of BPS and had a great contribution to BPS removal. Moreover, the effects of S/Fe molar ratio, S-nZVI dosage, initial pH, and initial concentration of PS or BPS on S-nZVI/PS were also studied. The results show that the S/Fe molar ratio has significant influence on the BPS degradation; over 97.7% of the removal efficiency was achieved at 0.035 of S/Fe molar ratio. And the removal efficiency of BPS degradation increased with the increase of the dosage of S-nZVI, PS concentration. Furthermore, BPS could be efficiently removed in solutions with a wide range of initial pH (3.13-9.35). The observed results show that it is promising in the removal of micro-pollutants from water by persulfate activated with S-nZVI.
Collapse
Affiliation(s)
- Jing Cai
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Wu CH, Dong CD, Chen CW, Lin YL. Mineralization of sulfamethoxazole by ozone-based and Fenton/Fenton-like-based processes. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Zhang Y, Chu W. Bisphenol S degradation via persulfate activation under UV-LED using mixed catalysts: Synergistic effect of Cu-TiO 2 and Zn-TiO 2 for catalysis. CHEMOSPHERE 2022; 286:131797. [PMID: 34426121 DOI: 10.1016/j.chemosphere.2021.131797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A photocatalyst composed of Zn-TiO2 and Cu-TiO2 through simple physical mixing was used to activate persulfate(PS) for Bisphenol S (BPS) degradation. Zn-TiO2 and Cu-TiO2 were prepared with a sol gel method and were characterized by X-ray diffraction (XRD), Raman, Transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The two catalysts have shown an obvious synergistic effect in the photocatalytic degradation process. When 5 mM persulfate and 0.3 g/L catalyst were used, the removal rate of mixed catalyst (0.2 g/L Zn-TiO2 and 0.1 g/L Cu-TiO2) is 100 % in 18 min, which is significantly better than that of 0.3 g/L Zn-TiO2(58 %) and 0.3 g/L Cu-TiO2(90 %). Typically, the effects of various operation parameters, including the ratio of Cu-TiO2/Zn-TiO2, catalyst dosage, persulfate dosage, initial concentration of BPS, and initial solution pH, were examined. Reactive oxygen species (ROS) in the UV/mixed catalyst/PS process was identified by scavenger and electron paramagnetic resonance (EPR) tests. The superoxide radicals generated by both Zn-TiO2 and the hydrolysis of persulfate in the system could accelerate the Cu (II)/Cu(I) redox cycles and results in the synergistic effect. This study proposed a new and effective way to improve the reaction by simply combining two catalysts, and unraveled the mechanism behind the synergistic effect, which could provide new ideas to use the catalyst more effectively for wastewater treatment or other areas.
Collapse
Affiliation(s)
- Yanlin Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
35
|
Tian K, Hu L, Li L, Zheng Q, Xin Y, Zhang G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Kiejza D, Kotowska U, Polińska W, Karpińska J. Peracids - New oxidants in advanced oxidation processes: The use of peracetic acid, peroxymonosulfate, and persulfate salts in the removal of organic micropollutants of emerging concern - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148195. [PMID: 34380254 DOI: 10.1016/j.scitotenv.2021.148195] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
In recent years, there has been increasing interest in using of advanced oxidation processes in water and wastewater decontamination. As a new oxidants peracids, mainly peracetic acid (PAA) and peracid salts, i.e. peroxymonosulfate (PMS) and persulfate (PS) are used. The degradation process of organic compounds takes place with the participation of radicals, including hydroxyl (•OH) and sulfate (SO4•-) radicals derived from the peracids activation processes. Peracids can be activated in homogeneous systems (UV radiation, d-electron metal ions, e.g. Fe2+, Co2+, Mn2+, base, ozonolysis, thermolysis, radiolysis), or using heterogeneous activation (metals with zero oxidation state, metal oxides, quinones, activated carbon, semiconductors). As a result of oxidation, products of a lower mass than the parent compounds, less toxic, and more susceptible to biodegradation are formed. An important task is to investigate the effect of the peracid activation method and matrix composition on the efficiency of contamination removal. The article presents the latest information about the application of peracids in the removal of organic micropollutants of emerging concern (mainly focuses on endocrine disrupted compounds). The most important information on peracetic acid, peroxymonosulfate and persulfate salts, and methods of their activation are presented. Current uses of these oxidants in organic micropollutants removal are also described. Information was collected on the factors influencing the oxidation process and the effectiveness of pollutant removal. This paper compares PAA, PMS and PS-based processes for the first time in terms of kinetics and efficiency.
Collapse
Affiliation(s)
- Dariusz Kiejza
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Poland
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland.
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Poland
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K St., 15-245 Bialystok, Poland
| |
Collapse
|
37
|
Huang Y, Jiang Q, Yu X, Gan H, Zhu X, Fan S, Su Y, Xu Z, He C. A combined radical and non-radical oxidation processes for efficient degradation of Acid Orange 7 in the homogeneous Cu(II)/PMS system: important role of chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51251-51264. [PMID: 33982257 DOI: 10.1007/s11356-021-14262-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Trace copper ion (Cu(II)) in water and wastewater can trigger peroxymonosulfate (PMS) activation to oxidize organic compounds, but it only works under alkaline conditions. In this work, we found that the presence of chloride could significantly accelerate the oxidation of Acid Orange 7 (AO7) by the Cu(II)/PMS process at a wide pH range (4.0-9.0). The observed pseudo-first-order rate constant k for AO7 oxidation was linearly correlated with the increased Cl- concentration (0-300 mM). An increase in mineralization rate was observed in the presence of Cl-, while the overall mineralization was quite low. Decomposition of PMS facilitated when Cl- concentration or pH value increased. Based on the scavenger experiments and electron paramagnetic resonance (EPR) measurement, the mechanism of Cu(II)-catalyzed PMS oxidation process in the presence of Cl- was proposed as both the radical and non-radical pathway, and 1O2 was the reactive oxygen species in the Cu(II)/PMS system. Finally, a possible degradation pathway of AO7 was elucidated. The feasibility of in situ utilizing high salinity and trace cupric species to accelerate the degradation of organic pollutants by the Cu(II)/PMS process in water and wastewater was demonstrated. However, the identification of undesired chlorinated by-products reminds us of cautiousness in assessing the application of Cu(II)/PMS system under chloride-rich environment. The findings of this work provide a simple and efficient approach to apply PMS in the remediation of refractory organic contaminants in the presence of trace cupric species under a high salinity environment with a wide range of pH.
Collapse
Affiliation(s)
- Ying Huang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Qiongji Jiang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xia Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Siyi Fan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yan Su
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhirui Xu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Cunrui He
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
38
|
Huang Y, Yu X, Gan H, Jiang L, Gong H. Degradation and chlorination mechanism of fumaric acid based on SO 4•-: an experimental and theoretical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48471-48480. [PMID: 33907958 DOI: 10.1007/s11356-021-12756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
It is well known that chloride ions could affect the oxidation kinetics and mechanism of contaminant based on SO4•- in the wastewater. Here, the degradation of an organic acid, fumaric acid (FA), was investigated in the presence of chloride (0-300 mM) by the Fe(II)/peroxymonosulfate (Fe(II)/PMS) system. A negative impact of chloride was observed on the rates of FA degradation. The degree of inhibitory effect was higher in Fe(II)/PMS addition order. Some chlorinated byproducts were identified during the FA oxidation process in the presence of Cl- by the ultraperformance liquid chromatography and quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS). With the increasing content of Cl-, an accumulation of adsorbable organic halogen (AOX), an increase in acute toxicity, and an inhibition of mineralization were observed. According to the results of kinetic modeling, the production and transformation of oxidative species were dependent on Cl- dosage and reaction time. SO4•- was supposed to be the main radical for FA degradation with Cl- concentration below 5 mM, whereas Cl2•- was primarily responsible for the depletion of FA at [Cl-] > 5 mM. A possible degradation pathway of FA was discussed. This study reveals the potential environmental risk of organic acid and is necessary to explore useful strategies for ameliorating the treatment of chloride-rich wastewater.
Collapse
Affiliation(s)
- Ying Huang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Li Jiang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Hancheng Gong
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
39
|
Yang LH, Qiao B, Xu QM, Liu S, Yuan Y, Cheng JS. Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125815. [PMID: 34492781 DOI: 10.1016/j.jhazmat.2021.125815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, seven laccase genes from different bacteria were linked with the signal peptides PelB, Lpp or Ompa for heterologous expression in E. coli. The recombinant strains were applied for the removal of sulfadiazine (SDZ), sulfamethazine (SMZ), and sulfamethoxazole (SMX). The results obtained for different signal peptides did not provide insights into the removal mechanism. The removal ratios of SDZ, SMZ, and SMX obtained with the recombinant strain 6#P at 60 h were around 92.0%, 89.0%, and 88.0%, respectively. The degradation pathways of sulfonamides have been proposed, including SO2 elimination, hydroxylation, oxidation, pyrimidine ring cleavage, and N-S bond cleavage. Different mediators participate in the degradation of antibiotics through different mechanisms, and different antibiotics have different responses to the same mediator. The addition of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) slightly promoted the removal of sulfonamides by most recombinant strains with different signal peptides, especially for the recombinant strain 2#O. The removal of sulfonamides by 1-hydroxybenzotriazole (HBT) varied with the recombinant strains. Syringaldehyde (SA) had a slight inhibitory effect on the removal of sulfonamides, with the most significant effect on strains 7#L and 7#O.
Collapse
Affiliation(s)
- Li-Hua Yang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China.
| | - Song Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
40
|
Liu T, Wu K, Wang M, Jing C, Chen Y, Yang S, Jin P. Performance and mechanisms of sulfadiazine removal using persulfate activated by Fe 3O 4@CuO x hollow spheres. CHEMOSPHERE 2021; 262:127845. [PMID: 32799147 DOI: 10.1016/j.chemosphere.2020.127845] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
A Fe-Cu bimetal catalyst (FCHS) was synthesized by depositing Fe3O4 on the shell of CuOx hollow spheres, which were prepared via a soft template method. Several characterization methods, including XRD, SEM-EDS&mapping, TEM, FTIR, and XPS, were used to reveal the morphology and surface properties of FCHS. The characterization results demonstrated that the double-shell hollow structure is formed with a dense coating of Fe3O4 nanoparticles on the surface of CuOx hollow spheres. FCHS can exhibit excellent catalytic activity to degrade sulfadiazine (SDZ) with the oxidant of persulfate (PS). The optimal SDZ removal performance was explored by adjusting reaction parameters, including catalyst dosage, oxidant dosage, and solution pH. The SDZ removal efficiency in the FCHS + PS system could reach 95% at the optimal reaction condition ([catalyst]0 = 0.2 g/L, [PS]0 = 2 mM, pH = 7.0) with 5 mg/L of SDZ. Meanwhile, the degradation efficiency decreased with the coexistence of phosphate or carbonate anions. According to the results of radicals scavenging experiments and the electron paramagnetic resonance analysis, the radicals of SO4·-, O2·- and ·OH generated in the FCHS + PS system contribute to the degradation of SDZ. Moreover, the results of XPS revealed that the solid-state charge-transfer redox couple of Fe(III)/Fe(II) and Cu(I)/Cu(II) can promote the activation of PS. It means that the cooperation effect between Cu oxides and Fe oxides in the double-shell structure is beneficial to the catalytic degradation of SDZ. Furthermore, four possible pathways for SDZ degradation were proposed according to the analysis of intermediate products detected by the LCMS-IT-TOF.
Collapse
Affiliation(s)
- Ting Liu
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China; Key Laboratory of Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China.
| | - Meng Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Chunyang Jing
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Yuanyuan Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| |
Collapse
|