1
|
Wang T, Li X, Dan Q, Wang B, Wang H, Peng Y. Unraveling rapid start-up and stable maintenance of partial nitrification in domestic wastewater under high dissolved oxygen. BIORESOURCE TECHNOLOGY 2024; 418:131989. [PMID: 39694115 DOI: 10.1016/j.biortech.2024.131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/10/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Partial nitrification (PN), is a promising nitrogen removal technology in wastewater treatment. Contrary to the dogma that low dissolved oxygen (DO) is more conducive to achieving PN, this study successfully established PN within 7 days under high DO conditions (> 6 mg/L). Ultra-stable PN was maintained over 143 days with an average nitrite accumulation ratio of 98 % treating real domestic wastewater. Kinetics indicated that the maximum activity difference increased to 40 folds between ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacterium (NOB), resulting in AOB prospering while NOB declined. High DO operation reshaped the nitrifier community with AOB genera relative abundance increased substantially (0.1 %-1.2 %), while the predominant NOB Nitrospira was below the detection limit. Batch test confirmed the reproducibility of this strategy to achieve PN using ordinary activated sludge. This study provides an update on developing a feasible approach for the rapid realization and stable maintenance of mainstream PN.
Collapse
Affiliation(s)
- Tong Wang
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - HanBin Wang
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
2
|
Sun Q, Zhang Z, Ping Q, Wang L, Li Y. Insight into using multi-omics analysis to elucidate nitrogen removal mechanisms in a novel improved constructed rapid infiltration system: Functional gene and metabolite signatures. WATER RESEARCH 2024; 267:122502. [PMID: 39332349 DOI: 10.1016/j.watres.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
In this study, a laboratory-scale improved constructed rapid infiltration (imCRI) system with non-saturated and saturated layers was constructed, and corn cobs as solid carbon source were added to the saturated layer to enhance the removal of nitrogen. Combined analyses of metagenomics and metabolomics were conducted to elucidate the nitrogen removal mechanism in the imCRI system. The results showed that the hydraulic load significantly influenced the treatment performance of the imCRI system, and a hydraulic load of 1.25 m3/(m2⋅d) was recommended. Under optimal conditions, the imCRI system using simulated wastewater achieved average removal efficiencies of 97.8 % for chemical oxygen demand, 85.7 % for total nitrogen (TN), and 97.6 % for ammonia nitrogen. Metagenomic and metabolomic analyses revealed that besides nitrification and denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anammox, etc., are also involved in nitrogen metabolism in the imCRI system. Although nitrification was the predominant pathway in the non-saturated layer, aerobic denitrification also occurred, accounting for 22.59 % of the TN removal. In the saturated layer, nitrogen removal was attributed to synergistic effects of denitrification, DNRA and anammox. Moreover, correlation analysis among nitrogen removal, functional genes and metabolites suggested that metabolites related to the tricarboxylic acid cycle generated from the glycolysis of corn cobs provided sufficient energy for denitrification. Our results can offer a promising technology for decentralized wastewater treatment with stringent nitrogen removal requirements, and provide a foundation for understanding the underlying nitrogen transformation and removal mechanism.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment in Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
3
|
Li Z, Huang T, Wu W, Xu X, Wu B, Zhuang J, Yang J, Shi H, Zhang Y, Wang B. Carbon slow-release and enhanced nitrogen removal performance of plant residue-based composite filler and ecological mechanisms in constructed wetland application. BIORESOURCE TECHNOLOGY 2024; 402:130795. [PMID: 38705213 DOI: 10.1016/j.biortech.2024.130795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Stable carbon release and coupled microbial efficacy of external carbon source solid fillers are the keys to enhanced nitrogen removal in constructed wetlands. The constructed wetland plant residue Acorus calamus was cross-linked with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to create composite solid carbon source fillers (Ac-BDPs). The study demonstrated the slow release of carbon sources from Ac-BDPs with 35.27 mg/g under an average release rate of 0.88 mg/(g·d). Excellent denitrification was also observed in constructed wetlands with Ac-BDPs. Moreover, the average removal rate of nitrate nitrogen (NO3--N) was increased by 1.94 and 3.85 times of the blank groups under initial NO3--N inputs of 5 and 15 mg/L, respectively. Furthermore, the relatively high abundances of nap, narG, nirKS, norB, qnorZ and nosZ guaranteed efficient denitrification performance in constructed wetlands with Ac-BDPs. The study introduced a reliable technique for biological nitrogen removal by using composite carbon source fillers in constructed wetlands.
Collapse
Affiliation(s)
- Zhaoyang Li
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianyin Huang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Wei Wu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China.
| | - Bingdang Wu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Jinlong Zhuang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingjing Yang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Haochen Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Zhang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Xie Y, Zhang Q, Wu Q, Zhang J, Dzakpasu M, Wang XC. Novel adaptive activated sludge process leverages flow fluctuations for simultaneous nitrification and denitrification in rural sewage treatment. WATER RESEARCH 2024; 255:121535. [PMID: 38564890 DOI: 10.1016/j.watres.2024.121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The fluctuating characteristics of rural sewage flow pose a significant challenge for wastewater treatment plants, leading to poor effluent quality. This study establishes a novel adaptive activated sludge (AAS) process specifically designed to address this challenge. By dynamically adjusting to fluctuating water flow in situ, the AAS maintains system stability and promotes efficient pollutant removal. The core strategy of AAS leverages the inherent dissolved oxygen (DO) variations caused by flow fluctuations to establish an alternating anoxic-aerobic environment within the system. This alternating operation mode fosters the growth of aerobic denitrifiers, enabling the simultaneous nitrification and denitrification (SND) process. Over a 284-day operational period, the AAS achieved consistently high removal efficiencies, reaching 94 % for COD and 62.8 % for TN. Metagenomics sequencing revealed HN-AD bacteria as the dominant population, with the characteristic nap gene exhibiting a high relative abundance of 0.008 %, 0.010 %, 0.014 %, and 0.015 % in the anaerobic, anoxic, dynamic, and oxic zones, respectively. Overall, the AAS process demonstrates efficient pollutant removal and low-carbon treatment of rural sewage by transforming the disadvantage of flow fluctuation into an advantage for robust DO regulation. Thus, AAS offers a promising model for SND in rural sewage treatment.
Collapse
Affiliation(s)
- Yadong Xie
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055 China.
| | - Qi Wu
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China
| | - Jiyu Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055 China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055 China
| |
Collapse
|
5
|
Xiao K, Abbt-Braun G, Pleitner R, Horn H. Effect of ciprofloxacin on the one-stage partial nitrification and anammox biofilm system: A multivariate analysis focusing on size-fractionated organic components. CHEMOSPHERE 2024; 355:141731. [PMID: 38494003 DOI: 10.1016/j.chemosphere.2024.141731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The impact of ciprofloxacin (CIP) in the partial nitrification and anammox biofilm system was investigated by multivariate analysis, focusing on size-fractionated organic components. The CIP dose of 10 μg/L did not inhibit the total nitrogen (TN) removal efficiency, even though the abundance of antibiotic resistant genes (ARGs) (i.e., qnrD, qnrB, qnrA, qnrS, and arcA) was elevated. However, a gradual higher CIP dosing up to 100 μg/L inhibited the TN removal efficiency, while the abundance of ARGs was still increased. Moreover, both the TN removal efficiency and the abundant ARGs were dwindled at 470 μg/L of CIP. As the CIP dose increased from 0 to 100 μg/L, the abundance of high molecular weight (MW) fractions (14,000 to 87,000 Da; 1000 to 14,000 Da) and humic/fulvic acid-like components in the soluble extracellular polymeric substances (HSS) decreased, with more increases of low MW (84-1000 Da; less than 84 Da) fractions and soluble microbial by-products in soluble extracellular polymeric substances (SMPS). Continuously increasing the CIP dose till 470 μg/L, an inverse trend of the changes of these organic components was noted, along with clear reductions of the microbial diversity and richness, and the abundance of key functional genes responsible for nitrogen removal. The predominance of functional gene amoA (related with ammonia oxidizing bacteria) was more significantly with more distribution of SMPS with relatively low MW and less distribution of HSS with relatively high MW, as well as polymer decomposing microorganisms such as Bryobacteraceae and the unclassified Saprospirales.
Collapse
Affiliation(s)
- Keke Xiao
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, 515063, Shantou, Guangdong, China.
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| | - Robert Pleitner
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Xie Y, Zhang Q, Wu Q, Zhang J, Dzakpasu M, Wang XC. Nitrogen removal efficiency and mechanisms of an improved anaerobic-anoxic-oxic system for decentralized sewage treatment. BIORESOURCE TECHNOLOGY 2024; 393:129976. [PMID: 37972901 DOI: 10.1016/j.biortech.2023.129976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The unstable operation and poor effluent quality often associated with decentralized sewage treatment systems due to fluctuating water flows have garnered significant attention. In this study, a novel integrated process combining anoxic denitrification and simultaneous nitrification and denitrification was developed to address these challenges. The improved anaerobic-anoxic-aerobic system achieved average effluent concentrations of 20.83 mg/L and 4.63 mg/L for chemical oxygen demand and NH4+-N, with average removal rates of 91 % and 68 %, respectively. Moreover, the aerobic zone demonstrated an impressive efficiency of 40.8 % for simultaneous nitrification and denitrification. The key bacteria groups driving the system's performance were heterotrophic and aerobic nitrifying bacteria, which dominated the microbial populations. Overall, the system optimizes the traditional anaerobic-anoxic-aerobic process, providing an effective solution for fluctuating wastewater flows. It establishes a successful coexistence model for multiple microbial populations, highlighting its applicability for superior nitrogen removal performance, and reference for optimizing rural sewage treatment. TAKE HOME MESSAGE SENTENCE: The improved anaerobic-anoxic-aerobic system for fluctuating wastewater treatment has superior nitrogen removal performance depending on multiple microbial populations.
Collapse
Affiliation(s)
- Yadong Xie
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Qi Wu
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiyu Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
7
|
Zhou L, Chen J, Zhang X, Zhu Z, Wu Z, Zhang K, Wang Y, Wu P, Zhang X. Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166359. [PMID: 37595900 DOI: 10.1016/j.scitotenv.2023.166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.39 % during the treatment of real municipal wastewater. The relative abundances of the nitrification functional genes ammonia oxidase (amoA/B/C), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductases (nxrA/B) were increased by 1.2-2.4 times, and these three nitrification functional genes were mostly contributed by Nitrospira that dominated the efficient nitrification of the system. The relative abundance of anammox bacteria Candidatus Brocadia augmented from 0.35 % to 0.75 %, accompanied with the increased expression of hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh), resulting in the major role of anammox (81.24 %) for nitrogen removal. The expression enhancement of the functional genes nitrite reductase (narG/H, napA/B) that promoted partial denitrification (PD) of the system weakened the adverse effects of the sharp decline in the population of PD microbe Thauera (from 5.7 % to 2.2 %). The metabolic module analysis indicated that the carbon metabolism pathways of the system mainly included CO2 fixation and organic carbon metabolism, and the stable enrichment of autotrophic bacteria ensured stable CO2 fixation. Furthermore, the enhanced expression of the glucokinases (glk, GCK, HK, ppgk) and the abundant pyruvate kinase (PK) achieved stable hydrolysis ability of organic carbon metabolism function of the system. This study offers research basics to practical application of the mainstream anammox process.
Collapse
Affiliation(s)
- Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Feng L, Wu G, Zhang Z, Tian Z, Li B, Cheng J, Yang G. Improving denitrification performance of biofilm technology with salt-tolerant denitrifying bacteria agent for treating high-strength nitrate and sulfate wastewater from lab-scale to pilot-scale. BIORESOURCE TECHNOLOGY 2023; 387:129696. [PMID: 37598804 DOI: 10.1016/j.biortech.2023.129696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study focused on the application of salt-tolerant denitrifying bacteria (DBA) in an optimized biofilm process to treat high sulfate-nitrate wastewater from lab-scale to pilot-scale. Lab-scale results demonstrated the salinity, DBA inoculum, supplementary carbon and phosphorus source significantly varied the startup periods at the range of 36-74 d, and the optimum initial start-up conditions were as follows: >0.6 g/L of DBA, 2-4 of C/N ratio, 0.3-0.6 mg/L of phosphorus and a salinity-gradient domestication method. A pilot scale of biofilm technology with DBA was further developed for treating real wastewater from the desulfuration and denitration with both high nitrate (≈200 mg/L) and sulfate (2.7%). The denitrification efficiency reached above 90% after one-month gradient-salinity of 0.5%-2.7%. Mature biofilm had dominant genera Hyphomicrobium (31.80%-61.35%), Methylotenera (0.85%-20.21%) and Thauera (1.42%-8.40%), etc. Notably, the largest genera Hyphomicrobium covered the complete denitrification genes.
Collapse
Affiliation(s)
- Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guiyang Wu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zeliang Zhang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhijuan Tian
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Bu Li
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Junmei Cheng
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
9
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
10
|
Mei P, Wang Z, Guo W, Gao Y, A Vanrolleghem P, Li Y. The ASM2d model with two-step nitrification can better simulate biological nutrient removal systems enriched with complete ammonia oxidizing bacteria (comammox Nitrospira). CHEMOSPHERE 2023; 335:139169. [PMID: 37295682 DOI: 10.1016/j.chemosphere.2023.139169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The discovery of comammox Nitrospira, a complete ammonia-oxidizing microorganism belonging to the genus Nitrospira, has brought new insights into the nitrification process in wastewater treatment plants (WWTPs). The applicability of Activated Sludge Model No. 2 d with one-step nitrification (ASM2d-OSN) or two-step nitrification (ASM2d-TSN) for the simulation of the biological nutrient removal (BNR) processes of a full-scale WWTP in the presence of comammox Nitrospira was studied. Microbial analysis and kinetic parameter measurements showed comammox Nitrospira was enriched in the BNR system operated under low dissolved oxygen (DO) and long sludge retention time (SRT). The relative abundance of Nitrospira under the conditions of stage I (DO = 0.5 mg/L, SRT = 60 d) was about twice of that under stage II conditions (DO = 4.0 mg/L, SRT = 26 d), and the copy number of the comammox amoA gene for stage I was 33 times higher than that for stage II. Compared to the ASM2d-OSN model, the ASM2d-TSN model simulated the performance of the WWTP under stage I conditions better, and the Theil inequality coefficient values of all the tested water quality parameters were lower than using ASM2d-OSN. These results indicate that an ASM2d model with two-step nitrification is a better choice for the simulation of WWTPs with the presence of comammox.
Collapse
Affiliation(s)
- Peng Mei
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhiqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuan Gao
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, Shanghai, 200001, PR China
| | | | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
11
|
Feng Y, Lu J, Shen Z, Li J, Zhang H, Cao X, Ye Z, Ji G, Liu Q, Hu Y, Zhang B. Sequentially modified carbon felt for enhanced p-nitrophenol biodegradation through direct interspecific electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131055. [PMID: 36870126 DOI: 10.1016/j.jhazmat.2023.131055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The widely applied aromatic nitration in modern industry leads to toxic p-nitrophenol (PNP) in environment. Exploring its efficient degradation routes is of great interests. In this study, a novel four-step sequential modification procedure was developed to increase the specific surface area, functional group, hydrophilicity, and conductivity of carbon felt (CF). The implementation of the modified CF promoted reductive PNP biodegradation, attaining 95.2 ± 0.8% of removal efficiency with less accumulation of highly toxic organic intermediates (e.g., p-aminophenol), compared to carrier-free and CF-packed biosystems. The constructed anaerobic-aerobic process with modified CF in 219-d continuous operation achieved further removal of carbon and nitrogen containing intermediates and partial mineralization of PNP. The modified CF promoted the secretion of extracellular polymeric substances (EPS) and cytochrome c (Cyt c), which were essential components to facilitate direct interspecies electron transfer (DIET). Synergistic relationship was deduced that glucose was converted into volatile fatty acids by fermenters (e.g., Longilinea and Syntrophobacter), which donated electrons to the PNP degraders (e.g., Bacteroidetes_vadinHA17) through DIET channels (CF, Cyt c, EPS) to complete PNP removal. This study proposes a novel strategy using engineered conductive material to enhance the DIET process for efficient and sustainable PNP bioremediation.
Collapse
Affiliation(s)
- Yiwen Feng
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jianping Lu
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Zhongjun Shen
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jing Li
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China.
| | - Xiaoxin Cao
- Guizhou zhuxin water environment industries company, China Water Environment group, Beijing 101101, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Guodong Ji
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qingsong Liu
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Yuanan Hu
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Baogang Zhang
- Key Laboratory of Groundwater Circulation and Evolution, Ministry of Education, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Choi D, Jung J. Nitrogen removal enhancement through competitive inhibition of nitrite oxidizing bacteria in mainstream partial nitritation/anammox: Anammox seeding and influent C/N ratios. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Demirbilek D, İpek U, Yetis U. Seasonal monitoring of microbial activity using conventional approaches in a full-scale urban biological wastewater treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:534. [PMID: 37010627 DOI: 10.1007/s10661-023-11155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Activated sludge processes contain various groups of microorganisms with different metabolic properties, which are responsible for contaminants removal. Therefore, it is important to elucidate the general structure and functional properties of biomass in activated sludge processes. For this purpose, a full-scale domestic biological wastewater treatment plant in Tunceli (Turkey), Tunceli WWTP (wastewater treatment plant), was monitored to observe seasonal variations in process performance and biomass properties for a year. It was observed that nitrifying bacteria developed abundantly in the rainy and cool spring season as they were suppressed in summer because their large losses took place due to an environment containing high alkalinity values. In September, aerobic heterotrophic, nitrify, denitrify, and anaerobic activities increased. It can be said that the biomass contained young and mature microorganism in this environment in which the sludge volume index (SVI) value increased to 196 mL/g. As a result of the improvement in the structural and functional properties of biomass, the nitrogen removal efficiency reached 99%. Throughout the whole study, the structural improvement observed in biomass was reflected in its removal activity. The amount of biomass and removal activity decreased with the abundance of organic matter in the influent at the period in which biomass was closer to being categorized in the aged sludge class. The results showed that as the lowest mixed liquid suspended solids (MLSS) and mixed liquid volatile suspended solids (MLVSS) values of the year were 530 and 400 mg/L, respectively, in November 2017, MLSS and MLVSS values reached the highest amount (1700 and 1400 mg/L, respectively) in December 2017 when aerobic heterotrophic activity accelerated with a decrease in organic matter level.
Collapse
Affiliation(s)
- Deniz Demirbilek
- Department of Civil Engineering, Munzur University, Tunceli, Turkey.
| | - Ubeyde İpek
- Department of Environmental Engineering, Fırat University, Elazığ, Turkey
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
14
|
Ettaloui Z, Rifi SK, Haddaji C, Pala A, Taleb A, Souabi S. A study on the efficiency of the sequential batch reactor on the reduction of wastewater pollution from oil washing. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:387. [PMID: 36764969 DOI: 10.1007/s10661-023-11008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Industrial pollution discharges from washing fuel oils pose severe problems for the environment, particularly for the marine environment receiving these discharges. This work evaluates the biological treatment performance of wastewater (90 m3/h) rich in organic matter with low biodegradability using a sequential batch reactor (SBR) on a laboratory scale. The test using SBR was carried out for 25 days on a continuous cycle of 24 h (30 min of filling, 17 h of aeration, 4 h of anoxia, 2 h of settling, and 30 min of emptying). The feasibility of alternative sources of microorganisms from urban wastewater. The performance of the batch sequencing reactor was evaluated using turbidity, total suspended solids, chemical oxygen demand (COD), biological oxygen demand (BOD), ammonium, nitrate, and phenol as indicators. The results obtained showed that the COD/BOD ratio and the pollutant load vary from one campaign to another. The removal efficiency of COD, BOD, TSS (Total suspended solids), ammonium, nitrate, and phenol varies from 81%, 91%, 72%, 100%, 52%, and 63%. Thus, SBR-type treatment could be an interesting way to reduce pollution due to its simplicity, less space occupation, low energy consumption, and not requiring highly qualified personnel.
Collapse
Affiliation(s)
- Zineb Ettaloui
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| | - Safaa Khattabi Rifi
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Chaymae Haddaji
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| | - Aysegul Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - Abdesalam Taleb
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| | - Salah Souabi
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
15
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
16
|
Sun Q, Lin Y, Ping Q, Lu Q, Wang L, Liu M, Li Y. Exploring recycled agricultural wastes for high-rate removal of nitrogen in wastewater: Emphasizing on the investigation of the inner driving force and comparison with conventional liquid carbon sources. WATER RESEARCH 2022; 226:119292. [PMID: 36323215 DOI: 10.1016/j.watres.2022.119292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, four typical recycled agricultural wastes (AWs), corn cob, wheat straw, sawdust and walnut shells (named AW1, AW2, AW3 and AW4, respectively), were selected as external solid carbon sources to enhance the removal of nitrogen in wastewater, and specifically, the driving mechanism was thoroughly investigated. The leaching experiments showed that the dissolved organic carbon (DOC) release capacity followed the order of AW1>AW2>AW3>AW4, ranging from 6.21 to 31.92 mg/g. DOC released from AWs mainly consisted of protein-like substances, fulvic acid-like substances and humic-like substances. AW1 and AW2 achieved comparable NOx--N removal performance with a liquid carbon source of sodium acetate (SA) during the long-term denitrification experiments (>94.2%) but not for the other two AWs (only 16.8%-38.1%). Denitrification performance relied on DOC released from AWs at the beginning, while the enrichment of the functional CAZymes (including glycoside hydrolase and carbohydrate esterase) involved in cellulose and hemicellulose decomposition of AWs and functional genes (GAPDH, gap 2, PK, etc.) related to glycolysis were the inner driving force, which guaranteed the continuous supply of electron donors for denitrification. The relatively high abundances of napAB, narGHI, nirKS, norBC and nosZ, which encode nitrate reductase, nitrite reductase, NO reductase and N2O reductase, assured the better denitrification performance in the SA, AW1 and AW2 groups. In addition to denitrification-related functional genes, the relative abundances of nirBD and nrfAH associated with dissimilatory nitrate reduction were much higher in AW1 and AW2 groups than in SA group, implying that the nitrogen removal mechanism should be different in liquid carbon source and AW-based solid carbon source systems. In addition, GLU, gltBD and glnA, which participate in ammonia assimilation were the highest in the AW2 group, resulting in a large amount of organic nitrogen accumulation (peak concentration of approximately 24.5 mg/L), and this finally ruled it out as an alternative external carbon source. The abovementioned microbial mechanism was verified based on the correlation analysis of nutrient removal and functional genes combined with host bacterial analysis. Our study can provide valuable information for understanding the mechanism of using AWs as alternative external carbon sources to promote the removal of nitrogen in wastewater.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuqian Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qinyuan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Mingyan Liu
- China Tiegong Investment & Construction Group Co., Ltd, Beijing 101399, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Campbell K, Wang J. Understanding the role of activated sludge in oxygen transfer: Effects of sludge settleability, solids retention time, and nitrification reaction. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10806. [PMID: 36352319 DOI: 10.1002/wer.10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The current understanding on the oxygen transfer in activated sludge process is primarily developed based on two-phase systems, focusing only on oxygen transfer from air to water. However, this research demonstrates that activated sludge particles significantly impact oxygen transfer from air all the way to the microorganisms. Three bench-scale complete-mix activated sludge reactors, operated under the same influent loading and dissolved oxygen level but different solids retention times (SRTs), were used to develop oxygen transfer performance data as effects of different sludge property parameters. These reactors were also operated under batch modes to further validate the effect of nitrification reaction on oxygen transfer. Results indicate that high overall oxygen transfer efficiency (OTE) is associated with low mixed liquor viscosity, long SRT, and nitrification reaction. Further analyses suggest that low mixed liquor viscosity, which resulted from high sludge settleability or low settled volume of sludge, reduces the thickness of liquid films at all interfaces and the size of air bubbles. Long SRT results in high active nitrifier population and low specific extracellular polymeric substance (EPS). Nitrification reaction, which serves as the rate-limiting step for oxygen transfer, may increase the oxygen transfer driving force. High active nitrifier population also promotes direct air-sludge contact. All of these factors help facilitate oxygen transfer. This research provides a new approach to improve energy efficiency for wastewater treatment, which is to change the activated sludge property by adjusting treatment plant design and operational parameters. PRACTITIONER POINTS: High sludge settleability reduces viscosity therefore liquid film thickness. Long SRT increases active microorganism population and reduces specific EPS content. Nitrification reaction increases oxygen transfer driving force. Direct air-particle contact adds another pathway for oxygen transfer. Nitrification reaction is the rate-limiting step of the oxygen transfer process.
Collapse
Affiliation(s)
- Ken Campbell
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
- The Center for Research in Energy and Environment (CREE), Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
18
|
Li B, Jiang Y, Wang Y, Li X, Xia K, Tian M, He X. Activity enhancement and the anammox mechanism under low temperature via PVA-SA and nano Fe 2O 3-PVA-SA entrapped beads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157306. [PMID: 35839881 DOI: 10.1016/j.scitotenv.2022.157306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia-oxidizing bacteria (AAOB) have a long growth time and low activity at low temperatures. In suspended systems, sludge is easily lost, which limits the mainstream application of anaerobic ammonia oxidation (anammox).Entrapment provides effective ideas for solving these problems. In this study, polyvinyl‑sodium alginate (PVA-SA) and nano Fe2O3-PVA-SA entrapment beads were prepared to discuss the effectiveness of entrapment enhanced anammox sludge at low temperatures. The differences in the entrapped beads and granules were compared to analyze the strengthening mechanism. The results show that the nitrogen removal performance of granules, PVA-SA and nano Fe2O3-PVA-SA entrapped beads, first decreased and then increased during the cooling and low-temperature operation. Nano Fe2O3-PVA-SA entrapped beads showed the smallest decline and the highest degree of recovery. Reaction metering ratio (△NO2--N/△NH4+-N and △NO3--N/△NH4+-N) showed that entrapment could realize Nitrite oxidizing bacteria (NOB) inhibition and improve the activity of denitrifying bacteria (DNB) to promote the removal of total nitrogen by providing a strict anaerobic environment. The results demonstrate that entrapment is beneficial for maintaining the content of heme c, specifically, nano Fe2O3 can stimulate its production, and is beneficial for alleviating the reduction of hydrazine dehydrogenase (HDH) enzyme activity. The extracellular polymeric substances (EPS) content and analysis showed that entrapment does not change the composition of EPS, and can maintain the EPS content. Nano Fe2O3 can stimulate AAOB to secrete more EPS to maintain sludge stability. From a molecular perspective, entrapment can maintain the expression of functional genes, promote the enrichment of AAOB, thus improving the nitrogen removal performance from the dual perspectives of "quality" and "quantity".
Collapse
Affiliation(s)
- Bolin Li
- Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Yuqing Jiang
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yue Wang
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiang Li
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Kai Xia
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Mengyuan Tian
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiaoman He
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
19
|
Zou J, Yang J, He H, Wang X, Mei R, Cai L, Li J. Effect of Seed Sludge Type on Aerobic Granulation, Pollutant Removal and Microbial Community in a Sequencing Batch Reactor Treating Real Textile Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10940. [PMID: 36078654 PMCID: PMC9518340 DOI: 10.3390/ijerph191710940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The aerobic granulation, pollutant removal, and microbial community in real textile wastewater (TWW) treatment were compared using conventional activated sludge (CAS) and preformed aerobic granular sludge (AGS) in synthetic wastewater as seed in two reactors, reactor-1 (R1) and reactor-2 (R2), respectively. The results showed that complete granulation was achieved in R1 (sludge volume index at 5 min (SVI5) and 30 min (SVI30): 19.4 mL/g; granule size: 210 μm) within 65 days, while it only required 28 days in R2 (SVI5 and SVI30: 27.3 mL/g; granule size: 496 μm). The removal of COD, NH4+-N and TN in R1 (49.8%, 98.8%, and 41.6%) and R2 (53.6%, 96.9%, and 40.8%) were comparable in 100% real TWW treatment, but stable performance was achieved much faster in R2. The real TWW had an inhibitory effect on heterotrophic bacteria activity, but it had no inhibition on ammonia-oxidizing bacteria activity. AGS with a larger particle size had a higher microbial tolerance to real TWW. Furthermore, filamentous Thiothrix in the AGS in R2 disappeared when treating real TWW, leading to the improvement of sludge settleability. Thus, seeding preformed AGS is suggested as a rapid start-up method for a robust AGS system in treating real TWW.
Collapse
Affiliation(s)
- Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hangtian He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Rongwu Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Lei Cai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
20
|
Liu H, Li Y, Pan B, Zheng X, Yu J, Ding H, Zhang Y. Pathways of soil N 2O uptake, consumption, and its driving factors: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30850-30864. [PMID: 35092587 DOI: 10.1007/s11356-022-18619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas that plays a significant role in atmospheric photochemical reactions and contributes to stratospheric ozone depletion. Soils are the main sources of N2O emissions. In recent years, it has been demonstrated that soil is not only a source but also a sink of N2O uptake and consumption. N2O emissions at the soil surface are the result of gross N2O production, uptake, and consumption, which are co-occurring processes. Soil N2O uptake and consumption are complex biological processes, and their mechanisms are still worth an in-depth systematic study. This paper aimed to systematically address the current research progress on soil N2O uptake and consumption. Based on a bibliometric perspective, this study has highlighted the pathways of soil N2O uptake and consumption and their driving factors and measurement techniques. This systematic review of N2O uptake and consumption will help to further understand N transformations and soil N2O emissions.
Collapse
Affiliation(s)
- Hongshan Liu
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China.
| | - Baobao Pan
- School of Agriculture and Food, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China.
| |
Collapse
|
21
|
Liu Q, Wu C, Bin L, Li P, Gao X, Zhao Y, Huang S, Fu F, Tang B. Distribution characteristics of phosphorus-containing substances in a long running aerobic granular sludge-membrane bioreactor with no sludge discharge. BIORESOURCE TECHNOLOGY 2022; 347:126694. [PMID: 35017092 DOI: 10.1016/j.biortech.2022.126694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
This work aimed at revealing the distribution characteristics of phosphorus (P) containing substances in an aerobic granular sludge-membrane bioreactor (AGS-MBR). During the long running period (180 days) with no sludge discharge, AGS was successfully cultivated on day 20, and the system performed well in removing organic pollutants and total nitrogen (TN). However, the removal of total P (TP) showed a fluctuant tendency, and P was found to distribute in all the phases of the system. In the intracellular phase, it occupied the largest ratio all through the period. In AGS, inorganic P (IP) was measured to be about 74.4-77.8% of TP, with non-apatite IP (NAIP) composing 57.5-69.6%, while in organic P (OP), the ratio of monoester and diester phosphate was in the range of 19-26.9% and 12-13.5%, respectively. The presence of highly releasable and bioavailable P (NAIP + OP) in AGS implied that it might be a potential P resource for utilization.
Collapse
Affiliation(s)
- Qing Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chuandong Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinlei Gao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Yan Zhao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Zhang S, Xiao L, Tang Z, Zhang X, Wang Z. Microbial explanation to performance stratification along up-flow solid-phase denitrification column packed with polycaprolactone. BIORESOURCE TECHNOLOGY 2022; 343:126066. [PMID: 34626765 DOI: 10.1016/j.biortech.2021.126066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
In this study, the fluctuating profiles of physicochemical and microbial characterizations along different filling heights of continuously up-flow solid-phase denitrification (SPD) columns packed with polycaprolactone (PCL) were investigated. It was found both the PCL filling area and non-filling area made significant contributions to treatment performance and denitrification mainly occurred near the bottom of the filling column. Nitrate displayed a high proportional removal (≥98.7%) among all the cases except the one with the lowest filling ratio (FR30) and highest NLR (3.99 ± 0.12 gN/(L·d)), while nitrite and ammonium displayed a weak accumulation in final effluents (nitrite ≤ 0.40 mg/L; ammonium ≤ 0.98 mg/L). The intensity of PCL hydrolysis in the top substrate was stronger than those in the middle or bottom. Both dissimilatory nitrate reduction to ammonium (DNRA) and microbial lysis contributed to ammonium accumulation, and nitrate was mainly removed via traditional denitrification and DNRA. JGI_0000069-P22_unclassified and Gracilibacteria_unclassified might contribute to denitrification.
Collapse
Affiliation(s)
- Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Longqu Xiao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhiwei Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, PR China
| |
Collapse
|
23
|
Jin B, Liu Y, Jia Y, Niu J, Wang L, Qin H, Wang R, Wang L, Ji J, Pang L, Du JJ. Simultaneous phosphorus and nitrogen removal with different C/N ratios in a low oxygen aeration system: Microorganisms and mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10815. [PMID: 36514808 DOI: 10.1002/wer.10815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
In this study, a combined system with simultaneous nitrification, denitrification, and phosphorus removal was operated in continuous low oxygen aeration mode, and the effect of lower oxygen aeration (dissolved oxygen [DO] 0.5-1.5 mg/L) on its performance was examined. The combined system consisted of sludge and high-efficiency biological packing and was operated using four carbon/nitrogen ratios (C/N) with being 10:1, 8:1, 6:1, 10:1. Experimental results showed that the combined system could perform an efficient nitrogen and phosphorus removal under low DO and C/N ratio of 8:1 condition, and removal efficiencies of chemical oxygen demand (COD), NH4 + -N, and PO4 3- -P were 80.01%, 99.03%, and 89.51%, respectively. High-throughput analysis indicated that the functional species of denitrifying bacteria, including Ferruginibacter Azospira, Comamonas, Bacilli, Hyphomicrobium, Thauera, and Comamonadaceae, were important participants in biological nutrient removal. Meanwhile, Acinetobacter was enriched in the combined system, which contributed to phosphorus removal. PRACTITIONER POINTS: A combined system was operated firstly under continuous low oxygen condition. The lower dissolved oxygen (DO) of the combined system was maintained at 0.50-1.5 mg/L level. The combined system could realize simultaneous phosphorus and nitrogen removal under C/N ratio of 8:1. Several functional bacteria were enriched in the coupled systems.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ye Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yusheng Jia
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jintao Niu
- Henan Hengan Environmental Protection Technology Co., Ltd, Zhengzhou, China
| | - Lipei Wang
- Henan Geological Bureau, Zhengzhou, China
| | - Hexian Qin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ran Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Long Pang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jing Jing Du
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
24
|
Ping Q, Zhang J, Tang R, Liao S, Zhang Z, Li Y. Effect of surfactants on phosphorus release and acidogenic fermentation of waste activated sludge containing different aluminium phosphate forms. CHEMOSPHERE 2022; 287:132213. [PMID: 34560494 DOI: 10.1016/j.chemosphere.2021.132213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The effects of different surfactants (rhamnolipid, trehalolipid and citrate) on phosphorus (P) release and acidogenic fermentation of waste activated sludge (WAS) containing different aluminium phosphate forms (AlPO4, Al(PO3)3) were investigated. Results showed that rhamnolipid was the most effective surfactant to release P from aluminum phosphates (AlPs)-rich sludge. Al(PO3)3 was easier to release P than AlPO4 in WAS due to their different crystal structures. Different surfactants promoted the production of different types of protein. The addition of rhamnolipid was conducive to produce propionate from WAS, while trehalolipid and citrate increased the production of n-butyrate and acetate, respectively. Citrobacter played an important role in producing phosphatase continuously for P release with rhamnolipid addition. Predictive functional profiling indicates that rhamnolipid greatly facilitated adenosine triphosphate (ATP)-binding cassette transporter and quorum sensing. These important discoveries help to enrich P recovery paths from sludge produced with Al-based coagulants in wastewater treatment plants.
Collapse
Affiliation(s)
- Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ruijie Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shuting Liao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
25
|
Liu X, Hu S, Sun R, Wu Y, Qiao Z, Wang S, Zhang Z, Cui C. Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148245. [PMID: 34380284 DOI: 10.1016/j.scitotenv.2021.148245] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 05/23/2023]
Abstract
No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zehong Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chuwen Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
26
|
Shao Q, Wan F, Du W, He J. Enhancing biological nitrogen removal for a retrofit project using wastewater with a low C/N ratio-a model-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53074-53086. [PMID: 34023998 PMCID: PMC8140755 DOI: 10.1007/s11356-021-14396-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 05/12/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy for nitrogen (N) removal, but it is normally a challenge to achieve mainstream anammox. In this study, the potential to enhance the N-removal capability of an existing University of Cape Town membrane bioreactor system (UCT-MBR) system is evaluated through process modeling. In addition to external carbon addition, the UCT-MBR system is proposed to be converted into an anoxic-oxic (AO) configuration with two operation plans: one is single-sludge (suspended sludge) and the other is double-sludge (suspended sludge and biofilm). The choice between pushing anammox and enhancing conventional heterotrophic denitrification is assessed. The simulation result indicates it is feasible to strategically adjust the spatial-temporal balance between electron donors and electron acceptors to achieve enhanced N-removal by utilizing the influent organic carbon other than adding external carbon. Although anammox can be promoted in the double-sludge-based AO under low-DO conditions, pushing anammox will weaken the system's resilience to influent fluctuations and carries no economic advantage over the single-sludge-based AO. Overall, this study concurs with the United Nations Sustainable Development Goal that the wastewater industry should seek more energy-efficient measures for wastewater treatment.
Collapse
Affiliation(s)
- Qian Shao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Wan
- Wuhan Planning and Design Co., Ltd., Wuhan, 430014, China
| | - Weiwei Du
- Sichuan Wentao Engineering and Technologies Co., Ltd., Chengdu, 610000, China
| | - Jiajie He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Wang Y, Zhu T, Chang M, Jin D. Performance of a hybrid membrane aerated biofilm reactor (H-MBfR) for shortcut nitrification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Zhou S, Xu S, Jiang Y, Jiang C, Wang D, Xu G, Yang D, Wu S, Bai Z, Zhuang G, Zhuang X. Enhancing nitrogen removal from anaerobically-digested swine wastewater through integration of Myriophyllum aquaticum and free nitrous acid-based technology in a constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146441. [PMID: 34030237 DOI: 10.1016/j.scitotenv.2021.146441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Despite of low operation costs and convenient maintenance, the application of natural systems for swine wastewater treatment has been limited by large construction area and unsatisfactory effluent quality. Introducing ammonium high uptake aquatic plants and shifting nitrogen removal pathway from nitrate to nitrite in constructed wetlands (CWs) has been regarded as promising approach to promote their performances. This study aimed to establish nitrite pathway and enhance N removal via free nitrous acid (FNA)-sediment treatment and Myriophyllum aquaticum vegetation in the CWs treating anaerobically digested swine wastewater. Nitrite pathway was successfully and stably achieved in the M. aquaticum CW with FNA-treated sediment. The overall removal efficiencies of ammonium nitrogen and total nitrogen were 42.3 ± 10.2% and 37.7 ± 9.3% in the planted CWs with FNA-treated sediment, which were 76.3% and 65.4% higher than those in the conventional oxidation pond system, respectively. Microbial community analysis (qPCR and metagenomics) suggested that the nitrite pathway established through FNA-sediment treatment was based on the inactivation of nitrite oxidizing bacteria (lower nxrA gene abundance) and the reduction of relative abundances of NOB (especially Nitrobacter and Nitrospira). During the denitrification processes, the integration of M. aquaticum vegetation with FNA-sediment treatment can lower the nitrate reduction by decreasing narG gene abundances and decreasing the relative abundances of napA affiliated bacteria (especially Bradyrhizobium), while strengthening reduction of nitrite and nitrous oxide by increasing nirK and nosZ gene abundances and enriching the corresponding affiliated microbial taxa, Mycobacterium and Bacillus, respectively. Our findings suggest that applying FNA-based technology in CW systems is technically and economically feasible, which holds promise for upgrading current CW systems treating swine wastewater to meet future water quality requirements.
Collapse
Affiliation(s)
- Sining Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, China
| | - Yishuai Jiang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danhua Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guanglian Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanghua Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
29
|
Feng J, Zhang X, Zhang G, Li J, Song W, Xu Z. Improved photocatalytic conversion of high-concentration ammonia in water by low-cost Cu/TiO 2 and its mechanism study. CHEMOSPHERE 2021; 274:129689. [PMID: 33529954 DOI: 10.1016/j.chemosphere.2021.129689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Platinized TiO2 (Pt/TiO2) as a benchmark photocatalyst shows superior photocatalytic performance in environmental remediation. In order to reduce the cost of photocatalyst for practical use, a series of cooper loaded TiO2 (Cu/TiO2) photocatalysts were prepared by photoreduction method and compared with pure TiO2 and Pt/TiO2 in terms of overall ammonia conversion efficiency and selective oxidation. The as-prepared Cu/TiO2 samples were characterized and analyzed by physicochemical instrumental measurements. The results show that about 60% Cu2+ ions in suspension can be photodeposited onto the surface of TiO2 under UV light irradiation, and is mainly composed by a mixture of Cu/Cu+. The Cu/P25 (0.3 wt% Cu) sample was screened out as the optimal photocatalyst, via photoilluminance spectra analysis and photocatalytic oxidation of ammonia. It shows even better performance compared to Pt/TiO2 in the oxidation of high concentration of ammonia, due to the strong coordination effect by Cu(NH3)n complex formation. Through Electron Spin Resonance (EPR) analysis, and free radical suppression experiments, the active oxidative species account for ammonia oxidation and selective product generation were analyzed, and the possible reaction mechanisms involving photocatalytic ammonia conversion were proposed. ●OH has been identified as the main oxidant that affects the removal efficiency of ammonia nitrogen, whereas O2●- mainly affects the production of N2 and h+ is mainly responsible for the production of NO3-. These results indicate that Cu/TiO2 could be used as a low-cost and efficient photocatalyst in pretreatment process for conversion of high concentration of ammonia in wastewater.
Collapse
Affiliation(s)
- Jianpei Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xiaolei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Ji Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Wei Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Zhiliang Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
30
|
Wang D, Tao J, Fan F, Xu R, Meng F. A novel pilot-scale IFAS-MBR system with low aeration for municipal wastewater treatment: Linkages between nutrient removal and core functional microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145858. [PMID: 33640551 DOI: 10.1016/j.scitotenv.2021.145858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, we proposed a novel IFAS-MBR with low aeration for the treatment of real municipal wastewater. With biocarriers packed in the anoxic tank, the pilot-scale IFAS-MBR operated with average dissolved oxygen concentrations of 0.56 mg/L in the oxic tank. Over 110 days of operation, highly efficient nutrient removal was achieved with the total nitrogen (TN) and phosphorus (TP) removal efficiencies of 78.1 ± 7.2% and 93.7 ± 5.8%, respectively. The average effluent concentrations of TN and TP reached 5.4 and 0.26 mg/L, respectively. Meanwhile, the removal efficiency of COD reached 95.3 ± 1.3% in the system, and the concentrations of COD decreased from 31.9 ± 3.7 (sludge supernatant) to 12.7 ± 1.6 mg/L (permeate) after membrane filtration. Microbial community analysis showed that Nitrosomonas (0.32%) and Nitrospira (1.85%) in activated sludge were the main drivers of the nitrification process, while various denitrifying bacteria in activated sludge and biofilms were responsible for nitrate reduction in the anoxic tank. Candidatus Accumulibacter (0.34%) and Dechloromonas (1.31%) primarily contributed to denitrifying phosphorus uptake in the anoxic tank. Furthermore, these organisms (i.e., core functional microbiota) exhibited stable levels over the entire operation. The highly enriched hydrolytic fermentation bacteria drove community succession, and the remarkable functional robustness of microbial communities in activated sludge and biofilms favored nutrient removal. Overall, the novel IFAS-MBR system provides an energy-efficient MBR alternative owing to its highly efficient performance and low operating costs enabled by low aeration rates and the absence of an external carbon source.
Collapse
Affiliation(s)
- Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Junshi Tao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| |
Collapse
|
31
|
Khastoo H, Hassani AH, Mafigholami R, Mahmoudkhani R. Comparing the performance of the conventional and fixed-bed membrane bioreactors for treating municipal wastewater. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:997-1004. [PMID: 34150287 PMCID: PMC8172747 DOI: 10.1007/s40201-021-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Membrane bioreactor (MBR) is relatively a new technology in wastewater treatment. It can efficiently remove soluble and suspended organics. However, it may constantly encounter bio-fouling and cannot efficiently remove nutrient pollutants. These two deficiencies have motivated researchers to upgrade the design and operation of conventional MBR (CMBR). This study evaluates the performance of hybrid fixed bed MBR (FBMBR) treating real domestic wastewater in different operational conditions. It also compares the experimental results of FBMBR with the CMBR. For this purpose, two identical reactors are constructed as CMBR and FBMBR. Each module contains the net volume of 140 L and is operated continuously in two aerobic (DO > 4 mg/L) and anoxic (DO < 1 mg/L) conditions with average organic loading rates (OLRs) of 0.58, 0.71 and 1.55 kgCOD/m3d. The pore sizes of flat sheet membranes are 0.2-0.8 μm with total surface area of 1.4m2 per module. The experimental results revealed that the removal efficiencies of BOD, COD and TSS are above 95 % in both CMBR and FBMBR in all operating conditions. However, fouling occurs with lower rates in FBMBR. The growing rate of transmembrane pressure (TMP) in aerobic condition is 1.7mBar/day in CMBR, while it reduces to 1.2mBar/day for FBMBR in solid retention time (SRT) of 75 days and OLR of 0.58 and 0.71 kgCOD/m3d. In anoxic condition with SRT of 100 days and OLR of 1.55 kgCOD/m3d, the TMP in FBMBR is 59 % of CMBR. In addition, total nitrogen (TN) removal is between 12 % (aerobic) and 27 % (anoxic) in CMBR, while it is between 25 % (aerobic) and 49 % (anoxic) in FBMBR. Total phosphorous (TP) removal also ranges between 50 and 66 % in CMBR, while it is between 51 and 86 % in FBMBR. Consequently, using hybrid systems of FBMBR can reduce membrane fouling rate and improve nutrient removal efficiency in comparison with CMBR. This approach can reinforce the biological treatment efficiency and preserve permeate quality in higher OLRs or in lower DO level.
Collapse
Affiliation(s)
- Hamidreza Khastoo
- Department of Environmental Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- Department of Environmental Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rouhallah Mahmoudkhani
- Department of Environmental Health Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Ding A, Bui XT, Nguyen DP. Bio-membrane based integrated systems for nitrogen recovery in wastewater treatment: Current applications and future perspectives. CHEMOSPHERE 2021; 265:129076. [PMID: 33248735 DOI: 10.1016/j.chemosphere.2020.129076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen removal is crucial in wastewater treatment process as excessive nitrogen content could result in eutrophication and degradation of aquatic ecosystems. Moreover, to satisfy the fast-growing need of fertilizers due to an increase in human population, recovering nitrogen from wastewater is of the most sustainable approach. Currently, the membrane technique integrated with biological processes namely bio-membrane based integrated system (BMIS) is a promising technology for recovering nitrogen from wastewater, including osmotic membrane bioreactors, bioelectrochemical systems and membrane photobioreactors. In this review study, the nitrogen recovery in different BMHSs, the role of operational parameters and the nitrogen recovery mechanism were discussed. Apart from this, the implementation of nitrogen recovery at pilot- and full-scale was summarized. Perspectives on the major challenges and recommendations of the BMIS for the nitrogen recovery in wastewater treatment were proposed, in which the integrated technologies and more scale-up studies regarding nitrogen recovery by the BMISs were also highlighted and recommended.
Collapse
Affiliation(s)
- Yuanyao Ye
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Dan Phuoc Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
33
|
A Highly Packed Biofilm Reactor with Cycle Cleaning for the Efficient Treatment of Rural Wastewater. WATER 2021. [DOI: 10.3390/w13030369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biological treatment processes perform satisfactory in wastewater treatment, but the relatively high cost and complicated maintenance limit its application in rural areas. In this study, a highly packed biofilm reactor (HPBR), with a 90% packing ratio of carriers in the bioreactor, was designed for rural wastewater treatment. The results showed that the removal rates for chemical oxygen demand (COD) and ammonia were 3.04 ± 1.81 kg/m3/d and 0.49 ± 0.18 kg/m3/d, respectively. Besides, the removal efficiency of total inorganic nitrogen (TIN) was 35.4% by the HPBR. The removal capacity of the HPBR is higher than other reported systems with fewer operational costs and maintenance. High-throughput sequencing was applied to further investigate the kinetics and principals. Microorganisms capable of simultaneous nitrification-denitrification were found to be dominant species in the HPBR system, which indicated that the nitrogen removal in HPBR is governed by simultaneous nitrification-denitrification. These findings suggest that HPBR can be used as an efficient reactor for rural wastewater treatment, demonstrating its feasibility in real applications.
Collapse
|