1
|
Nandni, Rani S, Dhiman I, Wati L. Biopriming with multifarious sulphur-oxidizing bacteria improve in vitro Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01195-8. [PMID: 39235527 DOI: 10.1007/s12223-024-01195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Biopriming seeds with beneficial bacteria has potential to enhance seed germination. Therefore, in this investigation, five sulphur-oxidizing bacterial cultures, viz., Pantoea dispersa SOB2, Bacillus velezensis SN06, Bacillus cereus SN20, Bacillus tropicus SN16, and Bacillus megaterium SN11, were evaluated for different plant growth-promoting traits and their impact on Vigna radiata L. (mung bean) and Brassica juncea L. (mustard) seed germination. Among these, three bacterial cultures Pantoea dispersa SOB2, Bacillus velezensis SN06, and Bacillus megaterium SN11 evinced potential for mineral solubilization on solid medium where Pantoea dispersa SOB2 had the maximum solubilization indices-3.06, 5.14, and 2.48 for phosphate, zinc, and potassium respectively. The culture also displayed higher indole acetic acid (113.12 µg/mL), gibberellic acid (162.66 µg/mL), ammonia (5.23 µg/mL), and siderophore (69.53%) production than other bacterial cultures whereas Bacillus cereus SN20 showed maximum exopolysaccharide production (9.26 g/L). Bacterial culture Pantoea dispersa SOB2 significantly ameliorated the germination rate (3.73 no./day) and relative seed germination (208%) of Brassica juncea L., while Bacillus velezensis SN06 and Bacillus cereus SN20 followed with germination rate and relative seed germination of 2.86 no./day and 207%, respectively. Pantoea dispersa SOB2 displayed lowest mean germination time 2.91 days followed by Bacillus megaterium SN11 with 3.19 days. Biopriming with sulphur-oxidizing bacterial cultures, germination parameters of Vigna radiata L. were also markedly improved. Pantoea dispersa SOB2 demonstrated the highest germination rate (6.72 no./day), relative seed germination (115.56%), and minimum mean generation time (1.73 days). Bacillus velezensis SN06 inoculation had a beneficial effect on the seedling growth of Vigna radiata L., whereas Pantoea dispersa SOB2 greatly aided the seedling growth of Brassica juncea L. Results corroborated a prominent positive correlation between seed germination and plant growth-promoting traits. This is the first study on Pantoea dispersa as sulphur oxidizer, displaying plant growth promoting traits and seed germination potential. The potent sulphur-oxidizing bacterial cultures possessing plant growth promoting activities enhanced seed germination under in vitro conditions that could be further explored in field as biofertilizers to enhance the growth and yield of Brassica juncea L. and Vigna radiata L. crop.
Collapse
Affiliation(s)
- Nandni
- Department of Microbiology, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Savita Rani
- Department of Microbiology, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Indu Dhiman
- Department of Microbiology, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Leela Wati
- Department of Microbiology, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
2
|
Fotoohiyan Z, Samiei F, Sardoei AS, Kashi F, Ghorbanpour M, Kariman K. Improved salinity tolerance in cucumber seedlings inoculated with halotolerant bacterial isolates with plant growth-promoting properties. BMC PLANT BIOLOGY 2024; 24:821. [PMID: 39218905 PMCID: PMC11367809 DOI: 10.1186/s12870-024-05538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
To address salinity stress in plants in an eco-friendly manner, this study investigated the potential effects of salinity-resistant bacteria isolated from saline agricultural soils on the growth of cucumber (Cucumis sativus, cv. Royal) seedlings. A greenhouse factorial experiment was conducted based on a completely randomized design (CRD) with two factors, salinity at four levels and five bacterial treatments, with three replications (n = 3). Initially, fifty bacterial isolates were screened for their salinity and drought tolerance, phosphate solubilization activity, along with production of auxin, siderophore and hydrogen cyanide. Isolates K4, K14, K15, and C8 exhibited the highest resistance to salinity and drought stresses in vitro. Isolates C8 and K15 demonstrated the highest auxin production capacity, generating 2.95 and 2.87 µg mL- 1, respectively, and also exhibited significant siderophore production capacities (by 14% and 11%). Additionally, isolates C8 and K14 displayed greater phosphate solubilization activities, by 184.64 and 122.11 µg mL- 1, respectively. The statistical analysis revealed that the selected four potent isolates significantly enhanced all growth parameters of cucumber plants grown under salinity stress conditions for six weeks. Plant height increased by 41%, fresh and dry weights by 35% and 7%, respectively, and the leaf area index by 85%. The most effective isolate, C8, was identified as Bacillus subtilis based on the 16 S rDNA amplicon sequencing. This study demonstrated that inoculating cucumber seedlings with halotolerant bacterial isolates, such as C8 (Bacillus subtilis), possessing substantial plant growth-promoting properties significantly alleviated salinity stress by enhancing plant growth parameters. These findings suggest a promising eco-friendly strategy for improving crop productivity in saline agricultural environments.
Collapse
Affiliation(s)
- Zeinab Fotoohiyan
- Department of Plant Pathology, Jiroft Branch, Islamic Azad University, Kerman, Iran
| | - Fatemeh Samiei
- Department of Plant Pathology, Roudehen Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salehi Sardoei
- Department of Horticultural and Crops Research, Southern Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | - Fatemeh Kashi
- Graduated with a master's degree in statistics from Allameh Tabataba'i University, Tehran, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, 6009, Perth, WA, Australia
| |
Collapse
|
3
|
Zhang Y, Zhao SY, Zhang RH, Li BL, Li YY, Han H, Duan PF, Chen ZJ. Screening of plant growth-promoting rhizobacteria helps alleviate the joint toxicity of PVC+Cd pollution in sorghum plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124201. [PMID: 38810675 DOI: 10.1016/j.envpol.2024.124201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Combined microplastic and heavy metal pollution (CM-HP) has become a popular research topic due to the ability of these pollutants to have complex interactions. Plant growth-promoting rhizobacteria (PGPR) are widely used to alleviate stress from heavy metal pollution in plants. However, the effects and mechanisms by which these bacteria interact under CM-HP have not been extensively studied. In this study, we isolated and screened PGPR from CM-HP soils and analyzed the effects of these PGPR on sorghum growth and Cd accumulation under combined PVC+Cd pollution through pot experiments. The results showed that the length and biomass of sorghum plants grown in PVC+Cd contaminated soil were significantly lower than those grown in soils contaminated with Cd alone, revealing an enhancement in toxicity when the two contaminants were mixed. Seven isolated and screened PGPR strains effectively alleviated stress due to PVC+Cd contamination, which resulted in a significant enhancement in sorghum biomass. PGPR mitigated the decrease in soil available potassium, available phosphorus and alkali-hydrolyzable nitrogen content caused by combined PVC+Cd pollution and increased the contents of these soil nutrients. Soil treatment with combined PVC+Cd pollution and PGPR inoculation can affect rhizosphere bacterial communities and change the composition of dominant populations, such as Proteobacteria, Firmicutes, and Actinobacteria. PICRUSt2 functional profile prediction revealed that combined PVC+Cd pollution and PGPR inoculation affected nitrogen fixation, nitrification, denitrification, organic phosphorus mineralization, inorganic phosphorus solubilization and the composition and abundance of genes related the N and P cycles. The Mantel test showed that functional strain abundance, the diversity index and N and P cycling-related genes were affected by test strain inoculation and were significant factors affecting sorghum growth, Cd content and accumulation. This study revealed that soil inoculation with isolated and screened PGPR can affect the soil inorganic nutrient content and bacterial community composition, thereby alleviating the stress caused by CM-HP and providing a theoretical basis and data support for the remediation of CM-HP.
Collapse
Affiliation(s)
- Yu Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Si-Yu Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Ruo-Han Zhang
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - B Larry Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Hui Han
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Peng-Fei Duan
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Zhao-Jin Chen
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
4
|
Zhou B, Yang Z, Chen X, Jia R, Yao S, Gan B, Fan D, Yang X, Li W, Chen Y. Microbiological Mechanisms of Collaborative Remediation of Cadmium-Contaminated Soil with Bacillus cereus and Lawn Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1303. [PMID: 38794373 PMCID: PMC11124894 DOI: 10.3390/plants13101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Severe cadmium contamination poses a serious threat to food security and human health. Plant-microbial combined remediation represents a potential technique for reducing heavy metals in soil. The main objective of this study is to explore the remediation mechanism of cadmium-contaminated soil using a combined approach of lawn plants and microbes. The target bacterium Bacillus cereus was selected from cadmium-contaminated soil in mining areas, and two lawn plants (Festuca arundinacea A'rid III' and Poa pratensis M'idnight II') were chosen as the target plants. We investigated the remediation effect of different concentrations of bacterial solution on cadmium-contaminated soil using two lawn plants through pot experiments, as well as the impact on the soil microbial community structure. The results demonstrate that Bacillus cereus promotes plant growth, and the combined action of lawn plants and Bacillus cereus improves soil quality, enhancing the bioavailability of cadmium in the soil. At a bacterial suspension concentration of 105 CFU/mL, the optimal remediation treatment was observed. The removal efficiency of cadmium in the soil under Festuca arundinacea and Poa pratensis treatments reached 33.69% and 33.33%, respectively. Additionally, the content of bioavailable cadmium in the rhizosphere soil increased by up to 13.43% and 26.54%, respectively. Bacillus cereus increased the bacterial diversity in the non-rhizosphere soil of both lawn plants but reduced it in the rhizosphere soil. Additionally, the relative abundance of Actinobacteriota and Firmicutes, which have potential for heavy metal remediation, increased after the application of the bacterial solution. This study demonstrates that Bacillus cereus can enhance the potential of lawn plants to remediate cadmium-contaminated soil and reshape the microbial communities in both rhizosphere and non-rhizosphere soils.
Collapse
Affiliation(s)
- Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Atika M, Leila B, Pereira SIA, Castro PML, Ali B. Enhancing Native Plant Establishment in Mine Tailings under Drought Stress Conditions through the Application of Organo-Mineral Amendments and Microbial Inoculants. PLANTS (BASEL, SWITZERLAND) 2024; 13:863. [PMID: 38592869 PMCID: PMC10975093 DOI: 10.3390/plants13060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The implementation of phytoremediation strategies under arid and semiarid climates requires the use of appropriate plant species capable of withstanding multiple abiotic stresses. In this study, we assessed the combined effects of organo-mineral amendments and microbial inoculants on the chemical and biological properties of mine tailings, as well as on the growth of native plant species under drought stress conditions. Plants were cultivated in pots containing 1 kg of a mixture of mine tailings and topsoil (i.e., pre-mined superficial soil) in a 60:40 ratio, 6% marble sludge, and 10% sheep manure. Moreover, a consortium of four drought-resistant plant growth-promoting rhizobacteria (PGPR) was inoculated. Three irrigation levels were applied: well-watered, moderate water deficit, and severe water deficit, corresponding to 80%, 45%, and 30% of field capacity, respectively. The addition of topsoil and organo-mineral amendments to mine tailings significantly improved their chemical and biological properties, which were further enhanced by bacterial inoculation and plants' establishment. Water stress negatively impacted enzymatic activities in amended tailings, resulting in a significant decrease in acid and alkaline phosphatases, urease, and dehydrogenase activities. Similar results were obtained for bacteria, fungi, and actinomycete abundance. PGPR inoculation positively influenced the availability of phosphorus, total nitrogen, and organic carbon, while it increased alkaline phosphatase, urease (by about 10%), and dehydrogenase activity (by 50%). The rhizosphere of Peganum harmala showed the highest enzymatic activity and number of culturable microorganisms, especially in inoculated treatments. Severe water deficit negatively affected plant growth, leading to a 40% reduction in the shoot biomass of both Atriplex halimus and Pennisetum setaceum compared to well-watered plants. P. harmala showed greater tolerance to water stress, evidenced by lower decreases observed in root and shoot length and dry weight compared to well-watered plants. The use of bioinoculants mitigated the negative effects of drought on P. harmala shoot biomass, resulting in an increase of up to 75% in the aerial biomass in plants exposed to severe water deficit. In conclusion, the results suggest that the combination of organo-mineral amendments, PGPR inoculation, and P. harmala represents a promising approach to enhance the phytoremediation of metal-polluted soils under semiarid conditions.
Collapse
Affiliation(s)
- Madline Atika
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
| | - Benidire Leila
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
- Ecole Supérieure de Technologie El Kelâa des Sraghna, Université Cadi Ayyad, Route de Béni Mellal Km 8 B.P 104, El Kelaa des Sraghna 43000, Morocco
| | - Sofia I. A. Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.I.A.P.); (P.M.L.C.)
| | - Paula M. L. Castro
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.I.A.P.); (P.M.L.C.)
| | - Boularbah Ali
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, BP 549, Guéliz, Marrakech 40000, Morocco;
- Center of Excellence for Soil and Africa Research in Africa, College of Agriculture and Environmental Sciences, Université Mohammed VI Polytechnique (UM6P), Benguerir 43150, Morocco
| |
Collapse
|
6
|
Liu F, Zhang K, Zhao Y, Li D, Sun X, Lin L, Feng H, Huang Q, Zhu Z. Screening of cadmium-chromium-tolerant strains and synergistic remediation of heavy metal-contaminated soil using king grass combined with highly efficient microbial strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168990. [PMID: 38043805 DOI: 10.1016/j.scitotenv.2023.168990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The present study involved the isolation of two cadmium (Cd) and chromium (Cr) resistant strains, identified as Staphylococcus cohnii L1-N1 and Bacillus cereus CKN12, from heavy metal contaminated soils. S. cohnii L1-N1 exhibited a reduction of 24.4 % in Cr6+ and an adsorption rate of 6.43 % for Cd over a period of 5 days. These results were achieved under optimal conditions of pH (7.0), temperature (35 °C), shaking speed (200 rpm), and inoculum volume (8 %). B. cereus strain CKN12 exhibited complete reduction of Cr6+ within a span of 48 h, while it demonstrated a 57.3 % adsorption capacity for Cd over a period of 120 h. These results were achieved under conditions of optimal pH (8.0), temperature (40 °C), shaking speed (150 rpm), and inoculum volume (2-3 %). Additionally, microcharacterization and ICP-MS analysis revealed that Cr and Cd were accumulated on the cell surface, whereas Cr6+ was mainly reduced extracellularly. Subsequently, a series of pot experiments were conducted to provide evidence that the inclusion of S. cohnii L1-N1 or B. cereus CKN12 into the system resulted in a notable enhancement in both the plant height and biomass of king grass. In particular, it was observed that the presence of S. cohnii L1-N1 or B. cereus CKN12 in king grass led to a significant reduction in the levels of Cd and Cr in the soils (36.0 % and 27.8 %, or 72.9 % and 47.4 %, respectively). Thus, the results of this study indicate that the combined use of two bacterial strains can effectively aid in the remediation of tropical soils contaminated with moderate to light levels of Cd and Cr.
Collapse
Affiliation(s)
- Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yang Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qing Huang
- Key Laboratory for Environmental Toxicology of Haikou, Center for Eco-Environmental Restoration Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Ma H, Liu J, Mo L, Arias-Giraldo LM, Xiang M, Liu X. Wild plant species with broader precipitation niches exhibit stronger host selection in rhizosphere microbiome assembly. ISME COMMUNICATIONS 2024; 4:ycad015. [PMID: 38439944 PMCID: PMC10910850 DOI: 10.1093/ismeco/ycad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 03/06/2024]
Abstract
Plants actively recruit microbes from the soil, forming species-specific root microbiomes. However, their relationship with plant adaptations to temperature and precipitation remains unclear. Here we examined the host-selected and conserved microbiomes of 13 native plant species in the Xilingol steppe, Inner Mongolia, a semi-arid region in China. By calculating the global precipitation and temperature niches of these plants, considering plant phylogenetic distances, and analyzing functional traits, we found that these factors significantly influenced the rhizosphere microbiome assembly. We further quantified the strength of host selection and observed that plants with wider precipitation niches exhibited greater host selection strength in their rhizosphere microbiome assembly and higher rhizosphere bacterial diversity. In general, the rhizosphere microbiome showed a stronger link to plant precipitation niches than temperature niches. Haliangium exhibited consistent responsiveness to host characteristics. Our findings offer novel insights into host selection effects and the ecological determinants of wild plant rhizosphere microbiome assembly, with implications for steering root microbiomes of wild plants and understanding plant-microbiome evolution.
Collapse
Affiliation(s)
- Haikun Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinming Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lidong Mo
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich 8092, Switzerland
| | - Luisa M Arias-Giraldo
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, PB 6708, The Netherlands
| | - Meichun Xiang
- State Key Laboratory of Mycology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Mycology, Chinese Academy of Sciences, Institute of Microbiology, Beijing 100101, China
| |
Collapse
|
8
|
Mihoub A, Ahmad I, Radicetti E. Editorial: Alternative fertilizer harnessing plant-microbe interactions (AFPMI) for improved soil and plantnutrient management. FRONTIERS IN PLANT SCIENCE 2023; 14:1333927. [PMID: 38126018 PMCID: PMC10731673 DOI: 10.3389/fpls.2023.1333927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Adil Mihoub
- Center for Scientific and Technical Research on Arid Regions (CRSTRA), Biophysical Environment Station, Touggourt, Algeria
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Daraz U, Ahmad I, Li QS, Zhu B, Saeed MF, Li Y, Ma J, Wang XB. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in Brassica juncea through ion homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115657. [PMID: 37924800 DOI: 10.1016/j.ecoenv.2023.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.
Collapse
Affiliation(s)
- Umar Daraz
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Jianguo Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Bo Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Ndour PMS, Bargaz A, Rchiad Z, Pawlett M, Clark IM, Mauchline TH, Harris J, Lyamlouli K. Microbial Catabolic Activity: Methods, Pertinence, and Potential Interest for Improving Microbial Inoculant Efficiency. MICROBIAL ECOLOGY 2023; 86:2211-2230. [PMID: 37280438 DOI: 10.1007/s00248-023-02250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Adnane Bargaz
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zineb Rchiad
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mark Pawlett
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ian M Clark
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Tim H Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jim Harris
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Karim Lyamlouli
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
11
|
Alves MJG, Mendonça JJ, Vitalino GM, Oliveira JP, Carvalho EX, Fracetto FJC, Fracetto GGM, Lira Junior MA. Screening Digitaria eriantha cv. Suvernola Endophytic Bacteria for Maize Growth Promotion. PLANTS (BASEL, SWITZERLAND) 2023; 12:2589. [PMID: 37514205 PMCID: PMC10385894 DOI: 10.3390/plants12142589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The search for sustainable agriculture has increased interest in using endophytic bacteria to reduce fertilizer use and increase stress resilience. Stress-adapted plants are a potential source of these bacteria. Some species of these plants have not yet been evaluated for this, such as pangolão grass, from which we considered endophytic bacteria as potential plant growth promoters. Bacteria from the root, colm, leaves, and rhizospheric soil were isolated, and 132 strains were evaluated for their in vitro biological nitrogen fixation, IAA and siderophores production, and phosphate solubilization. Each mechanism was also assessed under low N availability, water stress, and low-solubility Fe and P sources in maize greenhouse experiments. All strains synthesized IAA; 63 grew on N-free media, 114 synthesized siderophores, and 46 solubilized P, while 19 presented all four mechanisms. Overall, these strains had better performance than commercial inoculant in all experiments. Still, in vitro responses were not good predictors of in vivo effects, which indicates that the former should not be used for strain selection, since this could lead to not testing strains with good plant growth promotion potential. Their heterologous growth promotion in maize reinforces the potential of stress-adapted plant species as potential sources of strains for inoculants.
Collapse
Affiliation(s)
- Michelle J G Alves
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife 52171-900, Brazil
| | - Johny Jesus Mendonça
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife 52171-900, Brazil
- Programa de Pós-Graduação em Ciência do Solo, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Gisely Moreira Vitalino
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife 52171-900, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Daraz U, Li Y, Ahmad I, Iqbal R, Ditta A. Remediation technologies for acid mine drainage: Recent trends and future perspectives. CHEMOSPHERE 2023; 311:137089. [PMID: 36336014 DOI: 10.1016/j.chemosphere.2022.137089] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) is a highly acidic solution rich in heavy metals and produced by mining activities. It can severely inhibit the growth of plants, and microbial communities and disturb the surrounding ecosystem. In recent years, the use of different bioremediation technologies to treat AMD pollution has received widespread attention due to its environment-friendly and low-cost nature. Various active and passive remediation technologies have been developed for the treatment of AMD. The active treatment involves the use of different chemical compounds while passive treatments utilize natural and biological processes like constructed wetlands, anaerobic sulfate-reducing bioreactors, anoxic limestone drains, vertical flow wetlands, limestone leach beds, open limestone channels, and various organic materials. Moreover, different nanomaterials have also been successfully employed in AMD treatment. There are also reports on certain plant growth-promoting rhizobacteria (PGPR) which have the potential to enhance the growth and productivity of plants under AMD-contaminated soil conditions. PGPR applied to plants with phytoremediation potential called PGPR-assisted phytoremediation has emerged as an economical and environment-friendly approach. Nevertheless, various approaches have been tested and employed, all the approaches have certain limitations in terms of efficiency, secondary pollution of chemicals used for the remediation of AMD, and disposal of materials used as sorbents or as phytoextractants as in the case of PGPR-assisted phytoremediation. In the future, more research work is needed to enhance the efficiency of various approaches employed with special attention to alleviating secondary pollutants production and safe disposal of materials used or biomass produced during PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
- Umar Daraz
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui Province, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Allah Ditta
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa, 18000, Pakistan.
| |
Collapse
|
13
|
Shi H, Lu L, Ye J, Shi L. Effects of Two Bacillus Velezensis Microbial Inoculants on the Growth and Rhizosphere Soil Environment of Prunus davidiana. Int J Mol Sci 2022; 23:13639. [PMID: 36362427 PMCID: PMC9657632 DOI: 10.3390/ijms232113639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/12/2024] Open
Abstract
Microbial inoculants, as harmless, efficient, and environmentally friendly plant growth promoters and soil conditioners, are attracting increasing attention. In this study, the effects of Bacillus velezensis YH-18 and B. velezensis YH-20 on Prunus davidiana growth and rhizosphere soil bacterial community in continuously cropped soil were investigated by inoculation tests. The results showed that in a pot seedling experiment, inoculation with YH-18 and YH-20 resulted in a certain degree of increase in diameter growth, plant height, and leaf area at different time periods of 180 days compared with the control. Moreover, after 30 and 90 days of inoculation, the available nutrients in the soil were effectively improved, which protected the continuously cropped soil from acidification. In addition, high-throughput sequencing showed that inoculation with microbial inoculants effectively slowed the decrease in soil microbial richness and diversity over a one-month period. At the phylum level, Proteobacteria and Bacteroidetes were significantly enriched on the 30th day. At the genus level, Sphingomonas and Pseudomonas were significantly enriched at 15 and 30 days, respectively. These bacterial phyla and genera can effectively improve the soil nutrient utilization rate, antagonize plant pathogenic bacteria, and benefit the growth of plants. Furthermore, inoculation with YH-18 and inoculation with YH-20 resulted in similar changes in the rhizosphere microbiome. This study provides a basis for the short-term effect of microbial inoculants on the P. davidiana rhizosphere microbiome and has application value for promoting the cultivation and production of high-quality fruit trees.
Collapse
Affiliation(s)
| | | | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | |
Collapse
|
14
|
Liu C, Li B, Dong Y, Lin H. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128829. [PMID: 35429753 DOI: 10.1016/j.jhazmat.2022.128829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the phytoremediation efficiency of Cd-contaminated soils by hyperaccumulator P. acinosa and its endophyte B. cereus, and evaluated the variation of rhizosphere/endosphere microecology characteristics. The result showed that endophyte PE31, which could successfully colonize on P. acinosa root, increased plant Cd uptake by 42.90% and 28.85% in low and high Cd contaminated soils by promotion of plant biomass and Cd concentration in plant tissues. The improved phytoremediation may attribute to the endophyte inoculation, which significantly improved the bioavailable heavy metal (HM) percentage, nutrient cycling related enzyme activities and nutrient contents including available potassium, phosphorus and organic matter. Additionally, the relative abundance beneficial bacteria Bacillus (significantly increased by 81.23% and 34.03% in the endosphere, and by 4.86% and 8.54% in rhizosphere in low and high Cd contaminated soils) and Lysobacter, showed positive and close correlation with plant growth and HM accumulation. These results indicated that endophyte inoculation could reshape rhizosphere and endosphere microecology characteristics, which enhanced the potential for phytoremediation of Cd contaminated soils.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
15
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Li Q, Zhang D, Cheng H, Ren L, Jin X, Fang W, Yan D, Li Y, Wang Q, Cao A. Organic fertilizers activate soil enzyme activities and promote the recovery of soil beneficial microorganisms after dazomet fumigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114666. [PMID: 35151999 DOI: 10.1016/j.jenvman.2022.114666] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Soil fumigation can reduce the impact of soil-borne diseases, weeds and insect pests on commercial crop production. Unfortunately, fumigation also kills beneficial microorganisms. In this study, we explored if dazomet fumigation could be used in combination with organic fertilizers (silicon fertilizer, potassium humate organic fertilizer, Bacillus microbial fertilizer, and mixtures of the last two) to reduce its impact on soil beneficial microorganisms. We evaluated the effects of adding these fertilizers after fumigation on the soil's physical and chemical properties and its enzyme activities, as well as its effects on the soil microbial communities under continuous production for >20 years. We found that fertilizers applied after fumigation increased the soil nitrate nitrogen content by 11.6%-29.4%, increased available potassium content by 5.6%-26.3% and increased organic matter content by 28.5%-48.8%. In addition, soil conductivity and water content increased significantly by 8.2%-26.5% and 8.0%-16.0%, respectively. The activities of soil catalase and soil sucrase were significantly increased by 6.2%-15.9% and 133.1%-238.5%, respectively. High-throughput DNA sequencing showed that fertilizers applied after fumigation increased the relative abundance of the phyla Proteobacteria, Actinobacteria and Ascomycota; and the genera Sphingomonas, Chaetomium and Mortierella. Silicon fertilizer applied after fumigation has the most significant promotion effect on soil micro-ecological health. The results showed that organic fertilizers applied after fumigation can improve the soil's fertility, activate soil enzyme activities and promote the recovery of soil beneficial microorganisms, which are all factors that improve crop quality and yield.
Collapse
Affiliation(s)
- Qingjie Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyan Cheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases Baoding University, Baoding, Hebei, 071000, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing, 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing, 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing, 100193, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing, 100193, China.
| |
Collapse
|
17
|
Experimental Research on the Remediation Ability of Four Wetland Plants on Acid Mine Drainage. SUSTAINABILITY 2022. [DOI: 10.3390/su14063655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to study the economical, efficient, and environmentally friendly techniques for the treatment of acid mine drainage (AMD), this paper investigated the effects of watering with AMD on the growth condition, the resilience of four wetland plants, as well as the uptake and transport of pollutants by plants. The results showed that Typha orientalis was more resistant to AMD (irrigation with AMD increased its catalase activity and glutathione content and promoted its growth), so it was suitable for treating high concentrations of AMD (SO42− ≈ 9400 mg/L); Cyperus glomeratus was suitable for treating medium concentrations of AMD (SO42− ≈ 4600 mg/L); and Scirpus validus and Phragmites australis could be used to treat low concentrations of AMD (SO42− ≈ 2300 mg/L). All four plants could be used for phytoextraction for Mn-contaminated water (TF > 1). Phragmites australis could be used for phytoextraction for Zn-contaminated water, and the other three plants could be used for phytostabilisation for Zn-contaminated water (TF < 1); the microbial biomass in the soil was affected not only by the concentration of AMD but also by plant species. This study provides a scientific basis for the phytoremediation technology of AMD.
Collapse
|
18
|
Li X, Yang Q, Wang L, Song C, Chen L, Zhang J, Liang Y. Using Caenorhabditis elegans to assess the ecological health risks of heavy metals in soil and sediments around Dabaoshan Mine, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16332-16345. [PMID: 34648159 DOI: 10.1007/s11356-021-16807-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution is a global environmental problem, and the potential risks associated with heavy metals are increasing. The acid mine drainage (AMD) which is generated by mining activities at Dabaoshan Mine, the largest polymetallic mine in southern China, is harmful to local residents. A detailed regional survey of the ecological and human health risks of this polluted area is urgently needed. In this study, eight sediments and farmland samples were collected along the flow direction of tailing wastewater and Fandong Reservoir; the content of multiple heavy metals in these samples was determined by inductively coupled plasma mass spectrometry. The biological toxicity of water-soluble extracts from the samples was further assessed by referring to different endpoints of Caenorhabditis elegans (C. elegans). The relationship between specific heavy metals and biological toxicity was estimated by partial least squares regression. The results indicated that the risk of heavy metals in Dabaoshan mining area was very high (potential ecological risk index = 721.53) and was related to geographical location. In these samples, the carcinogenic risk (the probability that people are induced carcinogenic diseases or injuries when exposed to carcinogenic pollutants) of arsenic (As) for adults exceeded the standard value 1 × 10-4 and indicated that As presented a high carcinogenic risk to adults, while the high risk of non-carcinogenic effects (the hazard degree of human exposure to non-carcinogenic pollutants) in children was related to lead exposure (hazard index = 1.24). In addition, the heavy metals at high concentration in the water-soluble fraction of sediment and farmland soil extracts, which might easily distribute within the water cycle, inhibited the survival rate and growth of C. elegans. Gene expression and enzymatic activity related to oxidative stress were increased and genes related to apoptosis and metallothionein were also affected. In conclusion, the results of chemical analysis and biological assays provided evidence on the toxicity of soil and sediment extracts in the Dabaoshan mining area and advocated the control and remediation of heavy metal pollution around Dabaoshan Mine.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Chuxin Song
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lufeng Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Jie Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
19
|
Chaudhary P, Chaudhary A, Parveen H, Rani A, Kumar G, Kumar R, Sharma A. Impact of nanophos in agriculture to improve functional bacterial community and crop productivity. BMC PLANT BIOLOGY 2021; 21:519. [PMID: 34749648 PMCID: PMC8573984 DOI: 10.1186/s12870-021-03298-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/11/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Since the World's population is increasing, it's critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. "Nanophos" is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design. RESULTS Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly (P < 0.05) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity. CONCLUSION The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.
| | - Anuj Chaudhary
- School of Agriculture and Environmental Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Heena Parveen
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Alka Rani
- Department of Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, India
| | - Govind Kumar
- Crop Production Division, Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Rajeew Kumar
- Department of Agronomy, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Anita Sharma
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
20
|
Wang H, Cai XY, Xu M, Tian F. Enhanced Biocontrol of Cucumber Fusarium Wilt by Combined Application of New Antagonistic Bacteria Bacillus amyloliquefaciens B2 and Phenolic Acid-Degrading Fungus Pleurotus ostreatus P5. Front Microbiol 2021; 12:700142. [PMID: 34512576 PMCID: PMC8425394 DOI: 10.3389/fmicb.2021.700142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Continuous monoculture of cucumber (Cucumis sativus L.) typically leads to the frequent incidence of Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC). As potent allelochemicals, phenolic acids are believed to be associated with soilborne diseases. This study aimed to investigate the effect of single or co-inoculation of antagonistic bacteria Bacillus amyloliquefaciens B2 and phenolic acid-degrading fungus Pleurotus ostreatus P5 on the suppression of cucumber Fusarium wilt. The strain B2 was identified as B. amyloliquefaciens based on biochemical, physiological, and 16S rDNA and gyrB gene sequence analyses. Strain B2 showed indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization in in vitro assays. Scanning electron microscope (SEM) imaging showed the ability of strain B2 to adhere to the root surface of cucumber. P. ostreatus P5 could effectively degrade mixed phenolic acids as its sole source of carbon and energy for growth in liquid medium. In a pot experiment, four treatments were established as follows: (1) CK, uninoculated control; (2) B2, inoculation of strain B2; (3) P5, inoculation of strain P5; and (4) B2 + P5, co-inoculation of strain B2 and strain P5. At the end of the 60-day pot experiment, the B2, P5, and B2 + P5 treatments significantly reduced disease incidence by 48.1, 22.2, and 63.0%, respectively, compared to the CK treatment (p < 0.05). All three inoculation treatments significantly increased the growth of cucumber seedlings and suppressed the FOC population compared to the control (p < 0.05). High-performance liquid chromatography (HPLC) analysis showed that total phenolic acids were decreased by 18.9, 35.9, and 63.2% in the B2, P5, and B2 + P5 treatments, respectively. The results from this study suggest that combined application of B. amyloliquefaciens B2 and P. ostreatus P5 could be a promising strategy for suppressing Fusarium wilt and improving plant growth of cucumber seedlings under continuous cropping conditions.
Collapse
Affiliation(s)
- Hongwei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Xiao-Yu Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Feng Tian
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| |
Collapse
|
21
|
Wang Y, Wang J, Li Z, Wang H, He X, Wang C. A novel method based on membrane distillation for treating acid mine drainage: Recovery of water and utilization of iron. CHEMOSPHERE 2021; 279:130605. [PMID: 33894512 DOI: 10.1016/j.chemosphere.2021.130605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rapid and highly efficient treatment of acid mine drainage (AMD) is still challenging due to the low pH and high metal concentrations in it. This research focuses on a novel treatment method of AMD using direct contact membrane distillation (DCMD) and photocatalysis to recover water and utilize iron. In the DCMD process without pretreatment, the flux decreased by 93.38%. If pretreated by adding sodium oxalate, scale formation potential was effectively mitigated due to the removal of calcium and complexing of iron. For the treatment of the pretreated AMD (PAMD), 60% of water was recovered in the DCMD process with the flux decrease of 22%. The concentrate obtained from the DCMD process demonstrated high photocatalytic activity in the methylene blue (MB) degradation in an aqueous solution. In addition, the Fe (III)-oxalate complexes in the concentrate were reduced to insoluble Fe (II)-oxalate with visible light irradiation, which could be separated by sedimentation and used as a Fenton catalyst. Hence, this novel method exhibits great advantages on effectively inhibiting DCMD membrane fouling during AMD treatment, producing high-quality distillate with low conductivity, and realizing near zero-discharge of AMD.
Collapse
Affiliation(s)
- Yuxiang Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhongyi Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; The Second High School Attached to Beijing Normal University, Beijing, 100088, China.
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
22
|
Metagenomic Insight into the Community Structure of Maize-Rhizosphere Bacteria as Predicted by Different Environmental Factors and Their Functioning within Plant Proximity. Microorganisms 2021; 9:microorganisms9071419. [PMID: 34209383 PMCID: PMC8304108 DOI: 10.3390/microorganisms9071419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The rhizosphere microbiota contributes immensely to nutrient sequestration, productivity and plant growth. Several studies have suggested that environmental factors and high nutrient composition of plant's rhizosphere influence the structural diversity of proximal microorganisms. To verify this assertion, we compare the functional diversity of bacteria in maize rhizosphere and bulk soils using shotgun metagenomics and assess the influence of measured environmental variables on bacterial diversity. Our study showed that the bacterial community associated with each sampling site was distinct, with high community members shared among the samples. The bacterial community was dominated by Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, Bacteroidetes and Verrucomicrobia. In comparison, genera such as Gemmatimonas, Streptomyces, Conexibacter, Burkholderia, Bacillus, Gemmata, Mesorhizobium, Pseudomonas and Micromonospora were significantly (p ≤ 0.05) high in the rhizosphere soils compared to bulk soils. Diversity indices showed that the bacterial composition was significantly different across the sites. The forward selection of environmental factors predicted N-NO3 (p = 0.019) as the most influential factor controlling the variation in the bacterial community structure, while other factors such as pH (p = 1.00) and sulfate (p = 0.50) contributed insignificantly to the community structure of bacteria. Functional assessment of the sampling sites, considering important pathways viz. nitrogen metabolism, phosphorus metabolism, stress responses, and iron acquisition and metabolism could be represented as Ls > Rs > Rc > Lc. This revealed that functional hits are higher in the rhizosphere soil than their controls. Taken together, inference from this study shows that the sampling sites are hotspots for biotechnologically important microorganisms.
Collapse
|
23
|
Tahir M, Imran M, Nawaz F, Shahid M, Naeem MA, Ahmad I, Akram M, Khalid U, Farooq ABU, Bakhat HF, Kamran M, Shah ZA. Effects of Bacillus sp. MR-1/2 and magnetite nanoparticles on yield improvement of rice by urea fertilizer under different watering regimes. J Appl Microbiol 2021; 131:2433-2447. [PMID: 33896080 DOI: 10.1111/jam.15110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/17/2021] [Accepted: 04/17/2021] [Indexed: 11/27/2022]
Abstract
AIMS The present research aimed to examine the use of magnetite nanoparticles (MNPs) in combination with phyto-beneficial rhizobacterium (PhBR) for improvement of applied N recovery (ANR) from urea fertilizer in rice grown under deficient and optimum watering conditions. METHODS AND RESULTS The Bacillus sp. MR-1/2 was positive for acetylene reduction, phosphate solubilization and ACC deaminase activity at temperature ranges 35-45°C. In a pot experiment, urea, MNPs and Bacillus sp. MR-1/2 were applied either alone or in combination to rice plants grown in pots under water deficit and optimal watering conditions. Combined application of urea, MNPs and Bacillus sp. MR-1/2 increased the plant N content and ANR by 27 and 65%, respectively, over their respective control values in rice grown under optimum watering conditions, whereas these increases were 27 and 41%, respectively, in rice grown under water deficit conditions. This treatment also increased the kernel weight and plant dry matter by 36 and 60%, respectively, over control (urea alone) values in rice grown under water deficit conditions, whereas these increases were 31 and 21·8%, respectively, in rice grown under optimum watering conditions. Values of malondialdehyde (MDA) contents, ascorbate peroxidase (APX), catalase and ethylene concentration were higher in control treatment under both the watering regimes. The application of Bacillus sp. MR-1/2 either alone or in combination with MNPs and urea reduced MDA contents, APX, catalase and ethylene production in the rice plants. CONCLUSION The combined application of MNPs+Bacillus sp. MR-1/2 reduced the N losses from applied urea, increased N uptake and ANR in rice, decreased MDA contents, APX and catalase activity and ethylene level in rice grown under deficit and optimum water conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The application of MNPs together with Bacillus sp. MR-1/2 may help to increase ANR and rice productivity under water deficit conditions with low cost of production.
Collapse
Affiliation(s)
- M Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - M Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - F Nawaz
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - M Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - M A Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - I Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - M Akram
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - U Khalid
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - A B U Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - H F Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - M Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| | - Z A Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, Pakistan
| |
Collapse
|
24
|
Effects of Mineral-Solubilizing Microorganisms on Root Growth, Soil Nutrient Content, and Enzyme Activities in the Rhizosphere Soil of Robinia pseudoacacia. FORESTS 2021. [DOI: 10.3390/f12010060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Abandoned mining sites are becoming increasingly common due to anthropogenic activities. Consequently, external-soil spray seeding technology has attracted increasing attention as a strategy to remediate them. However, significant challenges remain that greatly inhibit the efficacy of such technologies, such as insufficient nutrients available for plants. Methods: For this study, we designed an experiment, which involved the addition of mineral-solubilizing microorganisms and R. pseudoacacia seedlings to the external-soil spray seeding (ESSS) substrate, and measured the soil nutrients, enzyme activities, and root growth of R. pseudoacacia. Results: First, the combination of certain mineral-solubilizing microorganisms with ESSS advanced its efficiency by increasing the availability of soil nutrients and soil enzymatic activities in association with R. pseudoacacia. Furthermore, the improvement of root growth of R. pseudoacacia was intimately related to soil nutrients, particularly for soil total nitrogen (TN) and total sulfur (TS). In general, the effects of the J2 (combined Bacillus thuringiensis and Gongronella butleri) treatment for soil nutrients, enzyme activities, and plant growth were the strongest. Conclusion: In summary, the results of our experiment revealed that these mineral-solubilizing microorganisms conveyed a promotional effect on R. pseudoacacia seedlings by increasing the soil nutrient content. These results provide basic data and microbial resources for the development and applications of mineral-solubilizing microorganisms for abandoned mine remediation.
Collapse
|