1
|
de Souza AP, Souza Gomez CC, Gonçalves de Oliveira Ribeiro MA, Dornhofer Paro Costa P, Ribeiro JD. Correlations between ambient air pollution and the prevalence of hospitalisations and emergency room visits for respiratory diseases in children: a systematic review. Arch Dis Child 2024:archdischild-2023-326214. [PMID: 38811054 DOI: 10.1136/archdischild-2023-326214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE It is known that exposure to air pollution is associated with an increased risk for cardiovascular and respiratory diseases. This review aimed to summarise observational studies on the impact of short and long-term exposure to ambient air pollution on prevalence of hospitalisations and/or emergency department visits caused by respiratory diseases in children and adolescents. SOURCES Pubmed, Scopus, Embase and Cochrane Library databases were searched for the years 2018 to December 2022, including studies in any language. SUMMARY OF THE FINDINGS A total of 15 studies published between 2018 and 15 January 2022 were included in this review. PM2.5 was the most type of particulate matter studied. Short-term exposure to PM2,5, PM10, NO2, SO2 and O3, even at concentrations less than the current health-based guidelines, was significantly correlated with increased risk of outpatient/hospital visits and hospitalisations for respiratory diseases by children. CONCLUSIONS Our findings emphasise the importance and urgency of long-term control of air pollution and pollution-related diseases, especially among children and adolescents. There is a need for further research employing more homogeneous methodologies for assessing exposure and outcome measurements, in order to enable systematic reviews with meta-analysis.
Collapse
Affiliation(s)
- Aline Priscila de Souza
- Child and Adolescent Health, State University of Campinas Faculty of Medical Sciences, Campinas, Sao Paulo, Brazil
| | | | | | | | - José Dirceu Ribeiro
- Pediatrics, Universidade Estadual de Campinas Faculdade de Ciencias Medicas, Campinas, Brazil
| |
Collapse
|
2
|
Xia M, Yang Y, Sun J, Huang R, Huang Y, Zhang M, Yao X. Time-series analysis of the association between air pollution exposure and outpatient visits for dry eye disease: a case study in Zhengzhou, China. Front Public Health 2024; 12:1352057. [PMID: 38550319 PMCID: PMC10973159 DOI: 10.3389/fpubh.2024.1352057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Background Dry eye disease (DED) is a prevalent ocular surface disease that significantly impacts patients' quality of life. The association between air pollution and the risk of dry eye disease remains uncertain. Methods Data on outdoor air pollutants, meteorological information, and outpatient visits for DED were collected from July 1, 2014, to December 31, 2019. The relationship between ambient air pollutants and DED outpatient visits was analyzed using a generalized additive model with a Poisson distribution. Results Among the 5,204 DED patients included in the study, 63.76% were female and 36.24% were male. The single-pollutant model revealed a significant association between a 10 μg/m3 increase in concentrations of fine-particulate matter with a median aerometric diameter of less than 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) and outpatient visits for DED. Fine-particulate matter with a median aerometric diameter of less than 2.5 μm (PM2.5) showed a significant association with DED outpatient visits in males and the 19-59 years age group. The strongest associations between air pollutants and outpatient visits were observed in male patients and during the cold season. Conclusion The noteworthy correlation between air pollutants and DED outpatient visits can offer evidence for policy makers and underscore the significance of reinforcing environmental protection.
Collapse
Affiliation(s)
- Mengting Xia
- Henan Eye Institute & Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingrui Yang
- Henan Eye Institute & Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiali Sun
- Henan Eye Institute & Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Huang
- Henan Eye Institute & Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonghui Huang
- Henan Eye Institute & Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengqi Zhang
- Hospital-Acquired Infection Control Department, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xi Yao
- Henan Eye Institute & Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Panunzi S, Marchetti P, Stafoggia M, Badaloni C, Caranci N, de Hoogh K, Giorgi Rossi P, Guarda L, Locatelli F, Ottone M, Silocchi C, Ricci P, Marcon A. Residential exposure to air pollution and adverse respiratory and allergic outcomes in children and adolescents living in a chipboard industrial area of Northern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161070. [PMID: 36565877 DOI: 10.1016/j.scitotenv.2022.161070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chipboard production is a source of wood dust, formaldehyde, and combustion-related pollutants such as nitrogen dioxide (NO2) and particulate matter (PM). In this cohort study, we assessed whether exposures to NO2, formaldehyde, PM10, PM2.5, and black carbon were associated with adverse respiratory and allergic outcomes among all 7525 people aged 0-21 years residing in the Viadana district, an area in Northern Italy including the largest chipboard industrial park in the country. METHODS Data on hospitalizations, emergency room (ER) admissions, and specialist visits in pneumology, allergology, ophthalmology, and otorhinolaryngology were obtained from the Local Health Unit. Residential air pollution concentrations in 2013 (baseline) were derived using local (Viadana II), national (EPISAT), and continental (ELAPSE) exposure models. Associations were estimated using negative binomial regression models for counts of events occurred during 2013-2017, with follow-up time as an offset term and adjustment for sex, age, nationality, and a census-block socio-economic indicator. RESULTS Median annual exposures to NO2, PM10, and PM2.5 were below the European Union annual air quality standards (40, 40, and 25 μg/m3) but above the World Health Organization 2021 air quality guideline levels (10, 15, and 5 μg/m3). Exposures to NO2 and PM2.5 were significantly associated with higher rates of ER pneumology admissions (13 to 30 % higher rates per interquartile range exposure differences, all p < 0.01). Higher rates of allergology and ophthalmology visits were found for participants exposed to higher pollutants' concentrations. When considering the 4-km buffer around the industries, associations with respiratory hospitalizations became significant, and associations with ER pneumology admissions, allergology and ophthalmology visits became stronger. Formaldehyde was not associated with the outcomes considered. CONCLUSION Using administrative indicators of health effects a priori attributable to air pollution, we documented the adverse impact of long-term air pollution exposure in residential areas close to the largest chipboard industries in Italy. These findings, combined with evidence from previous studies, call for an action to improve air quality through preventive measures especially targeting emissions related to the industrial activities.
Collapse
Affiliation(s)
- Silvia Panunzi
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Pierpaolo Marchetti
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service ASL Roma 1, Rome, Italy
| | - Chiara Badaloni
- Department of Epidemiology, Lazio Regional Health Service ASL Roma 1, Rome, Italy
| | - Nicola Caranci
- Regional Health and Social Care Agency, Emilia-Romagna Region, Bologna, Italy
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Linda Guarda
- UOC Osservatorio Epidemiologico, Agenzia di Tutela della Salute della Val Padana, Mantova, Italy
| | - Francesca Locatelli
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Marta Ottone
- Epidemiology Unit, AUSL - IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Caterina Silocchi
- UOS Salute e Ambiente, Agenzia di Tutela della Salute della Val Padana, Mantova, Italy
| | - Paolo Ricci
- UOC Osservatorio Epidemiologico, Agenzia di Tutela della Salute della Val Padana, Mantova, Italy
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Italy
| |
Collapse
|
4
|
Li T, Zhang Y, Jiang N, Du H, Chen C, Wang J, Li Q, Feng D, Shi X. Ambient fine particulate matter and cardiopulmonary health risks in China. Chin Med J (Engl) 2023; 136:287-294. [PMID: 36780425 PMCID: PMC10106175 DOI: 10.1097/cm9.0000000000002218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 02/15/2023] Open
Abstract
ABSTRACT In China, the level of ambient fine particulate matter (PM 2.5 ) pollution far exceeds the air quality standards recommended by the World Health Organization. Moreover, the health effects of PM 2.5 exposure have become a major public health issue. More than half of PM 2.5 -related excess deaths are caused by cardiopulmonary disease, which has become a major health risk associated with PM 2.5 pollution. In this review, we discussed the latest epidemiological advances relating to the health effects of PM 2.5 on cardiopulmonary diseases in China, including studies relating to the effects of PM 2.5 on mortality, morbidity, and risk factors for cardiovascular and respiratory diseases. These data provided important evidence to highlight the cardiopulmonary risk associated with PM 2.5 across the world. In the future, further studies need to be carried out to investigate the specific relationship between the constituents and sources of PM 2.5 and cardiopulmonary disease. These studies provided scientific evidence for precise reduction measurement of pollution sources and public health risks. It is also necessary to identify effective biomarkers and elucidate the biological mechanisms and pathways involved; this may help us to take steps to reduce PM 2.5 pollution and reduce the incidence of cardiopulmonary disease.
Collapse
Affiliation(s)
- Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chen S, Xu B, Shi T, Yang Q. Short-term effect of ambient air pollution on outpatient visits for children in Guangzhou, China. Front Public Health 2023; 11:1058368. [PMID: 36741946 PMCID: PMC9895100 DOI: 10.3389/fpubh.2023.1058368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
This study examined the short-term relationship between ambient air pollutants and children's outpatient visits, and identified the effect of modifications by season. Daily recordings of air pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) and children's outpatient visit data were collected in Guangzhou from 2015 to 2019. A generalized additive model adjusted for potential confounding was introduced to verify the association between ambient air pollution and outpatient visits for children. Subgroup analysis by season was performed to evaluate the potential effects. A total of 5,483,014 children's outpatient visits were recorded. The results showed that a 10 μg/m3 increase in CO, NO2, O3, SO2, PM10, and PM2.5 corresponded with a 0.19% (95% CI: 0.15-0.24%), 2.46% (2.00-2.92%), 0.27% (0.07-0.46%), 7.16% (4.80-9.57%), 1.16% (0.83-1.49%), and 1.35% (0.88-1.82%) increase in children's outpatient visits on the lag0 of exposure, respectively. The relationships were stronger for O3, PM10, and PM2.5 in the warm seasons, and for CO, NO2, and SO2 in the cool seasons. When adjusting for the co-pollutants, the effects of CO, NO2, and PM10 were robust. The results of this study indicate that six air pollutants might increase the risk of children's outpatient visits in Guangzhou, China, especially in the cool season.
Collapse
Affiliation(s)
- Sili Chen
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Binhe Xu
- Department of Clinical Medicine, Basic Medicine College, Zunyi Medical University, Zunyi, China
| | - Tongxing Shi
- Department of Environmental Hygiene, Guangzhou Center for Disease Control and Prevention, Guangzhou, China,Department of Environmental Health, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China,Department of Environmental Health, Institute of Public Health, Guangzhou Medical University, Guangzhou, China,*Correspondence: Qiaoyuan Yang ✉
| |
Collapse
|
6
|
Lv S, Liu X, Li Z, Lu F, Guo M, Liu M, Wei J, Wu Z, Yu S, Li S, Li X, Gao W, Tao L, Wang W, Xin J, Guo X. Causal effect of PM 1 on morbidity of cause-specific respiratory diseases based on a negative control exposure. ENVIRONMENTAL RESEARCH 2023; 216:114746. [PMID: 36347395 DOI: 10.1016/j.envres.2022.114746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Extensive studies have linked PM2.5 and PM10 with respiratory diseases (RD). However, few is known about causal association between PM1 and morbidity of RD. We aimed to assess the causal effects of PM1 on cause-specific RD. METHODS Hospital admission data were obtained for RD during 2014 and 2019 in Beijing, China. Negative control exposure and extreme gradient boosting with SHapley Additive exPlanation was used to explore the causality and contribution between PM1 and RD. Stratified analysis by gender, age, and season was conducted. RESULTS A total of 1,183,591 admissions for RD were recorded. Per interquartile range (28 μg/m3) uptick in concentration of PM1 corresponded to a 3.08% [95% confidence interval (CI): 1.66%-4.52%] increment in morbidity of total RD. And that was 4.47% (95% CI: 2.46%-6.52%) and 0.15% (95% CI: 1.44%-1.78%), for COPD and asthma, respectively. Significantly positive causal associations were observed for PM1 with total RD and COPD. Females and the elderly had higher effects on total RD, COPD, and asthma only in the warm months (Z = 3.03, P = 0.002; Z = 4.01, P < 0.001; Z = 3.92, P < 0.001; Z = 2.11, P = 0.035; Z = 2.44, P = 0.015). Contribution of PM1 ranked first, second and second for total RD, COPD, and asthma among air pollutants. CONCLUSION PM1 was causally associated with increased morbidity of total RD and COPD, but not causally associated with asthma. Females and the elderly were more vulnerable to PM1-associated effects on RD.
Collapse
Affiliation(s)
- Shiyun Lv
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Zhiwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Feng Lu
- Beijing Municipal Health Commission Information Center, Beijing, 100034, China
| | - Moning Guo
- Beijing Municipal Health Commission Information Center, Beijing, 100034, China
| | - Mengmeng Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Siqi Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Shihong Li
- Department of Respiratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, 3086, Australia
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Wei Wang
- School of Medical Sciences and Health, Edith Cowan University, WA6027, Perth, Australia
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Li D, He R, Liu P, Jiang H. Differential effects of size-specific particulate matter on the number of visits to outpatient fever clinics: A time-series analysis in Zhuhai, China. Front Public Health 2022; 10:972818. [PMID: 36620254 PMCID: PMC9816473 DOI: 10.3389/fpubh.2022.972818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction While many studies have investigated the adverse effects of particulate matter (PM), few of them distinguished the different effects of PM2.5, PM10, and coarse PM (PMc) on outpatients with fever. Our study aimed to estimate and compare the acute cumulative effects of exposure to three size-specific particles on the number of visits to outpatient fever clinics. Methods To examine the association between daily PM concentrations and outpatients in fever clinics, a generalized additive Poisson model was applied, stratified by sex, age, and season. Results Our study included 56,144 outpatient visits in Zhuhai, from January 2020 to June 2021. On the current day, each 10 mg/m3 increment of PM10 and PMc were estimated to increase fever clinic visits by 1.74% (95% CI: 0.59%, 2.91%) and 4.42 % (2.30%, 6.58%), respectively. Cumulative effects enhanced from lag01 to lag05 for PM10 and PMc, and PMc had the strongest impact [ER = 8.92% (5.91%, 12.01%) at lag05]. Female outpatients and outpatients aged 14 years and above had an increased PM-related risk. During the cold season, significant effects could be observed for the three-size PM, while only PMc showed the impact during the warm season. Discussion Overall, the three size-specific PM exerted different effects on the fever clinic visits. Strategies to control the concentrations of PM are still necessary, especially against PM10 and PMc.
Collapse
Affiliation(s)
- Duo Li
- Department of Operations, Zhuhai People's Hospital, Zhuhai, China
| | - Rui He
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Peixin Liu
- Department of Spine and Bone Disease, Zhuhai People's Hospital, Zhuhai, China
| | - Hong Jiang
- Department of Operations, Zhuhai People's Hospital, Zhuhai, China,Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China,*Correspondence: Hong Jiang ✉
| |
Collapse
|
8
|
Yu S, Ji G, Zhang L. The role of p53 in liver fibrosis. Front Pharmacol 2022; 13:1057829. [PMID: 36353498 PMCID: PMC9637836 DOI: 10.3389/fphar.2022.1057829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 08/27/2023] Open
Abstract
The tumor suppressor p53 is the central hub of a molecular network, which controls cell proliferation and death, and also plays an important role in the occurrence and development of liver fibrosis. The abundant post-translational processing and modification endow the functional diversity of p53. Considering the relationship between p53 and liver fibrosis, drug intervention targeting p53 or management of p53 regulation might be effective strategies to treat liver fibrosis. Here, we systematically discuss the regulation of p53 in different liver cells (hepatocytes, immune cells, HSCs, etc) and the role of p53 in the development of liver fibrosis, and propose possible interventions to prevent the pathogenic processes of liver fibrosis.
Collapse
Affiliation(s)
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Li S, Wang G, Wang B, Cao S, Zhang K, Duan X, Wu W. Has the Risk of Outpatient Visits for Allergic Rhinitis, Related to Short-Term Exposure to Air Pollution, Changed over the Past Years in Beijing, China? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12529. [PMID: 36231829 PMCID: PMC9566797 DOI: 10.3390/ijerph191912529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
A number of studies have found associations between the short-term exposure to ambient air pollution and hospital admissions. However, little is known about the temporal variations in ambient air pollution associated with health exposure, especially in China. We evaluated whether the risks of allergic rhinitis (AR) outpatient visits from short-term exposure to air pollution varied over time (2014-2020) in Beijing, China. A quasi-Poisson generalized additive model was used to evaluate the relative risks (RRs) and 95% confidence intervals (CIs) associated with the pollutant concentrations during the entire study period and three specific periods. We also analyzed the temporal variations of the period-specific associations and tested the trend of change using the Mann-Kendall test. The concentration-response relationships for the specific periods were further investigated. The RRs (95%CI) for an interquartile range (IQR) increased in PM10 (70 μg/m3) and CO (0.5 mg/m3) decreased from period 1 to period 3. However, The RRs (95%CI) of PM2.5 (55 μg/m3), SO2 (7 μg/m3) and NO2 (27 μg/m3) increased from 1.015 (0.978, 1.054), 1.027 (1.009, 1.044) and 1.086 (1.037, 1.137) in period 1 to 1.069 (1.005, 1.135), 1.074 (1.003, 1.149) and 1.214 (1.149, 1.282) in period 3, respectively. A statistically significant temporal change and the stable effects were observed between the NO2 exposure and AR visits over time. Despite a substantial reduction in ambient air pollution, the short-term effects on AR outpatient visits remained significant. Our findings provide a rationale for continued air pollution control efforts in the future to minimize air pollution and to protect the public.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Wang
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144-2345, USA
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Wu
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| |
Collapse
|
10
|
Ziou M, Tham R, Wheeler AJ, Zosky GR, Stephens N, Johnston FH. Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:112969. [PMID: 35183515 DOI: 10.1016/j.envres.2022.112969] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While the relationship between outdoor particulate matter (PM) and lower respiratory tract infections in children and adolescents is accepted, we know little about the impacts of outdoor PM on the risk of developing or aggravating upper respiratory tract infections (URTIs). METHODS We aimed to review the literature examining the relationship between outdoor PM exposure and URTIs in children and adolescents. A systematic search of EMBASE, MEDLINE, PubMed, Scopus, CINAHL and Web of Science databases was undertaken on April 3, 2020 and October 27, 2021. Comparable short-term studies of time-series or case-crossover designs were pooled in meta-analyses using random-effects models, while the remainder of studies were combined in a narrative analysis. Quality, risk of bias and level of evidence for health effects were appraised using a combination of emerging frameworks in environmental health. RESULTS Out of 1366 articles identified, 34 were included in the systematic review and 16 of these were included in meta-analyses. Both PM2.5 and PM10 levels were associated with hospital presentations for URTIs (PM2.5: RR = 1.010, 95%CI = 1.007-1.014; PM10: RR = 1.016, 95%CI = 1.011-1.021) in the meta-analyses. Narrative analysis found unequivocally that total suspended particulates were associated with URTIs, but mixed results were found for PM2.5 and PM10 in both younger and older children. CONCLUSION This study found some evidence of associations between PM and URTIs in children and adolescents, the relationship strength increased with PM10. However, the number of studies was limited and heterogeneity was considerable, thus there is a need for further studies, especially studies assessing long-term exposure and comparing sources.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
11
|
Short-term effects of air pollutants on hospital admissions for acute bronchitis in children: a multi-city time-series study in Southwest China. World J Pediatr 2022; 18:426-434. [PMID: 35396614 DOI: 10.1007/s12519-022-00537-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Few studies have investigated the effects of air pollutants on children with acute bronchitis. This study aimed to explore the acute effects of four air pollutants [fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] on the daily number of children admitted to the hospital for acute bronchitis in Sichuan Province, China. METHODS The 49,975 records of hospitalized children with acute bronchitis from medical institutions in nine cities/prefectures, Sichuan Province, China, as well as the simultaneous meteorological data and air pollution data from 183 monitoring sites, were collected from 1 January 2017 to 31 December 2018. A generalized additive model was adopted to analyze the exposure-response and lag effects of hospitalizations of children with acute bronchitis to air pollutants. Stratified analyses were conducted based on sex, age, and season. RESULTS The single-pollutant model showed that a 10 µg/m3 increase at lag07 of PM2.5, PM10, SO2, and NO2 corresponded to an increase of 1.23% [95% confidence interval (CI) 0.21-2.26%], 1.33% (95% CI 0.62-2.05%), 23.52% (95% CI 11.52-36.81%), and 12.47% (95% CI 8.46-16.64%) in daily hospitalizations for children with acute bronchitis, respectively. Children aged 0-2 were more prone to PM2.5 (P < 0.05). Interestingly, the effects were stronger in the warm season than in transition seasons and the cool season for PM2.5 and PM10 (P < 0.05). CONCLUSION The higher daily average concentrations of four pollutants in Sichuan Province can result in an increased number of children hospitalized for acute bronchitis.
Collapse
|
12
|
Gui SY, Chen YN, Wu KJ, Liu W, Wang WJ, Liang HR, Jiang ZX, Li ZL, Hu CY. Association Between Exposure to Per- and Polyfluoroalkyl Substances and Birth Outcomes: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10:855348. [PMID: 35400049 PMCID: PMC8988915 DOI: 10.3389/fpubh.2022.855348] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background A large body of emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) affect birth outcomes in various pathways, but the evidence is inconsistent. Therefore, this study aimed to systematically review the epidemiological evidence on PFAS exposure and birth outcomes. Methods Three electronic databases were searched for epidemiological studies through February 13, 2021. We used random-effects meta-analysis for eight birth outcome indicators to calculate summary effect estimates for various exposure types. The risk of bias and the overall quality and level of evidence for each exposure-outcome pair were assessed. Results The initial search identified 58 potentially eligible studies, of which 46 were ultimately included. Many PFAS were found to have previously unrecognized statistically significant associations with birth outcomes. Specifically, birth weight (BW) was associated with PFAS, with effect sizes ranging from −181.209 g (95% confidence interval (CI) = −360.620 to −1.798) per 1 ng/ml increase in perfluoroheptanesulfonate (PFHpS) to −24.252 g (95% CI = −38.574 to −9.930) per 1 ln (ng/ml) increase in perfluorodecaoic acid (PFDA). Similar patterns were observed between other PFAS and birth outcomes: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with birth length (BL) and ponderal index (PI), PFOS and perfluorododecanoic acid (PFDoDA) with head circumference (HC), PFHpS with gestational age (GA), and perfluorononanoic acid (PFNA) and PFHpS with preterm birth (PTB). Additionally, PFDA showed a statistically significant association with small for gestational age (SGA). The level of the combined evidence for each exposure-outcome pair was considered to be “moderate”. Conclusion This study showed that PFAS exposure was significantly associated with increased risks of various adverse birth outcomes and that different birth outcome indicators had different degrees of sensitivity to PFAS. Further studies are needed to confirm our results by expanding the sample size, clarifying the effects of different types or doses of PFAS and the time of blood collection on birth outcomes, and fully considering the possible confounders.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Liu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Huan-Ru Liang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ze-Lian Li
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Cheng-Yang Hu
| |
Collapse
|
13
|
Gao J, Qiu Z, Cheng W, Gao HO. Children's exposure to BC and PM pollution, and respiratory tract deposits during commuting trips to school. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113253. [PMID: 35121261 DOI: 10.1016/j.ecoenv.2022.113253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Although children have been identified as a vulnerable group highly susceptible to traffic-related air pollution, their exposure during school commutes to traffic-related pollutants and the relevant health impact is rarely studied. In this study, we measured black carbon (BC) and particulate matter (PM: PM1, PM2.5, and PM10) concentrations that children are exposed to during their multi-modal (walking, private cars, and e-bikes) commuting trips to schools in Xi'an, China. A multi-parameter inhalation rate assessment model was developed in combination with the Multi-Path Particle Dosimetry (MPPD) model to quantify the deposition dose in different parts of children's respiratory system (head, tracheobronchial (TB), pulmonary (PUL)). Results show that walking to school exposed children to the lowest PM1, PM2.5, and BC concentrations, whereas riding an e-bike led to significantly elevated exposure to PM1 and BC than the other two modes. This is due to children's closer proximity to vehicle tail pipe emissions when they bike to school on road or roadside. The PM and BC concentrations showed remarkable increases in comparison to background concentrations during children's school commutes. Urban background (UB) concentration, traffic volume (TV), time of day, and meteorological parameters could influence a child's personal exposure, and the impact of each factor vary across different transportation modes. Particle size of the pollutant affects its deposition site in the respiratory system. Deposition fractions (DFs) and deposition doses in the head region (DF > 50%) were the highest for PM and BC, for which fine particles (BC, PM1, and PM2.5) were then most easily deposited in the PUL region while coarse particles rarely reach PUL. Children inhaled higher doses of polluted air during active commuting (walking) than passive commuting (private cars, e-bikes), due to longer times of exposure coupled with more active breathing.
Collapse
Affiliation(s)
- Jingwen Gao
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China
| | - Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an 710064 Shaanxi, PR China.
| | - Wen Cheng
- China National Heavy Duty Truck Group Co., Ltd. (SINOTRUK), Huaao Road, Jinan, 250101 Shandong, PR China
| | - H Oliver Gao
- School of Civil and Environmental Engineering, Cornell University 468 Hollister Hall, Ithaca, 14853 NY, USA
| |
Collapse
|
14
|
Xia X, Yao L, Lu J, Liu Y, Jing W, Li Y. Observed causative impact of fine particulate matter on acute upper respiratory disease: a comparative study in two typical cities in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11185-11195. [PMID: 34528209 DOI: 10.1007/s11356-021-16450-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Association between fine particulate matter (PM2.5) and respiratory health has attracted great concern in China. Substantial epidemiological evidences confirm the correlational relationship between PM2.5 and respiratory disease in many Chinese cities. However, the causative impact of PM2.5 on respiratory disease remains uncertain and comparative analysis is limited. This study aims to explore and compare the correlational relationship as well as the causal connection between PM2.5 and upper respiratory tract infection (URTI) in two typical cities (Beijing, Shenzhen) with rather different ambient air environment conditions. The distributed lag nonlinear model (DLNM) was used to detect the correlational relationship between PM2.5 and URTI by revealing the lag effect pattern of PM2.5 on URTI. The convergent cross mapping (CCM) method was applied to explore the causal connection between PM2.5 and URTI. The results from DLNM indicate that an increase of 10 μg/m3 in PM2.5 concentration is associated with an increase of 1.86% (95% confidence interval: 0.74%-2.99%) in URTI at a lag of 13 days in Beijing, compared with 2.68% (95% confidence interval: 0.99-4.39%) at a lag of 1 day in Shenzhen. The causality detection with CCM quantitatively demonstrates the significant causative influence of PM2.5 on URTI in both two cities. Findings from the two methods consistently show that people living in low-concentration areas (Shenzhen) are less tolerant to PM2.5 exposure than those in high-concentration areas (Beijing). In general, our study highlights the adverse health effects of PM2.5 pollution on the general public in cities with various PM2.5 levels and emphasizes the needs for the government to provide appropriate solutions to control PM2.5 pollution, even in cities with low PM2.5 concentration.
Collapse
Affiliation(s)
- Xiaolin Xia
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Engineering Technology Center of Remote Sensing Big Data Application of Guangdong Province, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070, Guangzhou, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, People's Republic of China
| | - Ling Yao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, People's Republic of China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Jiaying Lu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yangxiaoyue Liu
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Engineering Technology Center of Remote Sensing Big Data Application of Guangdong Province, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070, Guangzhou, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, People's Republic of China
| | - Wenlong Jing
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Engineering Technology Center of Remote Sensing Big Data Application of Guangdong Province, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070, Guangzhou, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, People's Republic of China
| | - Yong Li
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Engineering Technology Center of Remote Sensing Big Data Application of Guangdong Province, Guangzhou Institute of Geography, Guangdong Academy of Sciences, 510070, Guangzhou, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, People's Republic of China
| |
Collapse
|
15
|
Liu M, Li Z, Lu F, Guo M, Tao L, Liu M, Liu Y, Deginet A, Hu Y, Li Y, Wu M, Luo Y, Wang X, Yang X, Gao B, Guo X, Liu X. Acute effect of particulate matter pollution on hospital admissions for cause-specific respiratory diseases among patients with and without type 2 diabetes in Beijing, China, from 2014 to 2020. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112794. [PMID: 34592518 DOI: 10.1016/j.ecoenv.2021.112794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Scientific studies have identified various adverse effects of particulate matter (PM) on respiratory disease (RD) and type 2 diabetes (T2D). However, whether short-term exposure to PM triggers the onset of RD with T2D, compared with RD without T2D, has not been elucidated. METHODS A two-stage time-series study was conducted to evaluate the acute adverse effects of PM on admission for RD and for RD with and without T2D in Beijing, China, from 2014 to 2020. District-specific effects of PM2.5 and PM10 were estimated using the over-dispersed Poisson generalized addictive model after adjusting for weather conditions, day of the week, and long-term and seasonal trends. Meta-analyses were applied to pool the overall effects on overall and cause-specific RD, while the exposure-response (E-R) curves were evaluated using a cubic regression spline. RESULTS A total of 1550,154 admission records for RD were retrieved during the study period. Meta-analysis suggested that per interquartile range upticks in the concentration of PM2.5 corresponded to 1.91% (95% CI: 1.33-2.49%), 2.16% (95% CI: 1.08-3.25%), and 1.92% (95% CI: 1.46-2.39%) increments in admission for RD, RD with T2D, and RD without T2D, respectively, at lag 0-8 days, lag 8 days, and lag 8 days. The effect size of PM2.5 was statistically significantly higher in the T2D group than in the group without T2D (z = 3.98, P < 0.01). The effect sizes of PM10 were 3.86% (95% CI: 2.48-5.27%), 3.73% (95% CI: 1.72-5.79%), and 3.92% (95% CI: 2.65-5.21%), respectively, at lag 0-13 days, lag 13 days, and lag 13 days, respectively, and no statistically significant difference was observed between T2D groups (z = 0.24, P = 0.81). Significant difference was not observed between T2D groups for the associations of PM and different RD and could be found between three groups for effects of PM10 on RD without T2D. The E-R curves varied by sex, age and T2D condition subgroups for the associations between PM and daily RD admissions. CONCLUSIONS Short-term PM exposure was associated with increased RD admission with and without T2D, and the effect size of PM2.5 was higher in patients with T2D than those without T2D.
Collapse
Affiliation(s)
- Mengmeng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, China
| | - Zhiwei Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Feng Lu
- Beijing Municipal Health Commission Information Centre, Beijing 100034, China
| | - Moning Guo
- Beijing Municipal Health Commission Information Centre, Beijing 100034, China
| | - Lixin Tao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Mengyang Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yue Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Aklilu Deginet
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yaoyu Hu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yutong Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Mengqiu Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Xinghua Yang
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Bo Gao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Australia.
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| |
Collapse
|