1
|
Liu C, Wang H, Usman M, Ji M, Sha J, Liang Z, Zhu L, Zhou L, Yan B. Nonmonotonic effect of CuO nanoparticles on medium-chain carboxylates production from waste activated sludge. WATER RESEARCH 2023; 230:119545. [PMID: 36623384 DOI: 10.1016/j.watres.2022.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The growing applications of CuO nanoparticles (NPs) in industrial and agriculture has increased their concentrations in wastewater and subsequently accumulated in waste activated sludge (WAS), raising concerns about their impact on reutilization of WAS, especially on the medium-chain carboxylates (MCCs) production from anaerobic fermentation of WAS. Here we showed that CuO NPs at 10-50 mg/g-TS can significantly inhibit MCCs production, and reactive oxygen species generation was revealed to be the key factor linked to the phenomena. At lower CuO NPs concentrations (0.5-2.5 mg/g-TS), however, MCCs production was enhanced, with a maximum level of 37% compared to the control. The combination of molecular approaches and metaproteomic analysis revealed that although low dosage CuO NPs (2.5 mg/g-TS) weakly inhibited chain elongation process, they displayed contributive characteristics both in WAS solubilization and transport/metabolism of carbohydrate. These results demonstrated that the complex microbial processes for MCCs production in the anaerobic fermentation of WAS can be affected by CuO NPs in a dosage-dependent manner via regulating microbial protein expression level. Our findings can provide new insights into the influence of CuO NPs on anaerobic fermentation process and shed light on the treatment option for the resource utilization of CuO NPs polluted WAS.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Haiqing Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA
| | - Mengyuan Ji
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Jun Sha
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China.
| |
Collapse
|
2
|
Srivastava N, Srivastava KR, Bantun F, Mohammad A, Singh R, Pal DB, Mishra PK, Haque S, Gupta VK. Improved production of biogas via microbial digestion of pressmud using CuO/Cu 2O based nanocatalyst prepared from pressmud and sugarcane bagasse waste. BIORESOURCE TECHNOLOGY 2022; 362:127814. [PMID: 36031123 DOI: 10.1016/j.biortech.2022.127814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Biogas production through anaerobic digestions of organic wastes using microbes is a potential alternative to maintain the long term sustainability of the environment and also to full-fill the energy demands and waste management issues. In this context, pressmud can be a vital substrate which is generated from sugarcane industries and found to be broadly available. In this work, biogas improvement has been investigated in presence of CuO/Cu2O based nanocatalyst wherein pressmud is employed as a substrate in anaerobic digestion. Herein, CuO/Cu2O based nanocatalyst has been prepared using the aqueous extract prepared from the combination of PM and SCB which is employed as a reducing agent. The physicochemical properties of CuO/Cu2O nanocatalyst have been probed through different techniques and it is noticed that using 1.0 % CuO/Cu2O based nanocatalyst employed in AD process, cumulative biogas 224.7 mL CH4 /g VS could be recorded after 42 days.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Kumar Rohit Srivastava
- Indian Biogas Association, 216, Spaze i-Tech Park, Sector 49, Gurugram-122018, Haryana, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, Kanpur-208002, Uttar Pradesh, India
| | - P K Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; BursaUludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
3
|
Madadian E, Simakov DSA. Thermal degradation of emerging contaminants in municipal biosolids: The case of pharmaceuticals and personal care products. CHEMOSPHERE 2022; 303:135008. [PMID: 35643167 DOI: 10.1016/j.chemosphere.2022.135008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The presence of emerging contaminants in water and wastewater resources is of ongoing concern for public health and safety. Pharmaceutical compounds are designed to be biologically active and therefore may have effects on nontarget organisms in terrestrial and aquatic environments, even at trace concentrations. The presence of pharmaceutical and personal care products (PPCPs) in wastewater treatment plants is reported in various countries worldwide, mostly in the levels of nanograms to micrograms per litre. The present study investigates the thermal degradation of municipal sewage sludge containing PPCPs at various heating rates. The examined characteristics of the samples include thermal decomposition behavior, volatile release characteristics, and pyrolytic product composition. Thermal characterization of the PPCPs was conducted using differential scanning calorimetry. The gaseous products and typical functional groups of the released volatiles detected by Fourier-transform infrared spectroscopy mainly contained CO2, CO, small-chain hydrocarbons, and oxygen- and nitrogen-containing functional groups together with other species. In addition, the potential of bioenergy production was investigated as a spin-off opportunity during thermal degradation of biosolids. Study results showed that PPCP concentrations can be lowered significantly by thermal treatment of municipal biosolids. Antifungal/antibacterial agents together with opioids, in particular triclosan and tramadol, showed less resistance to thermal degradation while antibiotics could be more recalcitrant to heat treatment. The thermodynamic results provide an important reference for future reactor design and the thermochemical treatment of biosolids as well as their conversion to value-added products.
Collapse
Affiliation(s)
- Edris Madadian
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David S A Simakov
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Wu Q, Jiang X, Wu H, Zou L, Wang L, Shi J. Effects and Mechanisms of Copper Oxide Nanoparticles with Regard to Arsenic Availability in Soil-Rice Systems: Adsorption Behavior and Microbial Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8142-8154. [PMID: 35654440 DOI: 10.1021/acs.est.2c01393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are widely used as fungicides in agriculture. Arsenic (As) is a ubiquitous contaminant in paddy soil. The present study was focused on the adsorption behavior of CuO NPs with regard to As as well as the characteristics of the microbial community changes in As-contaminated soil-rice systems in response to CuO NPs. The study found that CuO NPs could be a temporary sink of As in soil; a high dose of CuO NPs promoted the release of As from crystalline iron oxide, which increased the As content in the liquid phase. The study also found that the As bioavailability changed significantly when the dose of CuO NPs was higher than 50 mg kg-1 in the soil-rice system. The addition of 100 mg kg-1 CuO NPs increased the microbial diversity and the abundance of genes involved in As cycling, decreased the abundance of Fe(III)-reducing bacteria and sulfate-reducing genes, and decreased As accumulation in grains. Treatment with 500 mg kg-1 CuO NPs increased the abundance of Fe(III)-reducing bacteria and sulfate-reducing genes, decreased Fe plaques, and increased As accumulation in rice. The adverse effects of CuO NPs on crops and associated risks need to be considered carefully.
Collapse
Affiliation(s)
- Qianhua Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lina Zou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lubin Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Jiao K, Yang B, Wang H, Xu W, Zhang C, Gao Y, Sun W, Li F, Ji D. The individual and combined effects of polystyrene and silver nanoparticles on nitrogen transformation and bacterial communities in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153358. [PMID: 35077800 DOI: 10.1016/j.scitotenv.2022.153358] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The effects of emerging contaminants micro/nanoplastics (MPs/NPs) and silver nanoparticles (Ag NPs) on health have attracted universal concern throughout the world. However, it is unclear on the combined effects of MPs/NPs and Ag NPs on the biogeochemistry cycle such as nitrogen transformation and functional microorganism in the soil. In the present study, we conducted a 45-day soil microcosm experiment with polystyrene (PS) MPs/NPs and Ag NPs to investigate their combined impact on nitrogen cycling and the bacterial community. The results showed that MPs or NPs exerted limited effects on nitrogen transformation in the soil. The combined effects of PS MPs/NPs and Ag NPs were mainly caused by the presence of Ag NPs. However, PS NPs alleviated the inhibition of anammox and denitrification induced by Ag NPs via upregulating anammox-related genes and elevating nitrate and nitrite reductase activities. PS MPs + Ag NPs treatment significantly reduced bacterial diversity. PS MPs/NPs + Ag NPs increased the relative abundances of denitrifying Cupriavidus by 0.32% and 0.06% but decreased nitrogen-fixing functional microorganisms of Microvirga (by 2.05% and 2.24%), Bacillus (by 0.16% and 0.22%), and Herbaspirillum (by 0.14% and 0.07%) at the genus level compared with Ag NPs alone. The significant downregulation of nitrogen-fixing genes (K02586, K02588, and K02591) was observed in PS MPs/NPs + Ag NPs treatment compared to Ag NPs in the nitrogen metabolism pathway. Moreover, g-Lysobacter and g-Aquimonas were identified as biomarkers in PS MPs + Ag NPs and PS NPs + Ag NPs by LEfSe analysis. Our study sheds the light that changes of functional microorganism abundances contributed to the alteration of nitrogen transformation. Taking the particle size of plastics into account will be helpful to accurately assess the combined ecological risks of plastics and nanomaterial contaminants.
Collapse
Affiliation(s)
- Keqin Jiao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China.
| | - Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Yongchao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan 250103, China
| | - Wen Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Feng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710054, China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| |
Collapse
|
6
|
Abdulsada Z, Kibbee R, Schwertfeger D, Princz J, DeRosa M, Örmeci B. Fate and removal of silver nanoparticles during sludge conditioning and their impact on soil health after simulated land application. WATER RESEARCH 2021; 206:117757. [PMID: 34715524 DOI: 10.1016/j.watres.2021.117757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The growing use of silver nanoparticles (AgNPs) in personal care products and clothing has increased their concentrations in wastewater and subsequently in sludge raising concerns about their fate and toxicity during wastewater treatment and after land application of sludge. This research investigated the fate and removal of AgNPs during chemical conditioning of anaerobically digested sludge and their impact on soil bacteria and health after land application. Ferric chloride (FeCl3), alum (Al2 (SO4)3 • (14-18) H2O), and synthetic (polyacrylamide) polymer were used for sludge conditioning. All conditioners effectively removed AgNPs from the liquid phase and concentrated them in sludge solids. Concentration analyses showed that out of 53.0 mg/L of silver in the sludge, only 0.1 to 0.003 mg/L of silver remained in the sludge supernatant after conditioning and 12 to 20% of this value were particulates. Morphological analyses also showed that AgNPs went through physical, chemical, and morphological changes in sludge that were not observed in nanopure water and the resulting floc structures and the incorporation of nanoparticles were different for each conditioner. The impact of conditioned AgNPs on the biological activities of soil was evaluated by investigating its impact on the presence of five important phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria). The results showed that AgNPs at a concentration of 20 mg AgNPs/g soil had a minimal impact on the presence and diversity of the assessed phyla. Also, using different chemicals for sludge conditioning resulted in different growth behavior of studied phyla. This study provides new insight into how the presence of AgNPs and different chemicals used for sludge conditioning might impact the soil biological activities and hence plant growth. The study also provides a solid basis for further research in the risk assessment of nanoparticle toxicity in biosolids amended soils.
Collapse
Affiliation(s)
- Zainab Abdulsada
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; Department of Environmental Engineering, University of Baghdad, Karrada, Al-Jadriya, Baghdad, Iraq (present address)
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Dina Schwertfeger
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON K1V 1C7, Canada
| | - Juliska Princz
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON K1V 1C7, Canada
| | - Maria DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
7
|
Ihtisham M, Noori A, Yadav S, Sarraf M, Kumari P, Brestic M, Imran M, Jiang F, Yan X, Rastogi A. Silver Nanoparticle's Toxicological Effects and Phytoremediation. NANOMATERIALS 2021; 11:nano11092164. [PMID: 34578480 PMCID: PMC8465113 DOI: 10.3390/nano11092164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The advancement in nanotechnology has brought numerous benefits for humans in diverse areas including industry, medicine, and agriculture. The demand in the application of nanomaterials can result in the release of these anthropogenic materials into soil and water that can potentially harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter, and water content), plants, animals, and subsequently human health. The properties of nanoparticles including their size, surface area, and reactivity affect their fate in the environment and can potentially result in their toxicological effects in the ecosystem and on living organisms. There is extensive research on the application of nano-based materials and the consequences of their release into the environment. However, there is little information about environmentally friendly approaches for removing nanomaterials from the environment. This article provides insight into the application of silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation of these metabolites using phytotechnology approaches. This article provides invaluable information to better understand the fate of nanomaterials in the environment and strategies in removing them from the environment.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Azam Noori
- Department of Biology, Merrimack College, North Andover, MA 01845, USA;
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Pragati Kumari
- Scientist Hostel-S-02, Chauras Campus, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Xiaojun Yan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
- Correspondence: (X.Y.); (A.R.)
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
- Correspondence: (X.Y.); (A.R.)
| |
Collapse
|