1
|
Zhang H, Li S, Zhang C, Ren X, Zhou M. A critical review of ozone-based electrochemical advanced oxidation processes for water treatment: Fundamentals, stability evaluation, and application. CHEMOSPHERE 2024; 365:143330. [PMID: 39277044 DOI: 10.1016/j.chemosphere.2024.143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
In recent years, electrochemical advanced oxidation processes (EAOPs) combined with ozonation have been widely utilized in water/wastewater treatment due to their excellent synergistic effect, high treatment efficiency, and low energy consumption. A comprehensive summary of these ozone-based EAOPs is still insufficient, though some reviews have covered these topics but either focused on a specific integrated process or provided synopses of EAOPs or ozone-based AOPs. This review presents an overview of the fundamentals of several ozone-based EAOPs, focusing on process optimization, electrode selection, and typical reactor designs. Additionally, the service life of electrodes and improvement strategies for the stability of ozone-based EAOPs that are ignored by previous reviews are discussed. Furthermore, four main application fields are summarized, including disinfection, emerging contaminants treatment, industrial wastewater treatment, and resource recovery. Finally, the summary and perspective on ozone-based EAOPs are proposed. This review provides an overall summary that would help to gain insight into the ozone-based EAOPs to improve their environmental applications.
Collapse
Affiliation(s)
- Hanyue Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shasha Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chaohui Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xueying Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Salari M, Alahabadi A, Rahmani-Sani A, Miri M, Yazdani-Aval M, Lotfi H, Saghi MH, Rastegar A, Sepehr MN, Darvishmotevalli M. A comparative study of response surface methodology and artificial neural network based algorithm genetic for modeling and optimization of EP/US/GAC oxidation process in dexamethasone degradation: Application for real wastewater, electrical energy consumption. CHEMOSPHERE 2024; 349:140832. [PMID: 38042425 DOI: 10.1016/j.chemosphere.2023.140832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Dexamethasone (DXM) is a broadly used drug, which is frequently identified in the water environments due to its improper disposal and incomplete removal in wastewater treatment plant. The inability of conventional treatment processes of wastewater causes that researchers pay a great attention to study and develop effective wastewater treatment systems. This work deals with the study of integrated electro-peroxone/granular activated carbon (EP/US/GAC) process in the degradation of dexamethasone (DXM) from a water environment and the remediation of real pharmaceutical wastewater. Two approaches of response surface methodology based on central composite design (RSM-CCD) and artificial neural network based on algorithm genetic (ANN-GA) were employed for modeling and optimization of the process. Both the models presented significant adequacy for modeling and prediction of the process according to statistical linear and nonlinear metrics (R2 = 0.9998 and 0.9996 and RMSE = 0.2128 and 0.1784 for ANN-GA and RSM-CCD, respectively). The optimization study provided the same outcomes for both ANN-GA and RSM-CCD approaches, where approximately complete DEX oxidation was achieved at pH = 9.3, operating time = 10 min, US power = 300 W/L, applied current = 470 mA, and electrolyte concentration = 0.05 M. A synergistic study signified that the EP/US/GAC process made an 82% synergy index as compared to the individual US and EP processes. The calculated energy consumption for the integrated process was achieved to be 2.79 kW h/gCOD. Quenching test by tert-butanol and p-benzoquinone revealed that HO• radical possessed the largest contribution in DEX degradation. The efficiency of EP/US/GAC process in the remediation of real pharmaceutical wastewater showed a significant decline in COD content (92% removal after 180 min), and the ratio of initial BOD/COD ratio of 0.27 was elevated up to 0.7 after 100 min treatment time. The performance stability of EP/US/GAC system showed no remarkable drop in removal efficiency, and leakage of lead ions from the anode surface was negligible and below WHO guideline for drinking water. Generally, this research work manifested that the integrated EP/US/GAC system elevated the degradation efficiency and can be proposed as a pretreatment step before biological treatment processes for the remediation of recalcitrant wastewaters.
Collapse
Affiliation(s)
- Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ahmad Alahabadi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rahmani-Sani
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohsen Yazdani-Aval
- Leishmaniasis Research Center, Department of Occupational Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Lotfi
- Department of Microbiology, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hossien Saghi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ayoob Rastegar
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Noori Sepehr
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Darvishmotevalli
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Jiang H, Chen H, Wei K, Liu L, Sun M, Zhou M. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. CHEMOSPHERE 2023; 341:140083. [PMID: 37696481 DOI: 10.1016/j.chemosphere.2023.140083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising approach for efficient wastewater treatment. However, despite their promising potential, there is a lack of comprehensive analysis regarding the research trends, bibliometric data, and research frontiers of EAOPs. To address this gap, this study conducted a thorough and comprehensive analysis of 2347 related articles in the Web of Science Core Collection Database from 2012 to 2022. The analysis included information on countries, authors, institutions, and more, with a focus on summarizing trends and cutting-edge research hotspots in the field. The University of Barcelona in Spain is the most effective institution. Brillas E. is the most productive author in the world. Research hotspots in EAOPs have evolved from traditional anodic oxidation (AO) to novel electro-Fenton (EF) technology, which focuses on efficient generation of H2O2 and the use of metal-organic frameworks to enhance performance and efficiency. Through systematic research hotspot analysis, the importance of performance comparison of different types of EAOPs, development of new materials, optimization of device parameters, and toxicity assessment of byproducts is highlighted. Concurrently, the rise and mechanisms of emerging EAOPs are predicted and analyzed. Finally, future research on EAOPs technologies should focus on technological coupling, development of new materials, reduction of energy consumption and cost, evaluation and minimization of toxicity, and exploration of green renewable energy sources for larger-scale applications in wastewater treatment pilot plants. In this way, these technologies can contribute to the sustainability of larger industrial wastewater treatment applications and make an important contribution to environmental protection and scientific and technological progress.
Collapse
Affiliation(s)
- Hanfeng Jiang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lufan Liu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingdi Sun
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Nasab EA, Nasseh N, Damavandi S, Amarzadeh M, Ghahrchi M, Hoseinkhani A, Alver A, Khan NA, Farhadi A, Danaee I. Efficient purification of aqueous solutions contaminated with sulfadiazine by coupling electro-Fenton/ultrasound process: optimization, DFT calculation, and innovative study of human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84200-84218. [PMID: 37365361 DOI: 10.1007/s11356-023-28235-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
In the current work, the hybrid process potential of ultrasound (US) and electro-Fenton (EF), named sono-electro-Fenton (SEF), was fully investigated for sulfadiazine (SDZ) degradation. The decontamination in the integration approach was revealed to be greater than in individual procedures, i.e., EF process (roughly 66%) and US process (roughly 15%). The key operating process factors (i.e., applied voltage, H2O2 content, pH, initial concentration of SDZ, and reaction time) affecting SDZ removal were evaluated and optimized using Box-Behnken Design (BBD). In addition, an adaptive neuro-fuzzy inference system (ANFIS) as an efficient predictive model was applied to forecast the decontamination efficiency of SDZ through the SEF process based on the same findings produced from BBD. The results revealed that the predictability of SDZ elimination by the ANFIS and BBD approaches exhibited an excellent agreement (a greater R2 of 0.99%) among the both models. Density functional theory was also employed to forecast the plausible decomposition elucidation by the bond-breaking mechanism of organic substances. Plus, the main side products of SDZ degradation during the SEF process were tracked. Eventually, the non-carcinogenic risk assessment of different samples of natural water containing SDZ that was treated by adopting US, EF, and SEF processes was examined for the first time. The findings indicated that the non-carcinogenic risk (HQ) values of all the purified water sources were computed in the permissible range.
Collapse
Affiliation(s)
- Ehsan Abbasi Nasab
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sobhan Damavandi
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Mohamadamin Amarzadeh
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Atefeh Hoseinkhani
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Alper Alver
- Department of Environmental Protection Technologies, Technical Sciences Vocational School, Aksaray University, 68100, Aksaray, Turkey
| | - Nadeem A Khan
- Civil Engineering Department Mewat Engineering College, Nuh Haryana, India, 122107
| | - Asadollah Farhadi
- Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Iman Danaee
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| |
Collapse
|
5
|
Chen H, wang Y, Ye J, Chao Z, Zhu K, Yang H, Xu Z. Oxygen-doped protonated C3N4 nanosheet as particle electrode and photocatalyst to degrade dye by photoelectrocatalytic oxidation process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
7
|
Ye X, Cai W, Lu D, Liu R, Wu Y, Wang Y. Electrochemical regeneration of granular activated carbon using an AQS (9,10- anthraquinone-2-sulfonic acid)/PPy modified graphite plate cathode. CHEMOSPHERE 2022; 308:136189. [PMID: 36037956 DOI: 10.1016/j.chemosphere.2022.136189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we investigate the regeneration efficiency of Rhodamine B (RhB)-saturated granular activated carbon (GAC) in an electrochemical regeneration system by using a 9,10-anthraquinone-2-sulfonic acid/polypyrrole modified graphite plate (AQS/PPy-GP) cathode. The response surface methodology based on the Box-Behnken design (RSM-BBD) approach was used to optimize regeneration parameters, whereby the optimum condition of the independent variables was as follows: applied current = 155 mA, concentration of supporting electrolyte = 0.13 M, and regeneration time = 7 h. The electrochemical regeneration system with the AQS/PPy-GP electrode achieved high regeneration efficiency and significantly reduced energy consumption. H2O2 concentration generated in the electrolysis system was notably increased, and the time of complete degradation of organics was shortened by 25% compared to the electrode without modification. The mechanism for RhB degradation was proposed as AQS acting as a catalyst to promote the formation of H2O2. The regeneration study showed that AQS/PPy-GP cathode had appreciable reusability for GAC regeneration with a regeneration efficiency of 76.6% after 8 regeneration cycles. In summary, the electrochemical regeneration based on AQS/PPy-GP cathode would have practical industrial applications in treating spent activated carbons.
Collapse
Affiliation(s)
- Xiao Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Wangfeng Cai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ding Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Ruonan Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Yingdong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Yan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
8
|
Sadaf S, Singh AK, Iqbal J, Kumar RN, Sulejmanović J, Habila MA, Pinê Américo-Pinheiro JH, Sher F. Advancements of sequencing batch biofilm reactor for slaughterhouse wastewater assisted with response surface methodology. CHEMOSPHERE 2022; 307:135952. [PMID: 35964716 DOI: 10.1016/j.chemosphere.2022.135952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Slaughterhouse wastewater (SWW) contains a significant volume of highly polluted organic wastes. These include blood, fat, soluble proteins, colloidal particles, suspended materials, meat particles, and intestinal undigested food that consists of higher concentrations of organics such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrogen and phosphorus hence an efficient treatment is required before discharging into the water bodies. The effluent concentrations and performance of simultaneous sequential batch biofilm reactor (SBBR) with recycled plastic carrier media support are better than the local single-stage sequential batch reactor (SBR), which is lacking in the literature in terms of COD, NH3, NO3, and PO4 treatment efficiency. The present study reports a novel strategy to remove the above mentioned contaminants using an intermittently aerated SBBR with recycled plastic carrier media support along with simultaneous nitrification and denitrification. The central composite design was evaluated to optimize the treatment performance of seven different process variables including; different alternating conditions (Oxic/anoxic) for aeration cycles (3/2 h in a 6 h cycle, 6/5 h in a 12 h cycle and 9/8 h in an 18 h cycle) and hydraulic retention time (6, 12 and 18 h). The average removal efficiencies are 94.5% for NH3, 93% for NO3 and 90.1% for PO4, and 99% for COD. The study reveals that the denitrification in the post-anoxic phase was more efficient than the pre-anoxic phase for pollutant removal and maintaining higher quality effluent. The effluent concentrations and performance of simultaneous SBBR with recycled polyethylene carrier support media were better than local SBR system in terms of COD, NH3, NO3 and PO4 treatment efficiency. Results stipulated the suitability of SBBR for wastewater treatment and reusability as a sustainable approach for wastewater management under optimum conditions.
Collapse
Affiliation(s)
- Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ankit Kumar Singh
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - R Naresh Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Jasmina Sulejmanović
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Science, Department of Chemistry, University of Sarajevo, Zmaja Od Bosne 33-35, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, Number 56, ZIP Code 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, Number 584, ZIP Code 08230-030, São Paulo, SP, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
9
|
Li X, Yu G, Wang Y. Enhancing hydroxyl radical production from cathodic ozone reduction during the ozone-electrolysis process with flow-through reactive electrochemical membrane cathode. CHEMOSPHERE 2022; 303:135020. [PMID: 35605727 DOI: 10.1016/j.chemosphere.2022.135020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, a flow-through ozone-electrolysis (O3-electrolysis) process was developed by combining ozonation with an electrolysis using a porous reactive electrochemical membrane (REM) cathode. Due to the convection-enhanced mass transport and fast radial diffusion inside the small pores of REM cathodes, the rate of cathodic O3 reduction to ozonide radicals (O3•-) was significantly enhanced, while the further cathodic O3•- reduction to oxygen was inhibited during the flow-through O3-electrolysis process compared to the conventional mixed-tank O3-electrolysis process. Consequently, more hydroxyl radicals (•OH) were formed from O3•- decay in water during the flow-through O3-electrolysis process than the mixed-tank O3-electrolysis process. Corresponding to the higher •OH yields from cathodic O3 reduction, the flow-through O3-electrolysis process substantially enhanced the abatement kinetics and efficiency of para-benzoic acid (pCBA, a model compound of ozone-resistant micropollutant) in a groundwater than conventional ozonation and the mixed-tank O3-electrolysis process. These results suggest that the flow-through O3-electrolysis process may provide a competitive treatment technology for micropollutant abatement in water treatment.
Collapse
Affiliation(s)
- Xiangyu Li
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Wang B, Wang Y. A comprehensive review on persulfate activation treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154906. [PMID: 35364155 DOI: 10.1016/j.scitotenv.2022.154906] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
With increasingly serious environmental pollution and the production of various wastewater, water pollutants have posed a serious threat to human health and the ecological environment. The advanced oxidation process (AOP), represented by the persulfate (PS) oxidation process, has attracted increasing attention because of its economic, practical, safety and stability characteristics, opening up new ideas in the fields of wastewater treatment and environmental protection. However, PS does not easily react with organic pollutants and usually needs to be activated to produce oxidizing active substances such as sulfate radicals (SO4-) and hydroxyl radicals (OH) to degrade them. This paper summarizes the research progress of PS activation methods in the field of wastewater treatment, such as physical activation (e.g., thermal, ultrasonic, hydrodynamic cavitation, electromagnetic radiation activation and discharge plasma), chemical activation (e.g., alkaline, electrochemistry and catalyst) and the combination of the different methods, putting forward the advantages, disadvantages and influencing factors of various activation methods, discussing the possible activation mechanisms, and pointing out future development directions.
Collapse
Affiliation(s)
- Baowei Wang
- School of Chemical Engineering and Technology, Tianjin University, China.
| | - Yu Wang
- School of Chemical Engineering and Technology, Tianjin University, China
| |
Collapse
|
11
|
Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: A new hybrid process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Shokri A. Employing electro-peroxone process for degradation of Acid Red 88 in aqueous environment by Central Composite Design: A new kinetic study and energy consumption. CHEMOSPHERE 2022; 296:133817. [PMID: 35131276 DOI: 10.1016/j.chemosphere.2022.133817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The Azo dyes are primarily employed in textile industries to produce high amounts of colored organic and inorganic wastewater. Therefore, their treatments are critical. In this research, the removal and mineralization of Acid red 88 (AR88), as a widely used mono Azo dye, was inspected by the Electro-peroxone(E-peroxone) method. It is a coupling of electrochemically produced H2O2 and ozone that can produce robust hydroxyl radicals. The Central Composite Design (CCD) was applied to explore the influence of operational variables on the removal of AR88 as a response. The optimal conditions predicted by the CCD were as the following; Applied current at 0.7 A, pH at 7.35, O3 Flowrate at 1.03 L min-1 and the concentration of AR88 at 527.29 mg. L-1. The Pareto chart showed that the concentration of AR88 has a significant influence on the response. At the predicted optimal conditions, the actual and predicted AR 88 removal were 95.4 and 92.96%, respectively. The removal of COD after 45 min was 70% representing the excessive efficiency of E-peroxone in mineralization of AR88. The E-peroxone follows the pseudo-first-order kinetics (kobs-E-peroxone = 6.56 × 10-2 min-1), which was more remarkable than the single ozonation, and electrolysis. The calculated specific energy consumption (SEC) in the E-peroxone was 40.14 kWh/Kg AR 18 removal, which was lower than the individual ozonation, and electrolysis methods. The operative production of H2O2 from O2 at the cathode is the critical factor in the high removal of AR88 in this process.
Collapse
Affiliation(s)
- Aref Shokri
- Jundi-Shapur Research Institute, Dezful, Iran.
| |
Collapse
|
13
|
Fluidized ZnO@BCFPs Particle Electrodes for Efficient Degradation and Detoxification of Metronidazole in 3D Electro-Peroxone Process. MATERIALS 2022; 15:ma15103731. [PMID: 35629757 PMCID: PMC9144341 DOI: 10.3390/ma15103731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
A novel material of self-shaped ZnO-embedded biomass carbon foam pellets (ZnO@BCFPs) was successfully synthesized and used as fluidized particle electrodes in three-dimensional (3D) electro-peroxone systems for metronidazole degradation. Compared with 3D and 2D + O3 systems, the energy consumption was greatly reduced and the removal efficiencies of metronidazole were improved in the 3D + O3 system. The degradation rate constants increased from 0.0369 min-1 and 0.0337 min-1 to 0.0553 min-1, respectively. The removal efficiencies of metronidazole and total organic carbon reached 100% and 50.5% within 60 min under optimal conditions. It indicated that adding ZnO@BCFPs particle electrodes was beneficial to simultaneous adsorption and degradation of metronidazole due to improving mass transfer of metronidazole and forming numerous tiny electrolytic cells. In addition, the process of metronidazole degradation in 3D electro-peroxone systems involved hydroxyethyl cleavage, hydroxylation, nitro-reduction, N-denitrification and ring-opening. The active species of ·OH and ·O2- played an important role. Furthermore, the acute toxicity LD50 and the bioconcentration factor of intermediate products decreased with the increasing reaction time.
Collapse
|
14
|
Dong Z, Zhang Y, Yao J. Enhancement of H 2O 2 yield and TOC removal in electro-peroxone process by electrochemically modified graphite felt: Performance, mechanism and stability. CHEMOSPHERE 2022; 295:133896. [PMID: 35134398 DOI: 10.1016/j.chemosphere.2022.133896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Electro-peroxone (EP) is an emerging advanced oxidation process which combines electro-generation H2O2 and ozone for removing organic contaminants. In this paper, a platinum plate as anode, a method of electrochemical oxidation is adopted to modify graphite felt (GF) cathode to promote H2O2 yield and TOC removal from oxalic acid solution in EP process, its performance, mechanism and stability were discussed. Compared with original GF cathode, 2.6 times H2O2 yield can be achieved by the 5 min electrochemically modified GF (GF-5). The high electrochemical activity of the modified GF can be ascribed to introducing numerous surface oxygen-containing functional groups (OGs), which not only decreased the impedance, but also increased the amount of active site of O2 reduction. The production of H2O2 with GF-5 cathode improved with the increased initial pH, cathodic potential and O2 flow rate, while this promoting effect was not observed in GF cathode. Compared with GF cathode, TOC removal rate was improved by 21.5% with GF-5 cathode due to higher H2O2 yield in EP process. The primary pathway of TOC removal is electrochemically-driven peroxone process, and hydroxyl radical (·OH) is the dominant reactive species. Furthermore, GF-5 cathode had a good stability due to the protection of H2O2 and free electrons injected. The results indicate that the electrochemically modified GF severed as the cathode of EP processes has significant efficiency and stability in the removal of ozone-refractory organic contaminants.
Collapse
Affiliation(s)
- Zekun Dong
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| | - Jie Yao
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| |
Collapse
|
15
|
Parsaei M, Roudbari E, Piri F, El-Shafay AS, Su CH, Nguyen HC, Alashwal M, Ghazali S, Algarni M. Neural-based modeling adsorption capacity of metal organic framework materials with application in wastewater treatment. Sci Rep 2022; 12:4125. [PMID: 35260785 PMCID: PMC8904475 DOI: 10.1038/s41598-022-08171-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
We developed a computational-based model for simulating adsorption capacity of a novel layered double hydroxide (LDH) and metal organic framework (MOF) nanocomposite in separation of ions including Pb(II) and Cd(II) from aqueous solutions. The simulated adsorbent was a composite of UiO-66-(Zr)-(COOH)2 MOF grown onto the surface of functionalized Ni50-Co50-LDH sheets. This novel adsorbent showed high surface area for adsorption capacity, and was chosen to develop the model for study of ions removal using this adsorbent. A number of measured data was collected and used in the simulations via the artificial intelligence technique. Artificial neural network (ANN) technique was used for simulation of the data in which ion type and initial concentration of the ions in the feed was selected as the input variables to the neural network. The neural network was trained using the input data for simulation of the adsorption capacity. Two hidden layers with activation functions in form of linear and non-linear were designed for the construction of artificial neural network. The model's training and validation revealed high accuracy with statistical parameters of R2 equal to 0.99 for the fitting data. The trained ANN modeling showed that increasing the initial content of Pb(II) and Cd(II) ions led to a significant increment in the adsorption capacity (Qe) and Cd(II) had higher adsorption due to its strong interaction with the adsorbent surface. The neural model indicated superior predictive capability in simulation of the obtained data for removal of Pb(II) and Cd(II) from an aqueous solution.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Elham Roudbari
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Farhad Piri
- Electrical Engineering Department, Amirkabir University of Technology, Hafez Avenue, Tehran, Iran
| | - A S El-Shafay
- Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Hoang Chinh Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - May Alashwal
- Department of Computer Science, Jeddah International College, Jeddah, Saudi Arabia
| | - Sami Ghazali
- Mechanical and Materials Engineering Department, Faculty of Engineering, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Mohammed Algarni
- Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
16
|
Moon J, Gbadago DQ, Hwang G, Lee D, Hwang S. Software platform for high-fidelity-data-based artificial neural network modeling and process optimization in chemical engineering. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Enhanced electrocatalytic degradation of 2,4-Dinitrophenol (2,4-DNP) in three-dimensional Sono-electrochemical (3D/SEC) process equipped with Fe/SBA-15 nanocomposite particle electrodes: Degradation pathway and application for real wastewater. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Fu X, Han Y, Xu H, Su Z, Liu L. Electrochemical study of a novel high-efficiency PbO 2 anode based on a cerium-graphene oxide co-doping strategy: Electrodeposition mechanism, parameter optimization, and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126890. [PMID: 34418839 DOI: 10.1016/j.jhazmat.2021.126890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A novel and efficient Ti/SnO2-Sb/PbO2-GO-Ce electrode was successfully fabricated based on the co-deposition of Ce ions and graphene oxide (GO) into β-PbO2 crystals and used as an anode for electrocatalytic oxidation of phenol. The electrodeposition mechanism, parameter optimization, mechanism analysis, and potential degradation pathways were discussed in depth. The co-doping of GO and Ce resulted in the high directional specificity of β(301), orderly and dense grain arrangement of PbO2 crystals. At the same time, the oxygen evolution potential, •OH generation capacity and lifetime were also improved. The effects of experimental parameters on phenol removal efficiency were evaluated, including the applied current density, electrode gap, supporting electrolyte, initial NaCl concentration, initial pH, and initial phenol concentration. Under the optimal conditions, the removal efficiency of phenol can reach 375.6 g m-2 h-1 for 20 min electrolysis, which is about 1.2 times that of the pure PbO2 electrode. The active oxygen species (•OH, ClO- and HClO) were important attributes to the degradation of phenol. Additionally, a potential degradation pathway for phenol was proposed. After 10 successive recycles, there was no significant difference of the electro-generated •OH, cell voltage and phenol removal rate, which confirms the stability and admirable reusability of Ti/SnO2-Sb/PbO2-GO-Ce electrode.
Collapse
Affiliation(s)
- Xiaolu Fu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| | - Han Xu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhimin Su
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lina Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
19
|
Wang L, Qi C, Lu Y, Arowo M, Shao L. Degradation of Bisphenol A by ozonation in a rotating packed bed: Modeling by response surface methodology and artificial neural network. CHEMOSPHERE 2022; 286:131702. [PMID: 34343916 DOI: 10.1016/j.chemosphere.2021.131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The ozonation process of Bisphenol A (BPA) in a rotating packed bed (RPB) was modeled by response surface methodology (RSM) and artificial neural network (ANN). Experiments were performed according to the Box-Behnken design, and the interactive effects of various parameters including ozone concentration, pH, rotation speed of RPB and liquid flow rate on BPA degradation efficiency were investigated. Ozone concentration and pH had the most significant interactive effects on BPA degradation efficiency while rotation speed of RPB had no significant interactive effects with other variables. A second order polynomial equation was obtained to predict BPA degradation efficiency. Also, a multi-layered feed-forward ANN model was constructed based on the data of RSM experiments. Six neurons in hidden layer had the highest correlation coefficient (RANN = 0.99158). A comparison between RSM and ANN models suggested that both can accurately predict BPA degradation efficiency (RRSM = 0.99559). The highest BPA degradation efficiency (99.52 %) was achieved under the conditions of ozone concentration of 20 mg L-1, pH of 11, liquid flow rate of 10 L h-1 and rotation speed of RPB of 800 rpm, which was well predicted by the RSM model (99.54 %) and the ANN model (99.82 %). However, the RSM model was slightly better than the ANN model owing to its higher determination coefficient (R2RSM = 0.9912, R2ANN = 0.9827) and lower mean square error (MSERSM = 0.0001684, MSEANN = 0.0003305).
Collapse
Affiliation(s)
- Lei Wang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chu Qi
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Lu
- CenerTech Oilfield Chemical Co., Ltd., Tianjin, 300450, China
| | - Moses Arowo
- Department of Chemical & Process Engineering, Moi University, Eldoret, 3900, Kenya
| | - Lei Shao
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Adsorption of Cr(VI) from aqueous solution using mesoporous metal-organic framework-5 functionalized with the amino acids: Characterization, optimization, linear and nonlinear kinetic models. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117835] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Needle-trap device packed with the MIL-100(Fe) metal–organic framework for the extraction of the airborne organochlorine pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: Optimization of process parameters, electrical energy consumption and degradation pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Maleki F, Gholami M, Torkaman R, Torab-Mostaedi M, Asadollahzadeh M. Multivariate optimization of removing of cobalt(II) with an efficient aminated-GMA polypropylene adsorbent by induced-grafted polymerization under simultaneous gamma-ray irradiation. Sci Rep 2021; 11:18317. [PMID: 34526607 PMCID: PMC8443739 DOI: 10.1038/s41598-021-97826-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Nowadays, radiation grafting polymer adsorbents have been widely developed due to their advantages, such as low operating cost, high efficiency. In this research, glycidyl methacrylate monomers were grafted on polypropylene polymer fibers by simultaneous irradiation of gamma-ray with a dose of 20 kGy. The grafted polymer was then modified using different amino groups and tested for adsorption of cobalt ions in an aqueous solution. Finally, the modified polymer adsorbent with a high efficiency for cobalt ions adsorption was synthesized and tested. Different modes of cobalt ions adsorption were tested in other adsorption conditions, including adsorption contact time, pH, different amounts of adsorbent mass, and different concentrations of cobalt ions solution. The adsorbent structure was characterized with FT-IR, XRD, TG and SEM techniques and illustrated having an efficient grafting percentage and adsorption capability for cobalt removing by batch experiments. The optimum conditions were obtained by a central composite design: adsorbent mass = 0.07 g, initial concentration = 40 mg/L, time = 182 min, and pH = 4.5 with ethylenediamine as a modified monomer and high amination percentage. Kinetics and equilibrium isotherms observation described that the experimental data followed pseudo-second-order and Langmuir models, respectively. The maximum adsorption capacity from Langmuir isotherm capacity is obtained equal to 68.02 mg/g.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Nuclear Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Mobina Gholami
- Nuclear Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Rezvan Torkaman
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran
| | - Meisam Torab-Mostaedi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran
| | - Mehdi Asadollahzadeh
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| |
Collapse
|
24
|
Ferreira LC, Fernandes JR, Peres JA, Tavares PB, Lucas MS. Wireless UV-A LEDs-driven AOP in the treatment of agro-industrial wastewaters. ENVIRONMENTAL RESEARCH 2021; 200:111430. [PMID: 34062199 DOI: 10.1016/j.envres.2021.111430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
A wireless UV-A LEDs lab-scale reactor powered by a resonant inductive coupling (RLC) system was built to maximize the UV photon absorption of agro-industrial wastewaters. The UV-A LEDs (λ = 365 nm) energy was supplied through a magnetic field generated inside of the photoreactor by induction coils placed on the external wall made of polyvinyl chloride. Immersing the light sources in the wastewater increases the photon transfer efficiency and the reaction rate. Maximum magnetic field and optical irradiance were obtained at 26.8 and 27.0 kHz, respectively. As proof-of-concept, elderberry wastewater (EW), olive washing wastewater (OWW) and white and red winery wastewaters (WWW and RWW) were treated combining the wireless UV-A LEDs with the Advanced Oxidation Process (AOP) - Fenton reagent. Fenton experiments were performed using [Fe2+] = 10 mg L-1, [H2O2] = 500 mg L-1, pH = 3 and a reaction time of 4 h. With EW a DOC removal of 35% (k = 0.0696 h-1) was achieved, whereas adding the wireless UV-A LEDs (f = 26.8 kHz) 53% was attained (k = 0.1722 h-1). The Electric Energy per Order (EEO) for the wireless UV-A LEDs consumption was calculated (EEO LEDs = 48.7 kWh m-3 order-1) and for all the remain equipment (air pump, RC box and power amplifier), EEO total = 495 kWh m-3 order-1. Experiments with OWW presented a DOC removal of 62% and a EEO LEDs = 40.5 kWh m-3 order-1; RWW shown 40% of DOC removal and a EEO LEDs = 68.4 kWh m-3 order-1, while with WWW 35% of DOC removal and a EEO LEDs = 79.8 kWh m-3 order-1 were obtained. This work shows that wireless UV-A LEDs can be a promising alternative to conventional UV lamps and wired LEDs in the treatment of real wastewaters. However, optimization of the induction system is still needed, as well as the number and wavelength of the LEDs (e.g. UV-C LEDs) to reduce the overall treatment costs.
Collapse
Affiliation(s)
- Leonor C Ferreira
- Chemistry Centre - Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José R Fernandes
- Chemistry Centre - Vila Real (CQVR) and Department of Physics, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José A Peres
- Chemistry Centre - Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Pedro B Tavares
- Chemistry Centre - Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Marco S Lucas
- Chemistry Centre - Vila Real (CQVR) and Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| |
Collapse
|
25
|
Optimization of 2-Chlorophenol Removal Using Ultrasound/Persulfate: Prediction by RSM Method, Biodegradability Improvement of Petrochemical Refinery Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06084-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Rahmani A, Seid-Mohammadi A, Leili M, Shabanloo A, Ansari A, Alizadeh S, Nematollahi D. Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/β-PbO 2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. CHEMOSPHERE 2021; 276:130141. [PMID: 33714150 DOI: 10.1016/j.chemosphere.2021.130141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Traditional planar PbO2 anodes have been used extensively for the electrocatalytic degradation process. However, by using porous PbO2 anodes that have a three-dimensional architecture, the efficiency of the process can be significantly upgraded. In the current study, carbon felt (CF) with a highly porous structure and a conventional planar graphite sheet (G) were used as electrode substrate for PbO2 anodes. Both CF/β-PbO2 and G/β-PbO2 anodes were prepared by the anodic deposition method. The main properties of the electrodes were characterized by XRD, EDX-mapping, FESEM, and BET-BJH techniques. The electrocatalytic degradation of diuron using three-dimensional porous CF/β-PbO2 anode was modeled and optimized by a rotatable central composite design. After optimizing the process, the ability of porous CF/β-PbO2 and planar G/β-PbO2 anodes to degrade and mineralize diuron was compared. The electrocatalytic degradation of the diuron was well described by a quadratic model (R2 > 0.99). Under optimal conditions, the kinetics of diuron removal using CF/β-PbO2 anode was 3 times faster than the G/β-PbO2 anode. The energy consumed for the complete mineralization of diuron using CF/β-PbO2 anode was 2077 kWh kg-1 TOC. However, the G/β-PbO2 anode removed only 65% of the TOC by consuming 54% more energy. The CF/β-PbO2 had more stability (115 vs. 91 h), larger surface area (1.6287 vs. 0.8565 m2 g-1), and higher oxygen evolution potential (1.89 vs. 1.84 V) compared to the G/β-PbO2. In the proposed pathways for diuron degradation, the aromatic ring and groups of carbonyl, dimethyl urea, and amide were the main targets for HO• radical attacks.
Collapse
Affiliation(s)
- Alireza Rahmani
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolmotaleb Seid-Mohammadi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mostafa Leili
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Shabanloo
- Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Ansari
- Faculty of Chemistry, Bu-Ali-Sina University, Hamadan, Iran
| | - Saber Alizadeh
- Faculty of Chemistry, Bu-Ali-Sina University, Hamadan, Iran
| | | |
Collapse
|