1
|
Ye Z, Yu L, Lu D, Zhang Q, Narbad A, Chen W, Zhai Q, Tian F. Mitigating effect of Bifidobacterium longum CCFM1077 on nonylphenol toxicity: An integrative in vitro and in vivo analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136401. [PMID: 39522148 DOI: 10.1016/j.jhazmat.2024.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Nonylphenol (NP), an endocrine-disrupting compound (EDC) with accumulative properties, poses significant risks to human health and the environment. The pivotal role of probiotics in mitigating EDC toxicity has garnered increasing attention. In this study, we assessed the protective effects of Bifidobacterium longum CCFM1077, a probiotic with outstanding in vitro NP-binding ability, against NP-induced toxicity in rats. This analysis revealed that B. longum CCFM1077 effectively promoted the NP excretion and enhanced intestinal barrier integrity. Interestingly, B. longum CCFM1077, by modulating the structure and the function of gut microbiota, increased the abundance of Turicibacter, significantly elevated the level of butyric acid, and upregulated antioxidant-related metabolic pathways, thereby alleviating brain inflammation and ultimately improving behavioral disorders. This study elucidated a strategy to alleviate NP toxicity and lays a theoretical foundation for the development of novel intestinal protection strategies. It supports environmental sustainability by offering a strategy to combat NP bioaccumulation, aligning with global initiatives to minimize the environmental impact of industrial pollutants.
Collapse
Affiliation(s)
- Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dezhi Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK; International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Yao D, Li S, You M, Chen Y, Yan S, Li B, Wang Y. Developmental exposure to nonylphenol leads to depletion of the neural precursor cell pool in the hippocampal dentate gyrus. Chem Biol Interact 2024; 401:111187. [PMID: 39111523 DOI: 10.1016/j.cbi.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.
Collapse
Affiliation(s)
- Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yin Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Yu J, Zhang Y, Yao H, Zhang Z, Yang X, Zhu W, Xu J. ERβ activation improves nonylphenol-induced depression and neurotransmitter secretion disruption via the TPH2/5-HT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116521. [PMID: 38850708 DOI: 10.1016/j.ecoenv.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The aim of this study is to investigate the role of estrogen receptor β (ERβ) in nonylphenol (NP) - induced depression - like behavior in rats and its impact on the regulation of the TPH2/5-HT pathway. In the in vitro experiment, rat basophilic leukaemia cells (RBL-2H3) cells were divided into the four groups: blank group, NP group (20 μM), ERβ agonist group (0.01 μM), and NP+ERβ agonist group (20 μM+0.01 μM). For the in vivo experiment, 72 adult male Sprague-Dawley rats were randomly divided into following six groups: the Control, NP (40 mg/kg) group, ERβ agonist (2 mg/kg, Diarylpropionitrile (DPN)) group, ERβ inhibitor (0.1 mg/kg, 4-(2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl) phenol (PHTPP)) group, NP+ERβ agonist (40 mg/kg NP + 2 mg/kg DPN) group, and NP+ERβ inhibitor (40 mg/kg NP + 0.1 mg/kg PHTPP) group, with 12 rats in each group. Each rat in drug group were given NP by gavage and/or received a single intraperitoneal injection of DPN 2 mg/kg or PHTPP 0.1 mg/kg. Both in vivo and in vitro, NP group showed a decrease in the expression levels of ERβ, tryptophan hydroxylase (TPH1), and tryptophan hydroxylase-2 (TPH2) genes and proteins, and reduced levels of DA, NE, and 5-hydroxytryptophan (5-HT) neurotransmitters. RBL-2H3 cells showed signs of cell shrinkage, with rounded cells, increased suspension and more loosely arranged cells. The effectiveness of the ERβ agonist stimulation exhibited an increase exceeding 60% in RBL-2H3 cells. The application of ERβ agonist resulted in an alleviation the aforementioned alterations. ERβ agonist activated the TPH2/5-HT signaling pathways. Compared to the control group, the NP content in the brain tissue of the NP group was significantly increased. The latency to eat for the rats was longer and the amount of food consumed was lower, and the rats had prolonged immobility time in the behavioral experiment of rats. The expression levels of ERβ, TPH1, TPH2, 5-HT and 5-HITT proteins were decreased in the NP group, suggesting NP-induced depression-like behaviours as well as disturbances in the secretion of serum hormones and monoamine neurotransmitters. In the NP group, the midline raphe nucleus showed an elongated nucleus with a dark purplish-blue colour, nuclear atrophy, displacement and pale cytoplasm. ERβ might ameliorate NP-induced depression-like behaviors, and secretion disorders of serum hormones and monoamine neurotransmitters via activating TPH2/5-HT signaling pathways.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yujie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Hao Yao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Ziping Zhang
- Department of Clinical Laboratory, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Xiao Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Wei Zhu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
4
|
Dornelles HS, Sabatini CA, Adorno MAT, Silva EL, Lee PH, Varesche MBA. Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. CHEMOSPHERE 2024; 358:142084. [PMID: 38642772 DOI: 10.1016/j.chemosphere.2024.142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The widely-used surfactant Nonylphenol Ethoxylate (NPEO) produces endocrine-disrupting compounds during biodegradation, with these byproducts being more harmful than untreated NPEO. This study investigates the effectiveness of a Fluidized Bed Reactor (FBR) in reducing the production of 4-Nonylphenol (4-NP) during the biodegradation of NPEO. Two identical FBR filled with sand were used to assess the NPEO degradation and to enhance the microbial consortia capable of breaking down the complex byproducts, ethanol and fumarate were introduced as co-substrates. Our findings demonstrate the significant potential of the FBR, especially when coupled with fumarate, for enhancing the surfactant degradation. It outperforms the efficiency achieved with ethanol as the primary electron donor, albeit with a higher rate of byproduct production. Microbial community taxonomy and metabolic prediction revealed the high abundance of Geobacter (1.51-31.71%) and Methanobacterium (1.08-13.81%) in non-conductive sand. This may hint a new metabolic interaction and expand our understanding of Direct Interspecies Electron Transfer (DIET) in bioreactors applied to micropollutants degradation. Such an intricate relationship between facultative and anaerobes working together to simultaneously biodegrade the ethoxy and alkyl chains presents a new perspective on NPEO degradation and can potentially be extended to other micropollutants.
Collapse
Affiliation(s)
- Henrique S Dornelles
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Carolina A Sabatini
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Maria A T Adorno
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, São Paulo, Brazil
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
5
|
Rashidian A, Dušek J, Drastik M, Smutná L, Fritsche K, Braeuning A, Pijnenburg D, van Beuningen R, Honkakoski P, Poso A, Kronenberger T, Pavek P. Filling the Blank Space: Branched 4-Nonylphenol Isomers Are Responsible for Robust Constitutive Androstane Receptor (CAR) Activation by Nonylphenol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6913-6923. [PMID: 38593436 DOI: 10.1021/acs.est.3c10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.
Collapse
Affiliation(s)
- Azam Rashidian
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, Hradec Králové 500 03, Czech Republic
| | - Martin Drastik
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lucie Smutná
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Kristin Fritsche
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 's-Hertogenbosch 5211HH, Netherlands
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 's-Hertogenbosch 5211HH, Netherlands
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 72011, Finland
| | - Antti Poso
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität, Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
6
|
Mushtaq S, Kim S, Bibi I, Park JA, Yang JU, Park H, Kim JY. Bioaccumulation and in vivo tracking of radiolabeled 4-nonylphenol in mice. RSC Adv 2024; 14:8578-8582. [PMID: 38487519 PMCID: PMC10938378 DOI: 10.1039/d3ra08743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
4-Nonylphenol (4NP) is concerning due to its growing presence and endocrine-disrupting nature, raising concerns about its impact on health. In this study 124I-labeled 4NP was synthesized for in vivo tracing. Positron emission tomography imaging and biodistribution studies showed significant accumulation in various tissues after oral or intraperitoneal administration, emphasizing its intricate distribution and potential long-term effects, crucial for future risk assessments.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences P. O. Nilore Islamabad 45650 Pakistan
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| | - Iqra Bibi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
- Korea National University of Science and Technology 217 Gajeong-ro, Yuseong-gu Daejeon 3411 Republic of Korea
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
- Korea National University of Science and Technology 217 Gajeong-ro, Yuseong-gu Daejeon 3411 Republic of Korea
| | - Ji-Ung Yang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| |
Collapse
|
7
|
Pan J, Lu D, Yu L, Ye Z, Duan H, Narbad A, Zhao J, Zhai Q, Tian F, Chen W. Nonylphenol induces depressive behavior in rats and affects gut microbiota: A dose-dependent effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123357. [PMID: 38228262 DOI: 10.1016/j.envpol.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor absorbed through food intake, was investigated in this study for its potential dose-response relationship with the manifestation of depression-like behavior in rats. Based on this, the mechanisms of NP-induced depressive behavior, encompassing neurotransmitters, gut barrier function, inflammatory response, gut microbiota composition and metabolites were further explored. At medium and high NP doses, both mRNA and protein levels of zonula occludens protein-1 and claudin-1 were considerably downregulated, concomitant with an elevation in tumor necrosis factor-α and interleukin-1β expression in a dose-dependent effect, resulting in damage to the gut mucosa. Despite a minimal impact on behavior and gut barriers at low NP doses, alterations in gut microbiota composition were observed. During NP exposure, dose-dependent changes in the gut microbiota revealed a decline in microbial diversity linked to the synthesis of short-chain fatty acids. NP not only adversely affected the gut microbiota structure but also exacerbated central nervous system damage through the gut-brain axis. The accumulation of NP may cause neurotransmitter disturbances and inflammatory responses in the hippocampus, which also exacerbate depressed behavior in rats. Therefore, NP could exacerbate the inflammatory response in the hippocampus and colon by compromising intestinal barrier integrity, facilitating the proliferation of pathogenic bacteria, impairing butyrate metabolism, and perturbing neurotransmitter homeostasis, thus aggravating the depressive behavior of rats. It is noteworthy that the changes in these indicators were related to the NP exposure dose.
Collapse
Affiliation(s)
- Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Dezhi Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, 16 NR4 7UQ, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
8
|
Le VG, Nguyen MK, Nguyen HL, Lin C, Hadi M, Hung NTQ, Hoang HG, Nguyen KN, Tran HT, Hou D, Zhang T, Bolan NS. A comprehensive review of micro- and nano-plastics in the atmosphere: Occurrence, fate, toxicity, and strategies for risk reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166649. [PMID: 37660815 DOI: 10.1016/j.scitotenv.2023.166649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Micro- and nano-plastics (MNPs) have received considerable attention over the past 10 years due to their environmental prevalence and potential toxic effects. With the increase in global plastic production and disposal, MNP pollution has become a topic of emerging concern. In this review, we describe MNPs in the atmospheric environment, and potential toxicological effects of exposure to MNPs. Studies have reported the occurrence of MNPs in outdoor and indoor air at concentrations ranging from 0.0065 items m-3 to 1583 items m-3. Findings have identified plastic fragments, fibers, and films in sizes predominantly <1000 μm with polyamide (PA), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), rayon, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyacrylonitrile (PAN), and ethyl vinyl acetate (EVA) as the major compounds. Exposure through indoor air and dust is an important pathway for humans. Airborne MNPs pose health risks to plants, animals, and humans. Atmospheric MNPs can enter organism bodies via inhalation and subsequent deposition in the lungs, which triggers inflammation and other adverse health effects. MNPs could be eliminated through source reduction, policy/regulation, environmental awareness and education, biodegradable materials, bioremediation, and efficient air-filtration systems. To achieve a sustainable society, it is crucial to implement effective strategies for reducing the usage of single-use plastics (SUPs). Further, governments play a pivotal role in addressing the pressing issue of MNPs pollution and must establish viable solutions to tackle this significant challenge.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Mohammed Hadi
- Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Khoi Nghia Nguyen
- Department of Soil Science, College of Agriculture, Can Tho University, Can Tho City 270000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam.
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
9
|
Xie Y, Zhao J, Li X, Sun J, Yang H. Effects of Cyfluthrin Exposure on Neurobehaviour, Hippocampal Tissue and Synaptic Plasticity in Wistar Rats. TOXICS 2023; 11:999. [PMID: 38133400 PMCID: PMC10748044 DOI: 10.3390/toxics11120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
This experiment was conducted to study the effects of Cyfluthrin (Cy) exposure on neurobehaviour, hippocampal tissue and synaptic plasticity in Wistar rats. First, it was found that high-dose Cy exposure could cause nerve injury, resulting in symptoms such as deficits in learning and memory ability, spatial exploration and autonomic motor function. Moreover, it was found that medium- and high-dose Cy exposure could cause an abnormal release of the neurotransmitter Glu. Second, brain tissue pathology showed that the middle and high doses of Cy caused tissue deformation, reduced the number of hippocampal puramidal cells, caused a disorder of these cells, decreased the number of Nissl bodies, and caused pyknosis of the hippocampal cell nuclear membrane and serious damage to organelles, indicating that exposure to these doses of Cy may cause hippocampal tissue damage in rats. Third, as the exposure dose increased, morphological changes in hippocampal synapses, including blurred synaptic spaces, a decreased number of synaptic vesicles and a decreased number of synapses, became more obvious. Moreover, the expression levels of the key synaptic proteins PSD-95 and SYP also decreased in a dose-dependent manner, indicating obvious synaptic damage. Finally, the study found that medium and high doses of Cy could upregulate the expression of A2AR in the hippocampus and that the expression levels of inflammatory factors and apoptosis-related proteins increased in a dose-dependent manner. Moreover, the expression of A2AR mRNA was correlated with neurobehavioural indicators and the levels of inflammatory factors, synaptic plasticity-related factors and apoptosis-related factors, suggesting that Cy may cause nerve damage in rats and that this effect is closely related to A2AR.
Collapse
Affiliation(s)
- Yongxin Xie
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Xiaoyu Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Huifang Yang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| |
Collapse
|
10
|
Zhang J, Liu L, Ning X, Lin M, Lai X. Isomer-specific analysis of nonylphenol and their transformation products in environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165982. [PMID: 37536583 DOI: 10.1016/j.scitotenv.2023.165982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Nonylphenols (NPs) are crucial fine chemicals widely employed in producing industrial and consumer surfactants that ultimately enter the environment through various pathways, leading to environmental pollution. NPs are suspected endocrine-disrupting chemicals that may accumulate in the body over time, resulting in unusual reproductive function. Due to limitations in analytical methods, NPs have typically been quantified as a whole in some studies. However, NPs are a mixture of multibranched structures, and different NP isomers exhibit distinct environmental behaviors and toxic effects. Therefore, it is critical to analyze environmental and human biological samples at the isomer-specific level to elucidate the contamination characteristics, human exposure load, and toxic effects of NPs. Accurately analyzing NP samples with various isomers, metabolites, and transformation products presents a significant challenge. This review summarizes recent advances in analytical research on NPs in technical products, environmental, and human biological samples, particularly emphasizing the synthesis and separation of standards and the transformation of NP homolog isomers in samples. Finally, the review highlights the research gaps and future research directions in this domain.
Collapse
Affiliation(s)
- Jianyi Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Lang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xunan Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China.
| | - Meiqing Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Xiaojun Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Institute of Environmental Health and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Pollutant Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| |
Collapse
|
11
|
Ceylan T, Akin AT, Karabulut D, Tan FC, Taşkiran M, Yakan B. Therapeutic effect of thymoquinone on brain damage caused by nonylphenol exposure in rats. J Biochem Mol Toxicol 2023; 37:e23471. [PMID: 37466128 DOI: 10.1002/jbt.23471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Nonylphenol (NP), causes various harmful effects such as cognitive impairment and neurotoxicity. Thymoquinone (TQ), has antioxidant, anti-inflammatory, and neuroprotective properties. In this study, our aim is to investigate the effects of TQ on the brain damage caused by NP. Corn oil was applied to the control group. NP (100 mg/kg/day) was administered to the NP and NP + TQ groups for 21 days. TQ (5 mg/kg/day) was administered to the NP + TQ and TQ groups for 7 after 21 days. At the end of the experiment, the new object recognition test was applied to the rats and the rats were killed and their brain tissues were removed. Sections taken from brain tissues were stained with hematoxylin-eosin for histopathological evaluation. In addition, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), Cas-3, and nerve growth factor (NGF) immunoreactivities were evaluated in brain tissue sections. In addition, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) activities were determined. Comet assay was applied to determine DNA damage in cells. The results of our study showed that NP, caused behavioral disorders and damage to the cerebral cortex in rats. This damage in the form of neuron degeneration seen in the cortex was associated with apoptosis involving Cas-3 activation, increased DNA damage, and free oxygen radicals. NP, SOD, and CAT caused a decrease in enzyme activities. In addition, the cellular protein NeuN was decreased, astrocytosis-associated GFAP was increased, and growth factor NGF was decreased. When all our evaluations are taken together, treatment with TQ showed an ameliorative effect on the behavioral impairment and brain damage caused by NP exposure.
Collapse
Affiliation(s)
- Tayfun Ceylan
- Department of Histology and Embryology, Faculty of Dentistry, Cappadocia University, Nevsehir, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Tuğrul Akin
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fazile Cantürk Tan
- Department of Biophysics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Taşkiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
You M, Li S, Yan S, Yao D, Wang T, Wang Y. Exposure to nonylphenol in early life causes behavioural deficits related with autism spectrum disorders in rats. ENVIRONMENT INTERNATIONAL 2023; 180:108228. [PMID: 37802007 DOI: 10.1016/j.envint.2023.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Early-life exposure to environmental endocrine disruptors (EDCs) is a potential risk factor for autism spectrum disorder (ASD). Exposure to nonylphenol (NP), a typical EDC, is known to cause some long-term behavioural abnormalities. Moreover, these abnormal behaviours are the most frequent psychiatric co-morbidities in ASD. However, the direct evidence for the link between NP exposure in early life and ASD-like behavioural phenotypes is still missing. In the present study, typical ASD-like behaviours induced by valproic acid treatment were considered as a positive behavioural control. We investigated impacts on social behaviours following early-life exposure to NP, and explored effects of this exposure on neuronal dendritic spines, mitochondria function, oxidative stress, and endoplasmic reticulum (ER) stress. Furthermore, primary cultured rat neurons were employed as in vitro model to evaluate changes in dendritic spine caused by exposure to NP, and oxidative stress and ER stress were specifically modulated to further explore their roles in these changes. Our results indicated rats exposed to NP in early life showed mild ASD-like behaviours. Moreover, we also found the activation of ER stress triggered by oxidative stress may contribute to dendritic spine decrease and synaptic dysfunction, which may underlie neurobehavioural abnormalities induced by early-life exposure to NP.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China
| | - Tingyu Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
13
|
Huang H, Shi J, Li Z, Rang Y, Li W, Xiao X, Chen C, Liu C. Nicotinamide mononucleotide (NMN) ameliorated Nonylphenol-induced learning and memory impairment in rats via the central 5-HT system and the NAD +/SIRT1/MAO-A pathway. Food Chem Toxicol 2023:113878. [PMID: 37295765 DOI: 10.1016/j.fct.2023.113878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) exposure can trigger neurotoxicity and cause learning and memory impairment. Nicotinamide mononucleotide (NMN) has a therapeutic effect on neurodegenerative diseases, but the role of NMN on NP-induced learning and memory impairment is not known. Here, we examined the mitigative effect of NMN on the impaired learning and memory ability of rats exposed to NP. The NP impaired learning and memory in rats, while the low-dose intervention with NMN significantly prolonged the step-through latency of the PAT and improved the NAMPT and NMNAT1 content in brain tissue. At the same time, the NMN intervention also increased the content of 5-HTR1A, 5-HTR4, and 5-HTR6 related to learning and memory in the hippocampus. In line with this, we found that the NMN intervention activated the SIRT1/MAO-A pathway in brain tissue. NMN intervention, especially at 125 mg/kg doses, may improve rats' NP-induced learning and memory impairment via the central 5-HT system and the NAD+/SIRT1/MAO-A pathway in the brain.
Collapse
Affiliation(s)
- Huiying Huang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Zhongyi Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Congying Chen
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Dwivedi S, Francis KAD, Sharma A. Protective Role of Hsp27 in the Nonylphenol-Induced Locomotory and Longevity Toxicity. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2023. [DOI: 10.1055/s-0043-1761213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Background Gut health is directly proportional to an organism's fitness. Our recent study showed a functional link between oxidative stress and heat shock protein 27 (Hsp27, a stress protein) in the Drosophila larval gut, which coordinates the nonylphenol (an endocrine disruptor) allied sub-cellular and developmental adversities.
Objective In continuation with the prior study, the present study aimed to explore the association of Hsp27 with locomotory and survival against nonylphenol-induced toxicity in the Drosophila gut.
Methods and Methodology The freshly emerged adult flies were exposed to nonylphenol (5.0 µg/mL) for 10 to 40 days, and their locomotory performance (climbing activity) and survivability were assessed. ANOVA was used to evaluate the statistical significance of the mean values in control and treated flies.
Results Nonylphenol exposure markedly influenced locomotory activity and survivability after 30 to 40 days. For instance, ∼76% (40 days) declined locomotor behavior, and ∼35% (40 days) reduced survivability was observed. While the overexpression of Hsp27 in the organism's gut showed improvement in locomotory performance and survivability after 30 to 40 days. No significant alteration in locomotory performance and survivability was observed after 10 to 20 days of nonylphenol exposure.
Conclusion The present study illustrates that Hsp27 overexpression in the Drosophila gut improves the locomotory performance and survivability in the nonylphenol exposed Drosophila. This also indicates the possible connection between the gut and organismal fitness.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Karnataka, India
| | - Kean Anthony Daniel Francis
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Karnataka, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Karnataka, India
| |
Collapse
|
15
|
Fu N, Yu J, Zhu L, Yang L, Ma L, He J, Yu H, Liu J, Tian Y, Xu J. Role of miR-219a-5p in regulating NMDAR in nonylphenol-induced synaptic plasticity damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114576. [PMID: 36736231 DOI: 10.1016/j.ecoenv.2023.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Nonylphenol (NP) is a typical environmental endocrine disruptor with estrogenic effects. It serves as an emulsifier and as the main ingredient of detergents and has become an increasingly common pollutant in both fresh and salt water, vegetables, and fruits. This study aimed to clarify whether NP exposure could lead to cognitive dysfunction and synaptic plasticity impairment, and also explore the mechanism of microRNA (miR)- 219a-5p regulation of N-methyl-D-aspartate receptor (NMDAR) in NP-induced synaptic plasticity impairment in vivo and in vitro. In vivo, 30 male Sprague-Dawley rats were randomly divided into 2 groups: blank control group (pure corn oil) and NP-exposed group [NP 80 mg/(kg·d)], with 15 rats in each group. In vitro, the extracted hippocampal neurons were divided into 6 groups: blank control group, mimics NC group, miR-219 mimics group, NP group (70 μmol/L NP), NP + mimics NC group, and NP + miR-219 mimics group. In vivo, the content of NP in hippocampal tissues after 90 days of NP exposure was significantly higher in the NP-stained group than in the blank control group. NP exposure could lead to a decrease in the ability to learn and memory, ability to remember, and space spatial memory ability in rats. The dendrites in the NP-stained group were disordered, with few dendritic spines and significantly decreased dendritic spine density. The postsynaptic densities were loosely arranged, the thickness and length of the postsynaptic densities shortened, and the length and width of the synaptic gap increased. Glutamine (Glu) and γ-aminobutyric acid (GABA) contents in hippocampal tissues decreased in the NP-stained group. The expression of miR-219a-5p mRNA decreased in the NP-stained group after 3 months of NP exposure. The expression of NMDAR1, NMDAR2A, NMDAR2B, nerve growth-associated protein (GAP-43), and Ca/calmodulin-dependent kinase II (CaMKII) mRNA/proteins decreased in the NP-stained group. In vitro, NMDAR protein expression decreased, while GAP-43 and CaMKII protein expression increased in the miR-219 mimics group compared with the control group. The expression levels of NMDAR and GAP-43 and CaMKII proteins were higher in the NP + miR-219 mimics group compared with the NP group. The levels of neurotransmitters Glu and GABA decreased in the NP and NP + mimics NC groups compared with the blank group. Shortened synaptic active band length, decreased thickness of postsynaptic densities, and shortened length of postsynaptic densities were observed in the NP, NP + mimics NC, and NP + miR-219 mimics groups compared with the blank control group. In vivo, NP exposure reduced learning memory capacity and neurotransmitter content in rats and caused a decrease in dendritic spine density and synaptic number density and a decrease in miR-219a-5p expression. In vitro, high expression of miR-219a-5p inhibited the expression of NMDAR, thus reducing the effect of NP on synaptic plasticity impairment in hippocampal neurons. Our study provided a scientific basis for the prevention of cognitive impairment owing to NP exposure and the development of targeted drug treatment strategies.
Collapse
Affiliation(s)
- Na Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Lin Zhu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Lina Ma
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Huawen Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jinqing Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yu Tian
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
16
|
Aliakbarzadeh F, Rafiee M, Khodagholi F, Khorramizadeh MR, Manouchehri H, Eslami A, Sayehmiri F, Mohseni-Bandpei A. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120587. [PMID: 36336178 DOI: 10.1016/j.envpol.2022.120587] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Micro(nano)plastics generally co-exist with other chemicals in the environment, resulting in inevitable interaction and combined toxic effects on biota. Nevertheless, little is known regarding the interaction of nanoplastics (NPs) with other co-occurring insults. Hereby, we investigated single and combined effects of chronic exposure (45 days) to polystyrene nanoplastic particulates (PS-NPs) and nonylphenol (4-NP) on zebrafish nervous system. Multiple biomarkers concerning with oxidative-stress [catalase (CAT) activity and reduced glutathione (GSH) level], cholinergic system [Acetylcholinesterase (AchE) activity], glutamatergic system [glutamine synthetase (GS) and glutamate dehydrogenase (GDH) activities], energy metabolism [a-ketoglutarate dehydrogenase (a-KGDH) activity], and histological alterations were assessed. Both single and binary exposure to PS-NPs and 4-NP induced oxidative stress through reducing CAT activity and GSH level, in which a more sever effect was noticed in combined exposure. The AchE activity was significantly inhibited only in single treatment groups demonstrating antagonistic interaction between PS-NPs and 4-NP. Effects on GS activity was also alleviated in binary exposure as compared with single exposure to each contaminant. In addition, an increase in GDH activity was noticed in PS-NPs at 10 and 100 μg/L, and simultaneous presence of PS-NPs and 4-NP with a greater response were observed in combined treatments. PS-NPs and 4-NP either in separate or binary mixtures disrupted energy metabolism by deficiency of α-KGDH activity; however, co-exposure to PS-NPs and 4-NP induced more intense adverse impacts on this parameter. Furthermore, histological analysis revealed that 4-NP and PS-NPs, alone or in combination, reduced neural cells. These findings provide new insight into the neurotoxic effects of binary exposure to PS-NPs and 4-NP at environmentally relevant concentrations. Overall, our findings raise concerns about the presence and toxicity of nano-scale plastic particulates and highlight the importance of investigating the interaction of Micro(nano)plastics with other environmental irritants.
Collapse
Affiliation(s)
- Faezeh Aliakbarzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, and Zebra Fish Core Facility (ZFIN ID: ZDB-LAB-190117-2), Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture Science, Babol Branch, Islamic Azad University, Babol, Iran
| | - Akbar Eslami
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anoushiravan Mohseni-Bandpei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Liu YH, Yao L, Huang Z, Zhang YY, Chen CE, Zhao JL, Ying GG. Enhanced prediction of internal concentrations of phenolic endocrine disrupting chemicals and their metabolites in fish by a physiologically based toxicokinetic incorporating metabolism (PBTK-MT) model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120290. [PMID: 36180004 DOI: 10.1016/j.envpol.2022.120290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), 4-nonylphenol (4-NP), and triclosan (TCS) are phenolic endocrine disrupting chemicals (EDCs), which are widely detected in aquatic environments and further bioaccumulated and metabolized in fish. Physiologically based toxicokinetic (PBTK) models have been used to describe the absorption, distribution, metabolism, and excretion (ADME) of parent compounds in fish, whereas the metabolites are less explored. In this study, a PBTK incorporating metabolism (PBTK-MT) model for BPA, 4-NP, and TCS was established to enhance the performance of the traditional PBTK model. The PBTK-MT model comprised 16 compartments, showing great accuracy in predicting the internal concentrations of three compounds and their glucuronidated and sulfated conjugates in fish. The impact of typical hepatic metabolism on the PBTK-MT model was successfully resolved by optimizing the mechanism for deriving the partition coefficients between the blood and liver. The PBTK-MT model exhibited a potential data gap-filling capacity for unknown parameters through a backward extrapolation approach of parameters. Model sensitivity analysis suggested that only five parameters were sensitive in at least two PBTK-MT models, while most parameters were insensitive. The PBTK-MT model will contribute to a well understanding of the environmental behavior and risks of pollutants in aquatic biota.
Collapse
Affiliation(s)
- Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yuan-Yuan Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
18
|
Human risk assessment of 4-n-nonylphenol (4-n-NP) using physiologically based pharmacokinetic (PBPK) modeling: analysis of gender exposure differences and application to exposure analysis related to large exposure variability in population. Arch Toxicol 2022; 96:2687-2715. [PMID: 35723719 DOI: 10.1007/s00204-022-03328-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
As a toxic substance, 4-n-nonylphenol (4-n-NP) or 4-nonylphenol (4-NP) is widely present in the environment. 4-n-NP is a single substance with a linear-alkyl side chain, but 4-NP usually refers to a random mixture containing various branched types. Unfortunately, human risk assessment and/or exposure level analysis for 4-n-NP (or 4-NP) were almost nonexistent, and related research was urgently needed. This study aimed to analyze the various exposures of 4-n-NP (or 4-NP) through development of a physiologically based-pharmacokinetic (PBPK) model considering gender difference in pharmacokinetics of 4-n-NP and its application to human risk assessment studies. A PBPK model was newly developed considering gender differences in 4-n-NP pharmacokinetics and applied to a human risk assessment for each gender. Exposure analysis was performed using a PBPK model that considered gender differences in 4-n-NP (or 4-NP) exposure and high variabilities in several countries. Furthermore, an extended application was attempted as a human risk assessment for random mixture 4-NP, which is difficult to accurately evaluate in reality. External-exposure and margin-of-safety estimated with the same internal exposure amount differed between genders, meaning the need for a differentiated risk assessment considering gender. Exposure analysis based on biomonitoring data confirmed large variability in exposure to 4-n-NP (or 4-NP) by country, group, and period. External-exposures estimated using PBPK model varied widely, ranging from 0.039 to 63.875 mg/kg/day (for 4-n-NP or 4-NP). By country, 4-n-NP (or 4-NP) exposure was higher in females than in males and the margin-of-safety tended to be low. Overall, exposure to 4-n-NP (or 4-NP) in populations was largely not safe, suggesting need for ongoing management and monitoring. Considering low in vivo accumulation confirmed by PBPK model, risk reduction of 4-n-NP is possible by reducing its use.
Collapse
|
19
|
Gomes NO, Mendonça CD, Machado SAS, Oliveira ON, Raymundo-Pereira PA. Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples. Mikrochim Acta 2021; 188:359. [PMID: 34599426 DOI: 10.1007/s00604-021-05024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10-6 mol L-1 range with a limit of detection of 8.0 × 10-7 mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10-7 mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. "Red" is reduced form and "Oxi" is oxidized form of analytes.
Collapse
Affiliation(s)
- Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Camila D Mendonça
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil.
| |
Collapse
|