1
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Formation of halonitromethanes from different nitrophenol compounds during UV/post-chlorination: Impact factors, DFT calculation, reaction mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174718. [PMID: 38997025 DOI: 10.1016/j.scitotenv.2024.174718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
2
|
Tang L, Li A, Kong M, Dionysiou DD, Duan X. Effects of wavelength on the treatment of contaminants of emerging concern by UV-assisted homogeneous advanced oxidation/reduction processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165625. [PMID: 37481088 DOI: 10.1016/j.scitotenv.2023.165625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Pollutants of emerging concern in aqueous environments present a significant threat to both the aquatic ecosystem and human health due to their rapid transfer. Among the various treatment approaches to remove those pollutants, UV-assisted advanced oxidation/reduction processes are considered competent and cost-effective. The treatment effectiveness is highly dependent on the wavelength of the UV irradiation used. This article systematically discusses the wavelength dependency of direct photolysis, UV/peroxides, UV/chlor(am)ine, UV/ClO2, UV/natural organic matter, UV/nitrate, and UV/sulfite on the transformation of contaminants. Altering wavelengths affects the photolysis of target pollutants, photo-decay of the oxidant/reductant, and quantum yields of reactive species generated in the processes, which significantly impact the degradation rates and formation of disinfection byproducts. In general, the degradation of contaminants is most efficient when using wavelengths that closely match the highest molar absorption coefficients of the target pollutants or the oxidizing/reducing agents, and the contribution of pollutant absorption is generally more significant. By matching the wavelength with the peak absorbance of target compounds and oxidants/reductants, researchers and engineers have the potential to optimize the UV wavelengths used in UV-AO/RPs to effectively remove pollutants and control the formation of disinfection byproducts.
Collapse
Affiliation(s)
- Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Aozhou Li
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghao Kong
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Li J, Zhang Z, Xiang Y, Jiang J, Yin R. Role of UV-based advanced oxidation processes on NOM alteration and DBP formation in drinking water treatment: A state-of-the-art review. CHEMOSPHERE 2023; 311:136870. [PMID: 36252895 DOI: 10.1016/j.chemosphere.2022.136870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Oxidative treatment of drinking water has been practiced for more than a century. UV-based advanced oxidation processes (UV-AOPs) have emerged as promising oxidative treatment technologies to eliminate recalcitrant chemicals and biological contaminants in drinking water. UV-AOPs inevitably alter the properties of natural organic matter (NOM) and affect the disinfection byproduct (DBP) formation in the post-disinfection. This paper provides a state-of-the-art review on the effects of UV-AOPs on the changes of NOM properties and the consequent impacts on DBP formation in the post-chlorination process. A tutorial review to the connotations of NOM properties (e.g., bulk properties, fractional constituents, and molecular structures) and the associated state-of-the-art analytical methods are firstly presented. The impacts of different radical-based AOPs on the changes of NOM properties together with the underlying NOM-radical reaction mechanisms are discussed. The impacts of alteration of NOM properties on DBP formation in the post-chlorination process are then reviewed. The current knowledge gaps and future research needs are finally presented, with emphases on the needs to strengthen the comparability of research data in literature, the accuracy in quantifying the reactive moieties of NOM, and the awareness of unknown DBPs in oxidative water treatment processes. The review and discussion improve the fundamental understanding of NOM-radical and NOM-chlorine chemistry. They also provide useful implications on the engineering design and operation of next-generation drinking water treatment plants.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999066, Hong Kong, PR China.
| |
Collapse
|
4
|
Zuo YT, Cheng S, Jiang HH, Han YZ, Ji WX, Wang Z, Zhou Q, Li AM, Li WT. Release and removal of algal organic matter during prechlorination and coagulation treatment of cyanobacteria-laden water: Are we on track? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153793. [PMID: 35150674 DOI: 10.1016/j.scitotenv.2022.153793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
A better understanding of the physicochemical properties and fate of algae-derived organic matter (AOM) in water treatments significantly benefits the control of algae-derived disinfection byprodcuts and process parameter optimization. In this study, we conducted a comprehensive investigation of the release and treatability of dissolved organic matter during prechlorination and postcoagulation treatments of cyanobacteria-laden source water via size-exclusion chromatography-tandem diode array detector, fluorescence detector and organic carbon detector. The results revealed that the allochthonous humic substances could protect algal cell membrane from damage during prechlorination at a low level of chlorine dose. Due to the release and oxidation of biopterins during prechlorination of M. aeruginosa cells, the variation of the humic-like fluorescence can be used to indicate the chlorine dose for a sufficient membrane damage of algae cells. The prechlorination of M. aeruginosa cells induced minimal release of large MW biopolymer fractions but much more release of low MW fractions E1 and E2 (i.e., unknown carbonaceous substances and fluorescent nitrogenous biopterins). The physically extracted AOM contained a large proportion of biopolymers and could not well represent those released during prechlorination treatment. During coagulation, the negative effect of humic substances on the coagulant demand to achieve algae removal was more remarkable than AOM released by prechlorination. The high-MW biopolymers and humic substances can be removed over 50% by coagulation. Among the low-MW carbonaceous fractions, E1 released by prechlorination can also be effectively removed via coagulation while fractions C, D (possibly oligopeptides or secondary aromatic metabolites & low MW acids) and nitrogenous biopterins were recalcitrant to coagulation. This study highlights the differences of AOM properties between physical extraction and prechlorination and provides a basis for drinking water treatment plants to give more attention to the recalcitrant low MW fractions in coagulation when treating algae-laden source water.
Collapse
Affiliation(s)
- Yan-Ting Zuo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hao-Han Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Ze Han
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Xiang Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362008, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Zhu Y, Li W, Shu S, Wang Q, Gao N. Effects of MPUV/chlorine oxidation and coexisting bromide, ammonia, and nitrate on DBP formation potential of five typical amino acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153221. [PMID: 35063517 DOI: 10.1016/j.scitotenv.2022.153221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Disinfection byproduct (DBP) formation is a potential concern with regard to MPUV/Cl2 application in water treatment. In this study, five typical amino acids (AAs) were selected to investigate their DBP alteration during short-term medium pressure (MP) UV/chlorine oxidation following post-chlorination relative to parallel dark controls. The five selected AAs include two potent DBP precursors (aspartic acid and tryptophan), one modest precursor (asparagine) and two poor precursors (phenylalanine and proline). MPUV/chlorine increased the total DBP formation and DBP-associated cytotoxicity of the two poor precursors phenylalanine (Phe) and proline (Pro) as well as their chlorine demands. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent DBP precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. The two aromatic AAs (tryptophan and phenylalanine) were more readily to be affected by MPUV/Cl2 oxidation especially at acidic pH condition. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. Among the measured DBPs, the absolute formation potential changes of haloacetic acids and haloacetonitriles were the most prominent. Presence of bromide increased the trihalomethane formation potential of five AAs. Ammonia-spiked samples resulted in notably higher chlorine demands but slightly reduced DBPFP. Photonitration caused increased haloacetonitrile and trichloronitromethane formation but lower overall DBP formation potential and DBP-associated cytotoxicity. Results indicated that increased DBP formation of unreactive aromatic AAs may be problematic with respect to MPUV/Cl2 application, while the presence of inorganic ions may not contribute to further increase in calculated cytotoxicity of measured DBPs.
Collapse
Affiliation(s)
- Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wanting Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qiongfang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Wang J, Bu L, Wu Y, Sun J, Li G, Zhou S. Disinfection profiles and mechanisms of E. coli, S. aureus, and B. subtilis in UV365/chlorine process: Inactivation, reactivation, and DBP formation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|