1
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
2
|
Shao X, Liang W, Gong K, Qiao Z, Zhang W, Shen G, Peng C. Effect of biodegradable microplastics and Cd co-pollution on Cd bioavailability and plastisphere in soil-plant system. CHEMOSPHERE 2024; 369:143822. [PMID: 39608653 DOI: 10.1016/j.chemosphere.2024.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BPs) are regarded as ecomaterials and are emerging as a substitute for traditional non-degradable plastics. However, the information on the interaction between biodegradable microplastics (BMPs) and cadmium (Cd) in agricultural soil is still limited. Here, lettuce plants were cultured in BMPs (polylactic acid (PLA) MPs and poly(butylene-adipate-co-terephthalate) (PBAT) MPs) and Cd co-polluted soil for 35 days. The results show that diffusive gradient in thin films technique (DGT) but not diethylenetriaminepentaacetic acid (DTPA) extraction method greatly improved the prediction reliability of Cd bioavailability in non-rhizosphere soil treated with BMPs (R2 = 0.902). BMPs increased the Cd bioavailability in non-rhizosphere soil indirectly by decreasing soil pH, cation exchange capacity (CEC), and dissolved organic carbon (DOC), rather than by directly adsorbing Cd on their surface. PLA MPs incubated in rhizosphere soil showed more considerable degradation with extremely obvious cavities and the fracture of ester functional groups on their surface than PBAT MPs. BMPs could provide ecological niches to colonize and induce microorganisms associated with BMPs' degradation to occupy a more dominant position. In addition, Cd only affected the composition and function of microbial communities in soil but not on BMPs. However, co-exposure to BMPs and Cd significantly reduced the degrees of co-occurrence network of fungal communities on PLA MPs and PBAT MPs by 37.7% and 26.7%, respectively, compared to single exposure to BMPs.
Collapse
Affiliation(s)
- Xuechun Shao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Liu J, He T, Yang Z, Peng S, Zhu Y, Li H, Lu D, Li Q, Feng Y, Chen K, Wei Y. Insight into the mechanism of nano-TiO 2-doped biochar in mitigating cadmium mobility in soil-pak choi system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169996. [PMID: 38224887 DOI: 10.1016/j.scitotenv.2024.169996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Soil cadmium (Cd) pollution poses severe threats to food security and human health. Previous studies have reported that both nanoparticles (NPs) and biochar have potential for soil Cd remediation. In this study, a composite material (BN) was synthesized using low-dose TiO2 NPs and silkworm excrement-based biochar, and the mechanism of its effect on the Cd-contaminated soil-pak choi system was investigated. The application of 0.5 % BN to the soil effectively reduced 24.8 % of diethylenetriaminepentaacetic acid (DTPA) Cd in the soil and promoted the conversion of Cd from leaching and HOAc-extractive to reducible forms. BN could improve the adsorption capacity of soil for Cd by promoting the formation of humic acid (HA) and increasing the cation exchange capacity (CEC), as well as activating the oxygen-containing functional groups such as CO and CO. BN also increased soil urease and catalase activities and improved the synergistic network among soil bacterial communities to promote soil microbial carbon (C) and nitrogen (N) cycling, thus enhancing Cd passivation. Moreover, BN increased soil biological activity-associated metabolites like T-2 Triol and altered lipid metabolism-related fatty acids, especially hexadecanoic acid and dodecanoic acid, crucial for bacterial Cd tolerance. In addition, BN inhibited Cd uptake and root-to-shoot translocation in pak choi, which ultimately decreased Cd accumulation in shoots by 51.0 %. BN significantly increased the phosphorus (P) uptake in shoots by 59.4 % by improving the soil microbial P cycling. This may serve as a beneficial strategy for pak choi to counteract Cd toxicity. These findings provide new insights into nanomaterial-doped biochar for remediation of heavy metal contamination in soil-plant systems.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China
| | - Zhixing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China; CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shirui Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yanhuan Zhu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Qiaoxian Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yaxuan Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Kuiyuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
5
|
Yang W, Dai H, Wei S, Robinson BH, Xue J. Effect of ammonium sulfate combined with aqueous bio-chelator on Cd uptake by Cd-hyperaccumulator Solanum nigrum L. CHEMOSPHERE 2024; 352:141317. [PMID: 38286306 DOI: 10.1016/j.chemosphere.2024.141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The efficacy of using plants to phytoremediate heavy metal (HM) contaminated soils can be improved using soil amendments. These amendments may both increase plant biomasses and HMs uptake. We aimed to determine the composite effect of ammonium sulfate ((NH4)2SO4) combined with the application of an aqueous stem-extracted bio-chelator (Bidens tripartita L) on the plant biomasses and cadmium (Cd) phytoextraction by Solanum nigrum L. The constant (NH4)2SO4 application mode plus bio-chelator additives collectively enhanced the shoot Cd extraction ability owing to the increased plant biomass and shoot Cd concentration by S. nigrum. The shoot Cd extraction and the soil Cd decreased concentration confirmed the optimal Cd phytoextraction pattern in K8 and K9 treatments (co-application of (NH4)2SO4 and twofold/threefold bio-chelators). Accordingly, Cd contamination risk in the soil (2 mg kg-1) could be completely eradicated (<0.2 mg kg-1) after three rounds of phytoremediation by S.nigrum based on K8 and K9 treatments through calculating soil Cd depletion. The microorganism counts and enzyme activities in rhizosphere soils at treatments with the combined soil additives apparently advanced. In general, co-application mode of (NH4)2SO4 and aqueous bio-chelator was likely to be a perfect substitute for conventional scavenger agents on account of its environmental friendliness and cost saving for field Cd contamination phytoremediation by S. nigrum.
Collapse
Affiliation(s)
- Wei Yang
- Academy of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, Liaoning, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Brett H Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), POB 29237, Christchurch 8440, New Zealand
| |
Collapse
|
6
|
Liu H, Lv J, Yang Y. Recyclable water-modified deep eutectic solvents for removal of multiple heavy metals from soil. CHEMOSPHERE 2024; 350:141141. [PMID: 38185420 DOI: 10.1016/j.chemosphere.2024.141141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Removing heavy metals from soil has always been a challenge in terms of safety and effectiveness. Deep eutectic solvents (DESs) are recognized as environmentally friendly reagents with great potential in the removal of heavy metals from soil. In this study, water was introduced as a third component to form new ternary deep eutectic water solvents (DEWSs) to improve their performance. The removal capacity, applicable conditions and mechanisms of sixteen DEWSs for heavy metals were systematically investigated. Experimental results showed that the presence of water significantly enhanced the removal efficiency of three DESs (Choline chloride plus Urea, DEU; Choline chloride plus l-lactic acid, DELA; and Choline chloride plus Ethylene glycol, DEEG) for heavy metals. However, as the molar ratio of water increased, the eutectic systems in the DEWSs weakened and eventually disappeared. Under optimum conditions, DEWLA7 (DELA : H2O = 2 : 8) showed the highest removal rate for cadmium, lead, copper and zinc, which were 43.42%, 94.73%, 90.72% and 96.44%, respectively. Hydrogen bonding, adsorption of oxygen functional groups, exchangeable hydrogen substitution, changes in viscosity properties and co-precipitation all contributed to the removal of heavy metals by DEWLA7. Notably, DEWLA7 had no significant effect on the content of major minerals and nutrients in the soil. Furthermore, DEWLA7 proved to be reusable for soil washing, and still retains a high removal rate of 37.32%-83.66% after multi-stage filtration treatment. Therefore, DEWLA7 was an unexplored and excellent soil washing agent with great potential in economic and social benefits.
Collapse
Affiliation(s)
- Hexiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, China.
| |
Collapse
|
7
|
Chen C, Zheng N, Zhu H, An Q, Pan J, Li X, Ji Y, Li N, Sun S. Co-exposure to UV-aged microplastics and cadmium induces intestinal toxicity and metabolic responses in earthworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132737. [PMID: 37832442 DOI: 10.1016/j.jhazmat.2023.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Aged microplastics (MPs) alter the interaction with heavy metals due to changes in surface properties. However, the combined toxicological effects of aged MPs on heavy metals in soil remain poorly understood. In this study, earthworms were employed as model animals to investigate the effects of aged MPs on the biotoxicity of cadmium (Cd) by simulating the exposure patterns of original and UV-aged MPs (polylactic acid (PLA) and polyethylene (PE)) with Cd. The results showed that UV-aging decreased the zeta potential and increased the specific surface area of the MPs, which enhanced the bioaccumulation of Cd and caused more severe oxidative stress to earthworms. Meanwhile, the earthworm intestines exhibited increased tissue damage, including chloragogenous tissue congestion lesions, and typhlosole damage. Furthermore, the combined exposure to UV-aged MPs and Cd enhanced the complexity of the microbial network in the earthworm gut and interfered with endocrine disruption, membrane structure, and energy metabolic pathways in earthworms. The results emphasized the need to consider the degradation of MPs in the environment. Hence, we recommend that future toxicological studies use aged MPs that are more representative of the actual environmental conditions, with the results being important for the risk assessment and management of MPs.
Collapse
Affiliation(s)
- Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Huicheng Zhu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Ning Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
8
|
Xu Z, Nie N, Liu K, Li Q, Cui H, Du H. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162929. [PMID: 36934932 DOI: 10.1016/j.scitotenv.2023.162929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Remediation of CdAs co-contaminated soils has long been considered a difficult problem to solve, as Cd and As have distinctly different metallic characters. Amending contaminated soils with traditional single passivation materials may not always work well in the stabilization of both Cd and As. Here, we reported that analog soil organo-ferrihydrite composites made with either living or non-living organics (bacterial cells or humic acid) could achieve stabilization of both Cd and As in contaminated soils. BCR and Wenzel sequential extractions showed that organo-ferrihydrite, particularly at 1 wt% loading, shifted liable Cd and As to more stable phases. Organo-ferrihydrite amendments significantly (p < 0.05) increased soil urease, alkaline phosphatase and catalase enzyme activities. With organo-ferrihydrite amendments, the bioavailable fraction of Cd decreased to 35.3 % compared with the control (65.1 %), while the bioavailable As declined from 29.4 % to 12.4%. Soil pH, microbial community abundance and diversity were almost unaffected by organo-ferrihydrite. Ferrihydrite and organo fractions both contributed to direct Cd-binding, while the organo fraction probably maintained the Fe-bound As via lowering ferrihydrite phase transformation. Compared to pure ferrihydrite, organo-ferrihydrite composites performed better not only in reducing liable Cd and As, but also in maintaining soil quality and ecosystem functions. This study demonstrates the applications of organo-ferrihydrite composites in eco-friendly remediation of CdAs contaminated soils, and provides a new direction in selecting appropriate soil amendments.
Collapse
Affiliation(s)
- Zelin Xu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China; College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Kaiyan Liu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haojie Cui
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
9
|
Song J, Li Y, Tang H, Qiu C, Lei L, Wang M, Xu H. Application potential of Vaccinium ashei R. for cadmium migration retention in the mining area soil. CHEMOSPHERE 2023; 324:138346. [PMID: 36893865 DOI: 10.1016/j.chemosphere.2023.138346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Despite numerous reports on phytoremediation of heavy metals contaminated soil, there are few reports on plant retention of heavy metals in the mining area slope. This study was the first of its kind to explore the cadmium (Cd) retention capacity of the blueberry (Vaccinium ashei Reade). Firstly, we investigated the stress response of blueberry to different soil Cd concentrations (1, 5, 10, 15, 20 mg/kg) to assess its potential for phytoremediation by pot experiments. The results showed that the blueberry biomass exposed to 10 and 15 mg/kg Cd was significantly increased compared with the control (1 mg/kg Cd); the blueberry crown increased by 0.40% and 0.34% in 10 and 15 mg/kg Cd-contaminated soil, respectively, compared with control; the blueberry heigh did not even change significantly in each treatment group; the total chlorophyll content, peroxidase and catalase activity of blueberry were enhanced in 5-20 mg/kg Cd treatments. Furthermore, the Cd contents of blueberry in the root, stem and leaf increased significantly as the Cd concentration of soil increased. We found that more Cd accumulated in blueberry root: the bioaccumulation concentration factor was root > stem > leaf for all groups; the residual-Cd (Cd speciation) in soil increased by 3.83%-411.11% in blueberry-planted versus unplanted groups; blueberry improved the Cd-contaminated soil micro-ecological environment including soil organic matter, available K and P, as well as microbial communities. Then, to investigate the effect of blueberry cultivation on Cd migration, we developed a bioretention model and revealed that soil Cd transport along the model slope was significantly weakened by blueberry cultivation, especially at the bottom of the model. In a word, this research suggests a promising method for the phytoremediation of Cd-contaminated soil and the reduction of Cd migration in mining areas.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 623000, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 61130, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
10
|
Xie J, Xu X, Zhang S, Yang Z, Wang G, Li T, Pu Y, Zhou W, Xu C, Lv G, Cheng Z, Xian J, Pu Z. Activation and tolerance of Siegesbeckia Orientalis L. rhizosphere to Cd stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1145012. [PMID: 37035082 PMCID: PMC10081161 DOI: 10.3389/fpls.2023.1145012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
This experiment investigated the changes of rhizosphere soil microenvironment for hyperaccumulation-soil system under Cd stress in order to reveal the mechanism of hyperaccumulation and tolerance. Thus, Cd fractions, chemical compositions, and biochemical characteristics in rhizosphere soil of Siegesbeckia orientalis L. under Cd stress conditions of 0, 5, 10, 25, 50, 100, and 150 mg kg-1 were investigated through a root bag experiment, respectively. As a result, Cd induced the acidification of S. orientalis rhizosphere soil, and promoted the accumulation of dissolved organic carbon (DOC) and readily oxidizable organic carbon (ROC), which increased by 28.39% and 6.98% at the maximum compared with control. The percentage of labile Cd (acid-soluble and reducible Cd) in soil solution increased significantly (P < 0.05) from 31.87% to 64.60% and from 26.00% to 34.49%, respectively. In addition, rhizosphere microenvironment can alleviate the inhibition of Cd on soil microorganisms and enzymes compare with bulk soils. Under medium and low concentrations of Cd, the rhizosphere soil microbial biomass carbon (MBC), basal respiration, ammonification and nitrification were significantly increased (P < 0.05), and the activities of key enzymes were not significantly inhibited. This suggests that pH reduction and organic carbon (DOC and ROC) accumulation increase the bioavailability of Cd and may have contributed to Cd accumulation in S. orientalis. Moreover, microorganisms and enzymes in rhizosphere soils can enhance S. orientalis tolerance to Cd, alleviating the nutrient imbalance and toxicity caused by Cd pollution. This study revealed the changes of physicochemical and biochemical properties of rhizosphere soil under Cd stress. Rhizosphere soil acidification and organic carbon accumulation are key factors promoting Cd activation, and microorganisms and enzymes are the responses of Cd tolerance.
Collapse
Affiliation(s)
- Jianyu Xie
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Changlian Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Junren Xian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Cao Y, Ma C, Yu H, Tan Q, Dhankher OP, White JC, Xing B. The role of sulfur nutrition in plant response to metal(loid) stress: Facilitating biofortification and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130283. [PMID: 36370480 DOI: 10.1016/j.jhazmat.2022.130283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Metal(loid)s contamination poses a serious threat to ecosystem biosafety and human health. Phytoremediation is a cost-effective and eco-friendly technology with good public acceptance, although the process does require a significant amount of time for success. To enhance the phytoremediation efficiency, numerous approaches have been explored, including soil amendments application with chelators to facilitate remediation. Sulfur (S), a macronutrient for plant growth, plays vital roles in several metabolic pathways that can actively affect metal(loid)s phytoextraction, as well as attenuate metal(loid) toxicity. In this review, different forms of S-amendments (fertilizers) on uptake and translocation in plants upon exposure to various metal(loid) are evaluated. Possible mechanisms for S application alleviating metal(loid) toxicity are documented at the physiological, biochemical and molecular levels. Furthermore, this review highlights the crosstalk between S-assimilation and other biomolecules, such as phytohormones, polyamines and nitric oxide, which are also important for metal(loid) stress tolerance. Given the effectiveness and potential of S amendments on phytoremediation, future studies should focus on optimizing phytoremediation efficiency in long-term field studies and on investigating the appropriate S dose to maximize the food safety and ecosystem health.
Collapse
Affiliation(s)
- Yini Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1672, 70211 Kuopio, Finland
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
12
|
Xiao Y, Chen L, Li C, Ma J, Chen R, Yang B, Liu G, Liu S, Fang J. Role of the rhizosphere bacterial community in assisting phytoremediation in a lead-zinc area. FRONTIERS IN PLANT SCIENCE 2023; 13:1106985. [PMID: 36874912 PMCID: PMC9982732 DOI: 10.3389/fpls.2022.1106985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) contamination and vegetation destruction in the mining area caused by mining activities are severely increasing. It is urgent to restore vegetation and stabilize HMs. In this study, we compared the ability of HMs phytoextraction/phytostabilization of three dominant plants, including Artemisia argyi (LA), Miscanthus floridulus (LM), and Boehmeria nivea (LZ) in a lead-zinc mining area in Huayuan County (China). We also explored the role of the rhizosphere bacterial community in assisting phytoremediation using 16S rRNA sequencing technology. Bioconcentration factor (BCF) and translocation factor (TF) analysis showed that LA preferred accumulating Cd, LZ preferred accumulating Cr and Sb, and LM preferred accumulating Cr and Ni. Significant (p < 0.05) differences were found among the rhizosphere soil microbial communities of these three plants. The key genera of LA were Truepera and Anderseniella, that of LM were Paracoccus and Erythrobacter, and of LZ was Novosphingobium. Correlation analysis showed some rhizosphere bacterial taxa (e.g., Actinomarinicola, Bacillariophyta and Oscillochloris) affected some soil physicochemical parameters (e.g., organic matter and pH) of the rhizosphere soil and enhanced the TF of metals. Functional prediction analysis of soil bacterial community showed that the relative abundances of genes related to the synthesis of some proteins (e.g., manganese/zinc-transporting P-type ATPase C, nickel transport protein and 1-aminocyclopropane-1-carboxylate deaminase) was positively correlated with the phytoextraction/phytostabilization capacity of plants for heavy metals. This study provided theoretical guidance on selecting appropriate plants for different metal remediation applications. We also found some rhizosphere bacteria might enhance the phytoremediation of multi-metals, which could provide a reference for subsequent research.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chunxiao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuming Liu
- College of Chemical and Environmental Sciences, YiLi Normal University, YiLi, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Yang Q, Xie J, Liu H, Fang Z. The addition of exogenous low-molecular-weight organic acids improved phytoremediation by Bidens pilosa L. in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76766-76781. [PMID: 35670943 DOI: 10.1007/s11356-022-20686-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Enhancing the uptake and enrichment of heavy metals in plants is one of the important means to strengthen phytoremediation. In the present study, citric acid (CA), tartaric acid (TA), and malic acid (MA) were applied to enhance phytoremediation by Bidens pilosa L. in Cd-contaminated soil. The results showed that by the addition of appropriate concentrations of CA, TA, and MA, the values of the bioconcentration factor increased by 77.98%, 78.33%, and 64.49%, respectively, the translocation factor values increased by 16.45%, 12.61%, and 5.73%, respectively, and the values of the phytoextraction rates increased by 169.21%, 71.28%, and 63.11%, respectively. The minimum fluorescence values of leaves decreased by 31.62%, 0.28%, and 17.95%, while the potential efficiency of the PSII values of leaves increased 117.87%, 2.25%, and 13.18%, respectively, when CA, TA, and MA with suitable concentration were added. Redundancy analysis showed that CA and MA in plants were significantly positively correlated with plant growth, photosynthesis, and other indicators, whereas TA showed a negative correlation with most indicators. Moreover, CA addition could significantly increase the abundances of Azotobacter, Pseudomonas, and other growth-promoting bacteria, and the abundance values of Actinophytocola and Ensifer were improved in TA treatments. Therefore, our results demonstrated that low-molecular-weight organic acids could enhance phytoremediation, and exogenous CA could significantly improve the phytoremediation of Cd-contaminated soil by Bidens pilosa L.
Collapse
Affiliation(s)
- Qing Yang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Junting Xie
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Bandara T, Krohn C, Jin J, Chathurika JBAJ, Franks A, Xu J, Potter ID, Tang C. The effects of biochar aging on rhizosphere microbial communities in cadmium-contaminated acid soil. CHEMOSPHERE 2022; 303:135153. [PMID: 35640695 DOI: 10.1016/j.chemosphere.2022.135153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 05/16/2023]
Abstract
Biochars are widely used in the remediation of Cd-contaminated soils. However, changes in the bacterial communities in the rhizosphere contaminated with Cd in response to biochar aging are poorly studied. Addressing this gap in knowledge is important to improving micro-ecological services on healthy growth of plants with mitigation strategies against Cd contamination. An aging experiment (270 days) was conducted with biochars derived from poultry litter and sugar-gum wood added to a Cd-contaminated acid soil. Bacterial communities in the rhizosphere of Brassica rapa and bulk soils were investigated after 1, 90 and 270 days of biochar aging. There was no significant difference (P > 0.05) in bacterial Shannon and Simpson indices between the control and biochar treatments. However, compared to the no-Cd control, the addition of Cd decreased the relative abundances of Firmicutes, Chloroflexi and Acidobacteriota but increased those of Actinobacteriota and Proteobacteria. Poultry-litter biochar had the largest effect on bacterial community composition, especially in the rhizosphere. Aging of poultry-litter biochar increased the abundance of Armatimonadota over time more than the sugar-gum-wood biochar, which was attributed to a lower pH and higher bioavailability of Cd in the sugar-gum-wood biochar treatment. The addition of poultry-litter biochar to the contaminated soil mitigated the bioaccumulation of Cd by increasing soil pH and restoring soil bacterial ecology in contaminated acid soils over time.
Collapse
Affiliation(s)
- Tharanga Bandara
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| | - Christian Krohn
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jian Jin
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| | - J B A J Chathurika
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Ashley Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia; Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ian D Potter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
15
|
Zhu N, Wang J, Wang Y, Li S, Chen J. Differences in geological conditions have reshaped the structure and diversity of microbial communities in oily soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119404. [PMID: 35523380 DOI: 10.1016/j.envpol.2022.119404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/27/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
High-throughput sequencing was used to study the microbial community structure diversity changes in oil-contaminated soils under different spatial distances and environmental conditions. 239 Phyla, 508 Classes, 810 Orders, 1417 Families, 2048 Genera, 511 Species of microbial communities were obtained from 16 samples in three regions. The physicochemical properties of the soil, microorganisms' community structure has been changed by Petroleum hydrocarbon (PHA). Alpha diversity results showed that the soil contained high bacterial diversity, especially in Qingyang's loess soil. The bacterial abundance was in the order of loess soil > black soil > sandy soil. Beta diversity revealed that spatial distance limitation and random variation of repeated samples may be the main factors leading to soil heterogeneity and microbial community structure differences. The dominant bacteria phyla with broad petroleum hydrocarbon degradation ability such as Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were identified. Pseudomonas, Bacillus, Nocardioides, Oceanobacillus, Sphingomonas, Alkanindiges and Streptomyces were identified as functional microbial for the PHA degradation. The microbial communities manifested the co-exclusion under different geological conditions, and played the key role in the soil PHA degradation through amino acid metabolism, energy metabolism and carbohydrate metabolism. The correlation results of amos structural equation showed that the diversity and abundance of soil microorganisms in different regions were controlled by soil PHA content and environmental factors. Altitude, annual average temperature and annual rainfall were positively correlated with microbial diversity. Annual rainfall and soil physical and chemical factors exhibited the most significant influence on it. Microbial diversity indirectly affected the PHA content in different type soil. We believe that reshape the structure and diversity of microbial communities in soil could be changed and reshaped by different geological conditions, pollutants and soil type. This study can provide helps for understanding the ecological effect of geomicrobiology formation under the driving force of geographic environment and other factors.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jiangqin Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Shaowei Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
16
|
Yin H, Chen Y, Feng Y, Feng L, Yu Q. Synthetic physical contact-remodeled rhizosphere microbiome for enhanced phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128828. [PMID: 35395523 DOI: 10.1016/j.jhazmat.2022.128828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is a prevalent strategy to treat environmental pollution caused by heavy metals and eutrophication-related pollutants. Although rhizosphere microbiome is critical for phytoremediation, it remains a great challenge to artificially remodel rhizosphere microbiome for enhancing multiple pollutant treatment. In this study, we designed a synthetic bacterium to strengthen physical contact between natural microbes and plant roots for remodeling the Eichhornia crassipes rhizosphere microbiome during phytoremediation. The synthetic bacterium EcCMC was constructed by introducing a surface-displayed synthetic protein CMC composed of two glucan-binding domains separated by the sequence of the fluorescent protein mCherry. This synthetic bacterium strongly bound glucans and recruited natural glucan-producing bacterial and fungal cells. Microbiome and metabolomic analysis revealed that EcCMC remarkably remodeled rhizosphere microbiome and increased stress response-related metabolites, leading to the increased activity of antioxidant enzymes involved in stress resistance. The remodeled microbiome further promoted plant growth, and enhanced accumulation of multiple pollutants into the plants, with the removal efficiency of the heavy metal cadmium, total organic matters, total nitrogen, total potassium, and total phosphorus reaching up to 98%, 80%, 97%, 93%, and 90%, respectively. This study sheds a novel light on remodeling of rhizosphere microbiome for enhanced phytoremediation of water and soil systems.
Collapse
Affiliation(s)
- Hongda Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yuqiao Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yuming Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lian Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
17
|
Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119035. [PMID: 35196562 DOI: 10.1016/j.envpol.2022.119035] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 05/21/2023]
Abstract
Nowadays, the accumulation of toxic heavy metals in soil and water streams is considered a serious environmental problem that causes various harmful effects on plants and animals. Phytoremediation is an effective, green, and economical bioremediation approach by which the harmful heavy metals in the contaminated ecosystem can be detoxified and accumulated in the plant. Hyperaccumulators exude molecules called transporters that carry and translocate the heavy metals present in the soil to different plant parts. The hyperaccumulator plant genes can confine higher concentrations of toxic heavy metals in their tissues. The efficiency of phytoremediation relies on various parameters such as soil properties (pH and soil type), organic matters in soil, heavy metal type, nature of rhizosphere, characteristics of rhizosphere microflora, etc. The present review comprehensively discusses the toxicity effect of heavy metals on the environment and different phytoremediation mechanisms for the transport and accumulation of heavy metals from polluted soil. This review gave comprehensive insights into plants tolerance for the higher heavy metal concentration their responses for heavy metal accumulation and the different mechanisms involved for heavy metal tolerance. The current status and the characteristic features that need to be improved in the phytoremediation process are also reviewed in detail.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
18
|
Niu H, Wu H, Wei X, Chen K, Pan Z. Vertical fate of Cd in soil under phytoremediation by Indian mustard and tall fescue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:221-228. [PMID: 35522845 DOI: 10.1080/15226514.2022.2070124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soil columns were designed to investigate the vertical migration of Cd in Indian mustard (IM) and tall fescue (TF). The TF biomass was greater than the IM biomass, and the Cd content in IM was higher in the shoots but lower in the roots than that in TF. Both IM and TF released N and absorbed P and K during outdoor growth, differing from the results of the previous experiment in which plants were grown in greenhouses. TF was more absorbent and had less upward attraction than IM. The IM soil was more favorable for Cd precipitation than was the TF soil. Leaching remained the dominant effect, with only 2.28-3.40% and 2.65-3.90% of Cd absorbed by IM and TF, respectively. The present study on the vertical migration of Cd provides new insights into the phytoremediation mechanisms of IM and TF. HIGHLIGHTSVertical migration rate of Cd in soil was calculated.Cd precipitation in IM soil was greater and more excellence than TF soil.TF was more absorbent and had less upward attraction than IM.Leaching remained the dominant effect with only small absorb.
Collapse
Affiliation(s)
- Hong Niu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, P. R. China
| | - Hang Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, P. R. China
| | - Xiaoya Wei
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, P. R. China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, P. R. China
| | - Zixuan Pan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, P. R. China
| |
Collapse
|
19
|
Wang G, Wang L, Ma F. Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. CHEMOSPHERE 2022; 286:131567. [PMID: 34343920 DOI: 10.1016/j.chemosphere.2021.131567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Soil bacterial community (SBC) and fertility are pivotal for the evaluation of phytoremediation performance. Although affected by earthworms (E) and arbuscular mycorrhizal fungi (AMF), little is known about the impacts of the E-AMF interaction on the variation of SBC and fertility in cadmium (Cd)-spiked soil. We elucidated these impacts in rhizosphere soil of Solanum nigrum L. Loss of nutrient availability, and SBC diversity was observed in Cd-polluted soil. AMF increased available phosphorous (AP), whereas E increased available potassium (AK). In soils with 60 and 120 mg/kg Cd, the contents of AK, AP, and soil organic matter (SOM) increased by 7.0-19.7%, 23.7-25.5%, and 11.5-17.4%, respectively; and the residual Cd after remediation decreased by 7.9-8.5% in soils treated with EAM compared to untreated soil. EAM-treated soil had higher alpha diversity estimators compared to uninoculated soil. The predominant bacterial phyla were Proteobacteria and Bacteroidetes, accounting for 72.5-84.0%. Redundancy analysis showed that total carbon (TC), SOM, pH, and C/N ratio were key factors determining SBC at the phylum level, explaining 26.9, 24.1, 15.1, and 14.8% of the total variance, respectively. These results suggested that EAM affected SBC composition by altering SOM, TC, and C/N ratio. The E-AMF cooperation ameliorates soil nutrients, SBC diversity, and composition, facilitating phytoextraction processes.
Collapse
Affiliation(s)
- Gen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
20
|
Cáceres PFF, Vélez LP, Junca H, Moreno-Herrera CX. Theobroma cacao L. agricultural soils with natural low and high cadmium (Cd) in Santander (Colombia), contain a persistent shared bacterial composition shaped by multiple soil variables and bacterial isolates highly resistant to Cd concentrations. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100086. [PMID: 34927107 PMCID: PMC8649583 DOI: 10.1016/j.crmicr.2021.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
This study report statistically significant differences in beta-diversity correlated with soil properties, including Cd concentrations. Culture-dependent techniques allowed the isolation of bacterial strains tolerating high Cd concentrations up to 120 mgL−1 for potencial Cd biosorption or intracellular sequestration. The combination of different approaches provides a baseline about the bacterial composition and Cd tolerant strains found in these soils influence for lower Cd accumulation in cocoa crops.
Heavy metals can be found in soil as natural components or as product of contaminations events; plants growing in soils are prone to bioaccumulate heavy metals on their biomass. Theobroma cacao L. can bioaccumulate cadmium (Cd) in the seed and could be in derived food products, it considered a human health risk; therefore, removal of Cd is desirable but not vet technically and economically feasible; only to avoid Cd in cocoa is by selecting lands plots exhibiting lower Cd concentrations in soils, imposing a serious limitation to farmers and regulators. The study of bacterial communities and isolation bacteria with tolerance and mechanisms to counteract the translocation of Cd to the parts of cocoa plant exhibits high relevance in Colombia economy and especially to companies producing chocolate and derivatives. Here, we explore bacterial communities associated with soils having relatively high natural Cd concentrations in a large agricultural cocoa plot located in the Santander region. We characterized the bacterial communities’ compositions by amplicon 16S rRNA sequencing from metagenomics soil DNA and by culturing-based enumeration and isolation approaches. Culture-dependent techniques allowed the isolation of bacteria tolerant to Cd concentration, complement the information for Colombia, and expand the number of strains characterized with adaptive capacity against Cd with tolerance in a concentration of 120 mg/L, which represents the first capacity for Exiguobacterium sp., Ralstonia sp., Serratia sp., Dermacoccus sp., Klebsiella sp., Lactococcus sp. and Staphylococcus sp. In addition to confirming that there is a greater diversity of Cd-tolerant bacteria present in soils of farms cultivated with cocoa in Colombia. As for the results of new generation sequencing, they revealed that, the alpha-diversity in bacterial composition, according to the ANOVA, there are statistically significant differences of the bacterial communities present in the samples. Regarding Pearson correlation analysis, it was found the Shannon Simpson indices, have a positive correlation against OM, C, pH, Mn, C.E.C.I., Ca, P and negatively correlated with S; respect to bacterial community structure, a principal component analysis, which revealed that independent of the concentration of Cd present in soil samples, separates them according to pH value. Phyla to high abundance relative in all samples were Proteobacteria, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Myxococcota, Chloroflexi, Plactomycetota, Bacteroidota, Gemmatimonadota, Nitrospirota, Firmicutes and NB1_J; the bacteria genera with higher relative abundance (>0.5%) Nitrospira, candidatus Udaeobacter, Haliangium, Cupriavidus, MND1, Bacillus, Kitasatospora, Niveibacterium, Acidothermus, Burkholderia, Acidibacter, Terrimonas, Gaiella, candidatus Solibacter, Kitasatospora, Sphingomonas, Streptomyces, this genus with a relationship with the Cd tolerance process. After it, redundancy analysis was performed between the variation of the bacterial communities identified by dependent and independent techniques and edaphic soil variables, where their positive correlation was found against K, OM, C, Ca, pH (p<0.01) and P, C.E.C.I (p<0.05). For soil samples, the bacterial genera that make up the core community were identified, which are present in all samples as Nitrospira sp., Cupriavidus sp., Burkholderia sp., Haliangium sp., candidatus Udaeobacter, MND1, Kitasatospora, Acidothermus, Acidibacter, Streptomyces, Gaiella, candidatus Solibacter and Terramonas; the genera identified has a different and fundamental role in ecosystem functioning. The combination of different approaches offers new clues regarding the assessment of bacterial communities in soils cultivated with cocoa in soils with elevated Cd content in Colombia, and the ecological role and interplay of soil components and bacterial communities that contribute to modulate the effect of bioaccumulation in products.
Collapse
Affiliation(s)
- Pedro Felipe Feria Cáceres
- Universidad Nacional de Colombia, Faculty of Science, Microbiodiversity and bioprospecting research group, Cra. 65 #59a-110, Cellular and Molecular Biology laboratory 19-A 310, Medellin, Colombia
- Center for Research, Development and Quality – CIDCA (Spanish acronym), Compañía Nacional de Chocolates, Km.2 Vía Belén-Rionegro-Colombia
- Corresponding authors at: Universidad Nacional de Colombia, Faculty of Science, Microbiodiversity and bioprospecting research group, Cra. 65 # 59a-110, Cellular and Molecular Biology laboratory 19-A 310, Medellin, Colombia.
| | - Lucas Penagos Vélez
- Center for Research, Development and Quality – CIDCA (Spanish acronym), Compañía Nacional de Chocolates, Km.2 Vía Belén-Rionegro-Colombia
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics and Holobionts, Microbiomas Foundation, LT11A, 250008 Chía, Colombia
| | - Claudia Ximena Moreno-Herrera
- Universidad Nacional de Colombia, Faculty of Science, Microbiodiversity and bioprospecting research group, Cra. 65 #59a-110, Cellular and Molecular Biology laboratory 19-A 310, Medellin, Colombia
- Corresponding authors at: Universidad Nacional de Colombia, Faculty of Science, Microbiodiversity and bioprospecting research group, Cra. 65 # 59a-110, Cellular and Molecular Biology laboratory 19-A 310, Medellin, Colombia.
| |
Collapse
|